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Abstract: Continuous orthogonal moments, for which continuous functions are used as kernel
functions, are invariant to rotation and scaling, and they have been greatly developed over the recent
years. Among continuous orthogonal moments, polar harmonic Fourier moments (PHFMs) have
superior performance and strong image description ability. In order to improve the performance of
PHFMs in noise resistance and image reconstruction, PHFMs, which can only take integer numbers,
are extended to fractional-order polar harmonic Fourier moments (FrPHFMs) in this paper. Firstly, the
radial polynomials of integer-order PHFMs are modified to obtain fractional-order radial polynomials,
and FrPHFMs are constructed based on the fractional-order radial polynomials; subsequently, the
strong reconstruction ability, orthogonality, and geometric invariance of the proposed FrPHFMs
are proven; and, finally, the performance of the proposed FrPHFMs is compared with that of
integer-order PHFMs, fractional-order radial harmonic Fourier moments (FrRHFMs), fractional-
order polar harmonic transforms (FrPHTs), and fractional-order Zernike moments (FrZMs). The
experimental results show that the FrPHFMs constructed in this paper are superior to integer-order
PHFMs and other fractional-order continuous orthogonal moments in terms of performance in image
reconstruction and object recognition, as well as that the proposed FrPHFMs have strong image
description ability and good stability.

Keywords: fractional-order polar harmonic Fourier moments; continuous orthogonal moments;
geometric invariance; image reconstruction; object recognition

1. Introduction

The rapid development of information and network technologies has brought about
great changes to human life and production. As more and more digital images are conve-
niently transmitted and downloaded online, negative impacts also arise from such trends.
Each digital image can be accessed freely, and such free access provides the opportunity
for launching various attacks on digital images, such as rotation, translation, and scaling,
making the application of digital watermarking [1,2] and pattern recognition [3] more
difficult. To address these problems, researchers have begun to look for a kind of feature
vectors that can represent the objective information contained in images, so as to figure out
how to use invariant features to describe images and use a very small number of datasets
to represent more image information. Image moments are a type of highly concentrated
image features, which serve as a powerful tool to characterize images, and are invariant
to rotation, translation, and scaling. Image moments have been widely used in various
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fields of image processing, including image watermarking [4], image indexing [5], face
recognition [6], image registration [7], etc.

The concept of moment first appeared in the research areas of statistics and classical
mechanics. In 1962, Hu first proposed Hu’s moment invariants [8] that were introduced
into the field of image processing and proposed the theory of image moments used to
describe image features. Later, rotational moments (RMs) [9] and complex moments
(CMs) [10] were proposed successively. However, because the basis functions of rotational
and complex moments are non-orthogonal, there are problems with such moments, such
as their information redundancy and high sensitivity to noise, which make it difficult to
reconstruct the original images using such moments. To address the challenging recon-
struction problem, the concept of orthogonal moments was proposed by scholars based
on the theory of orthogonal functions. Orthogonal moments are free from the problem of
information redundancy; therefore, a small number of orthogonal moments can be used to
easily reconstruct the original images. Due to their minimum information redundancy and
high robustness [11], orthogonal moments have been used widely. Orthogonal moments
include discrete and continuous orthogonal moments. In 1980, Teague [12] firstly proposed
the use of Zernike moments (ZMs), a type of continuous orthogonal moments, for image
description. The amplitude of ZMs is rotation invariant, and ZMs are characterized by
high noise resistance and low information redundancy. Continuous orthogonal moments
are invariant to rotation, scaling, and translation and are able to capture the global fea-
tures of images, thus playing a great role in image reconstruction. Continuous orthogonal
moments mainly include Jacobi Fourier moments (JFMs) [13], pseudo-Jacobi Fourier mo-
ments (PJFMs) [13], pseudo-Zernike moments (PZMs) [14], Gaussian-Hermite moments
(GHMs) [15], Legendre moments (LMs) [12], continuous Hahn Moments (CHMs) [16],
polar harmonic transforms (PHTs) [17], exponent moments (EMs) [18], Chebyshev-Fourier
moments (CHFMs) [19], orthogonal Fourier-Mellin moments (OFMMs) [20], Bessel-Fourier
moments (BFMs) [21], radial harmonic Fourier moments (RHFMs) [22], polar harmonic
Fourier moments (PHFMs) [23], etc. Owing to their high numerical stability, PHFMs
are superior to other continuous orthogonal moments in terms of performance in image
reconstruction and object recognition.

However, existing orthogonal moments are limited to the integer-order and now
there are very few studies on non-integer-order orthogonal moments. In recent years,
fractional-order problems, such as fractional-order calculus and fractional-order Fourier
transform [18], have attracted extensive attention and more and more researchers have
begun to put focus on fractional-order moments. Xiao et al. derived the fractional-order
Legendre-Fourier moments (FrOLFMs) [24]. Zhang et al. defined the fractional-order
Fourier-Mellin polynomial and then derived the fractional-order orthogonal Fourier-Mellin
moments (FrOFMMs) [25]. Benouini et al. and Yang et al. proposed the orthogonal
fractional-order Chebyshev moments (FrOCMs) [26] and the fractional-order Zernike
moments (FrZMs) [27], respectively. Chen et al. introduced the quaternion orthogonal
fractional-order Zernike moments (QFrZMs) [28] used to process color images. Hosny
et al. proposed the fractional-order polar harmonic transforms (FrPHTs) [29] and the multi-
channel fractional-order radial harmonic Fourier moments (FrMRHFMs) [30]. Among the
aforementioned integer-order continuous orthogonal moments, PHFMs have strong image
description ability and can deliver superior performance in image reconstruction and
object recognition. Therefore, in this paper, the idea of fractional order is incorporated into
PHFMs, fractional-order radial polynomials are constructed by modifying the integer-order
radial polynomials of PHFMs to extend the traditional PHFMs to fractional polar harmonic
Fourier moments (FrPHFMs), then the properties of FrPHFMs are analyzed in detail, and
finally, it is experimentally verified that the proposed FrPHFMs have better performance
than integer-order PHFMs and other fractional-order continuous orthogonal moments in
image reconstruction and object recognition.

The main contributions of the study are summarized below. (1) Integer-order PHFMs,
which can only take integer numbers, are extended to FrPHFMs by means of modification
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of their radial polynomials. (2) The relationship between the changes in radial polynomials
and the reconstructed images is identified by analyzing the rate of change of radial polyno-
mials, and it is experimentally verified that the FrPHFMs constructed using the proposed
algorithm have good performance in image reconstruction and noise resistance. (3) The
constructed FrPHFMs are used for object recognition and compared with integer-order
PHFMs and other fractional-order continuous orthogonal moments from the perspective
of performance. The results of comparison show that the proposed FrPHFMs have better
performance in image reconstruction and object recognition.

Other sections of this paper are organized as follows: Section 2 introduces the Fr-
PHFMs construction process in detail and analyzes the geometric invariance of FrPHFMs;
Section 3 mainly analyzes the properties of FrPHFMs from two perspectives, namely the
changes in, and the rate of change of, their radial polynomials; Section 4 describes in
detail the experiments and discussions with respect to image reconstruction, geometric
invariance, and object recognition; and Section 5 draws a conclusion of this study.

2. FrPHFMs

In this section, the construction and properties of FrPHFMs are described in detail.
Firstly, the traditional integer-order PHFMs are introduced, then the definition of FrPHFMs
is given, and, finally, the geometric invariance of FrPHFMs is discussed.

2.1. Definition of Integer-Order PHFMs

The integer-order PHFMs with order of n ≥ 0 and repetition of |m| ≥ 0 of image
f (r, θ) in a polar coordinate system [31] is defined as:

pnm =
2
π

∫ 2π

0

∫ 1

0
f (r, θ)Hnm(r, θ)rdrdθ (1)

where [·] is the conjugate of a complex number, and basis function Hnm(r, θ) is composed
of radial polynomial Tn(r) and angular Fourier factor exp(jmθ):

Hnm(r, θ) = Tn(r) exp(jmθ) (2)

where radial polynomial Tn(r) is

Tn(r) =


1/
√

2 while n is 0
sin((n + 1)πr2) while n is odd
cos(nπr2) while n is even

(3)

Tn(r) is orthogonal within the range of 0 ≤ r ≤ 1:∫ 1

0
Tn(r)Tn′(r)rdr =

1
4

δnn′ (4)

From the property of angular Fourier factor exp(jmθ) and the formula above, it can be
known that basis function Hnm(r, θ) is orthogonal in the unit circle [32]:∫ 2π

0

∫ 1

0
Hnm(r, θ)Hkl(r, θ)rdrdθ =

π

2
δnkδml (5)

where 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, and δ is the Kronecker delta.
According to the theory of complete system of orthogonal functions, original image

function f (r, θ) can be approximately reconstructed using a finite number of PHFMs. Given
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the PHFMs with the maximum order of nmax and the maximum repetition of mmax, the
formula for approximate reconstruction of the original image is

f (r, θ) ≈
nmax

∑
n=0

mmax

∑
m=−mmax

Pnm Hnm(r, θ) (6)

2.2. Definition of FrPHFMs

In this paper, integer-order PHFMs are extended to FrPHFMs. The key to the con-
struction of FrPHFMs is to construct the fractional-order radial polynomials; therefore, the
extension of orthogonal radial polynomial Tn(r) is considered. Letting t > 0, U(t)

n (r) be
defined as the radial polynomial below:

U(t)
n (r) =


1/
√

2 while n is 0√
trt−1 sin((n + 1)πr2t) while n is odd√
trt−1 cos(nπr2t) while n is even

(7)

then the basis function of the FrPHFMs is:

W(t)
nm(r, θ) = U(t)

n (r) exp(jmθ) (8)

U(t)
n (r) complies with the following orthogonal relationship within the range of

0 ≤ r ≤ 1: ∫ 1

0
U(t)

n (r)U′(t)n (r)rdr =
∫ 1

0
rtU(t)

n (rt)U′(t)n (rt)d(rt) =
1
4

δnn′ (9)

From the properties of the angular Fourier factor and radial polynomials, it can be
known that basis function W(t)

nm(r, θ) is orthogonal in the unit circle and complies with the
following orthogonal relationship:∫ 2π

0

∫ 1
0W(t)

nm(r, θ)W(t)
kl (r, θ)rdrdθ

=
∫ 2π

0

∫ 1
0U(t)

nm(r) exp(jmθ)U′(t)kl (r) exp(−jlθ)rdrdθ
= π

2 δnkδml

(10)

Given t > 0, the FrPHFMs with an order of n ≥ 0 and a repetition of |m| ≥ 0 is
defined as:

FP(t)
nm =

2
π

∫ 2π

0

∫ 1

0
f (r, θ)W(t)

nm(r, θ)rdrdθ (11)

From the formula above, it can be seen that, when t = 1, the FrPHFMs is an integer-
order PHFMs, and thus is an extension to the integer-order PHFMs.

Given the FrPHFMs with the max moment order of nmax and the maximum repetition
of mmax, the original image can be approximately reconstructed using the formula below:

f (r, θ) ≈
nmax

∑
n=0

mmax

∑
m=−mmax

FP(t)
nmW(t)

nm(r, θ) (12)

2.3. Geometric Invariance of FrPHFMs

Property 1. Rotation invariance of FrPHFMs

The amplitudes of FrPHFMs are invariant to image rotation. Assuming that f (r, θ) is
an image function in a polar coordinate system, its FrPHFMs is FPnm, image f (r, θ + ϕ) is
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obtained by rotating the original image ϕ degree and the FrPHFMs thereof is FP′nm, then
according to the calculation formula, the FrPHFMs in the polar coordinate system is:

FP′nm = 2
π

∫ 2π
0

∫ 1
0 f (r, θ + ϕ)U(t)

n (r) exp(−jmθ)rdrdθ

= 2
π

∫ 2π
0

∫ 1
0 f (r, θ)U(t)

n (r) exp(−jm(θ − ϕ))rdrdθ

= 2
π

∫ 2π
0

∫ 1
0 f (r, θ)U(t)

n (r) exp(−jmθ)rdrdθ exp(jmϕ)
= FPnm exp(jmϕ)

(13)

The amplitudes are taken on both sides of the equation above:∣∣FP′nm
∣∣ = |FPnm exp(jmϕ)| = |FPnm||exp(jmϕ)| = |FPnm| (14)

From the formula above, it can be known that the amplitudes of the FrPHFMs of the
image obtained by rotating the original image are equal to those of the FrPHFMs of the
original image, indicating that FrPHFMs are invariant to image rotation. In this way, the
angle of rotation, ϕ, can also be estimated by comparing the moments of the two images.

Property 2. Scaling invariance of FrPHFMs

When calculating the scaled FrPHFMs, for a given image function g(r′, θ), find the
k of the image radius, the range of variation of r′ will be 0 ≤ r′ ≤ k, and the normalized
image function will be:

g(r′, θ) = g(kr, θ) = f (r, θ) (15)

where the variation range of r = r′
k is 0 ≤ r ≤ 1. f (r, θ) is the normalized image function,

and the FrPHFMs calculated by using the normalized function f (r, θ) has scale invariance.
Because any image f ( r′

k , θ) obtained by scaling the same image function f (r, θ) is finally
normalized to the same function f (r, θ) according to Formula (15), the normalized image
FrPHFMs has scaling invariance.

3. Analysis of Radial Polynomials

Although continuous orthogonal moments have good image description ability, they
will be affected by various errors and numerical instability under the condition of high
order, and these factors will affect their accuracy. Because such errors have negative effect
on image analysis and reconstruction, the image reconstruction performance of continuous
orthogonal moments will become very poor when their order reaches the critical value.
The properties of continuous orthogonal moments are mainly reflected in their radial
polynomials. In this section, the properties of radial polynomials are analyzed. Two groups
of test images are shown in the figures below.

Figure 1 shows the plots of FrPHFMs radial polynomials versus r with the order
n = 85 and different t values, where the value range of r is 0 ≤ r ≤ 1. When t = 1,
FrPHFMs will be PHFMs. It can be seen from Figure 1 that the radial polynomial variation
of integer-order PHFMs is unstable, while the radial polynomial variation of FrPHFMs is
relatively stable. It can also be observed in Figure 1 that the radial polynomials of integer-
order PHFMs change rapidly near the point where r = 1, resulting in numerical instability
near this point. When t = 0.7, 0.8, 0.9, the radial polynomials of FrPHFMs change in a
relatively stable manner, effectively reducing the errors occurring in the edge of images
reconstructed with PHFMs.
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Figure 1. Radial polynomials of fractional-order polar harmonic Fourier moments (FrPHFMs) with
the same moment order (n = 85) and different t values.

To show the changing degree of the radial polynomial versus r more clearly, we
calculate the derivative of the radial polynomial to r as the change rate of FrPHFMs radial
polynomial. Figure 2 shows the change rate of the corresponding radial polynomials with
the increase of r. It can be seen from Figure 2 that the change rate of radial polynomials of
integer-order PHFMs is generally higher than the FrPHFMs with the same order near r = 1.
And the radial polynomials of PHFMs change rapidly, resulting in numerical instability
in the edge regions of images [33] and very poor image reconstruction results. However,
when t = 0.7, 0.8, 0.9, the change of radial polynomials near r = 1 is relatively stable, and
the change rate is small, thereby, realizing greatly improved image reconstruction results.
When the radial polynomials change too fast, the radial polynomials oscillates around
r− axis at a higher frequency, which leads to the fact that the radial polynomials cannot be
correctly represented by a single value at the pixel center, resulting in poor reconstruction
effect and unclear reconstructed image. On the contrary, when the value of t is fractional
parameter, the changes in the radial polynomials of FrPHFMs are stable, indicating that
FrPHFMs can achieve clear display effects of reconstructed images, reduce experimental
errors, and effectively mitigate the deficiency of PHFMs.
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Figure 2. The change rate of FrPHFMs radial polynomial with the same moment order (n = 85) and
dif-ferent t values.

4. Experiments and Analysis of Experimental Results

In this section, the performance of FrPHFMs in image reconstruction and object
recognition, as well as their geometric invariance, are tested through a series of experiments.
Thirty grayscale images with a size of 128 × 128 were used as the test images in these
experiments. Figure 3 shows 10 grayscale images randomly selected from the USC-SIPI
Image Database.
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4.1. Image Reconstruction

Image reconstruction performance is an important feature of the continuous orthogo-
nal moments [34] and reflects the accuracy of such moments in image reconstruction. When
FrPHFMs are used to reconstruct images, the computational efficiency can be improved by
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limiting the number of FrPHFMs involved in image reconstruction. In other words, given
n + |m| ≤ K (0 ≤ n ≤ nmax, 0 ≤ |m| ≤ mmax), where K is a constant [31], the formula for
image reconstruction using FrPHFMs can be written as:

f (r, θ) =
nmax

∑
n=0

mmax

∑
m=−mmax

FP(t)
nmW(t)

nm(r, θ), n + |m| ≤ K (16)

Similarly, other types of moments also are subject to reconstruction constraints. The
reconstruction constraints and the numbers of moments used for image reconstruction for
three types of moments are listed in Table 1.

Table 1. Reconstruction constraints and the numbers of moments used for image reconstruction.

Moment Limit Condition Number of Moments

FrPHFMs n + |m| ≤ K (K + 1)2

FrRHFMs n + |m| ≤ K (K + 1)2

FrEMs |n|+ |m| ≤ K (K + 1)2 + K2

4.1.1. Comparison between FrPHFMs and Integer-Order PHFMs

Experiment 1. A grayscale image named Lena with a size of 128 × 128 pixels was
used for this experiment, the max moment order nmax was set to varying number from 50
to 90 at an interval of 5, and t = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. The number of moments used to
reconstruct the original image is 2601, 3136, 3721, 4356, 5041, 5776, 6561, 7396 and 8281
respectively. Unless otherwise specified, the value of K in this paper is K = nmax.The
experimental results are summarized in Table 2. For the purpose of comparison, the results
of image reconstruction with integer-order PHFMs (t = 1) are also listed in Table 2, in
which ε denotes the mean square reconstruction error (MSRE) [14], which is defined as:

ε =

M−1
∑

x=0

N−1
∑

y=0

∣∣∣ f (x, y)− f (x, y)
∣∣∣2

M−1
∑

x=0

N−1
∑

y=0
f 2(x, y)

(17)

where f (x, y) denotes the original image with a size of M × N, and f (x, y) denotes the
reconstructed image with the same size.

It can be seen from the data in Table 2 that, within a certain order range, with the
increase of nmax, the reconstruction effect of FrPHFMs becomes better, the reconstructed
image becomes clearer, and the error becomes smaller. When it exceeds this range, the
error will gradually increase, and the reconstructed image will become blurred, which
Iis caused by the instability of the radial polynomial. When nmax is about 70, with the
increase of the order, the reconstruction error of FrPHFMs with t = 0.8, 0.9 shows a trend
of overall decrease compared with that of integer-order PHFMs. At the same time, with the
increase of nmax, the edge part of the reconstructed image with the same t value will appear
unclear region, which can be explained by the change of radial polynomial. The change of
fractional orthogonal moments is mainly realized by changing the radial polynomial. For
the same order, the radial polynomial can be adjusted by changing the value of fractional
parameter t, which slows down the appearance of white regions and then changes the
image reconstruction effect.

Subsequently, the reconstruction errors produced by FrPHFMs were compared with
those by PHFMs (t = 1), and the mean value of reconstruction errors was taken for the
30 images. The experimental results are shown in Figure 4, in which reconstruction errors
are measured by MSRE. The line chart above clearly shows that, when nmax is greater than
70, the reconstruction errors with respect to the images processed with integer-order PHFMs
become greater rapidly, and, when t < 1, the reconstruction errors produced by FrPHFMs



Sensors 2021, 21, 1544 9 of 21

are remarkably smaller than those by integer-order PHFMs, indicating that FrPHFMs can
effectively mitigate the trend of overall increase in image reconstruction errors.

Table 2. Comparison of reconstructed images of FrPHFMs with different t.

nmax
t

0.7 0.8 0.9 1 1.1 1.2

50

ε 0.0410 0.0258 0.0180 0.0162 0.0185 0.0243

60

ε 0.0422 0.0255 0.0172 0.0147 0.0177 0.0256

70

ε 0.0493 0.0285 0.0186 0.0189 0.0286 0.0435

80

ε 0.0617 0.0390 0.0336 0.0455 0.0656 0.0883

90

ε 0.0827 0.0717 0.0845 0.1069 0.1357 0.1695
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Experiment 2. Considering the serious effect of noise on image reconstruction [35],
the trend of change in reconstruction errors with the increase in order was tested when
different values of t were taken after the same salt and pepper noises were added. Thirty
images were used for this experiment, the mean value of reconstruction errors was taken
for the 30 images, nmax was set to varying number within the range from 10 to 100,
t = 0.7, 0.8, 0.9, 1.0, and salt and pepper noises at intensity levels of 0.05, 0.1, 0.15, and
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0.2 were added, respectively. The line chart for image reconstruction errors is shown
in Figure 5.

Sensors 2021, 21, x FOR Proof 10 of 21 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Image reconstruction error comparison after adding salt and pepper noise with different 
intensities. 

The results of this experiment show that, as the density of added salt and pepper 
noise increases, the image reconstruction effects will deteriorate, indicating that noise 
does affect image reconstruction. When 1t < , the reconstruction effects of FrPHFMs are 
always better than those of integer-order PHFMs. When m axn  is greater than 85, the re-
construction errors produced by PHFMs become greater rapidly, while the reconstruction 
errors produced by FrPHFMs are smaller than those by integer-order PHFMs, indicating 
that FrPHFMs can effectively mitigate the trend of overall increase in image reconstruc-
tion errors. 

4.1.2. Comparison between FrPHFMs and Other Fractional-Order Continuous Orthogo-
nal Moments 

In this subsection, FrPHFMs are compared with FrRHFMs and FrEMs from the per-
spective of image reconstruction effects. Different values of t  are required to allow dif-
ferent fractional-order moments to achieve good image reconstruction effects. The results 
of many experiments indicate that the optimal reconstruction effects achievable by three 
different types of moments correspond to different values of t . Therefore, the image re-
construction performance of FrPHFMs ( 0.7,0.8,0.9,1.0t = ) was compared with that of 
FrRHFMs ( 1.2,1.3,1.4,1.0t = ) and FrEMs ( 1.3,1.4,1.5,1.0t = ), and the max moment order 
was set to max 50,55, ,75n = K , respectively. The results of comparison of images recon-
structed with different moments are summarized in Table 3. 

Table 3. Comparison of image reconstruction between FrPHFMs, fractional-order radial harmonic 
Fourier moments (FrRHFMs), and FrEMs. 

m axn  50 55 60 65 70 75 

Figure 5. Image reconstruction error comparison after adding salt and pepper noise with different intensities.

The results of this experiment show that, as the density of added salt and pepper noise
increases, the image reconstruction effects will deteriorate, indicating that noise does affect
image reconstruction. When t < 1, the reconstruction effects of FrPHFMs are always better
than those of integer-order PHFMs. When nmax is greater than 85, the reconstruction errors
produced by PHFMs become greater rapidly, while the reconstruction errors produced by
FrPHFMs are smaller than those by integer-order PHFMs, indicating that FrPHFMs can
effectively mitigate the trend of overall increase in image reconstruction errors.

4.1.2. Comparison between FrPHFMs and Other Fractional-Order Continuous
Orthogonal Moments

In this subsection, FrPHFMs are compared with FrRHFMs and FrEMs from the
perspective of image reconstruction effects. Different values of t are required to allow
different fractional-order moments to achieve good image reconstruction effects. The
results of many experiments indicate that the optimal reconstruction effects achievable by
three different types of moments correspond to different values of t. Therefore, the image
reconstruction performance of FrPHFMs (t = 0.7, 0.8, 0.9, 1.0) was compared with that
of FrRHFMs (t = 1.2, 1.3, 1.4, 1.0) and FrEMs (t = 1.3, 1.4, 1.5, 1.0), and the max moment
order was set to nmax = 50, 55, . . . , 75, respectively. The results of comparison of images
reconstructed with different moments are summarized in Table 3.
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Table 3. Comparison of image reconstruction between FrPHFMs, fractional-order radial harmonic Fourier moments
(FrRHFMs), and FrEMs.

nmax 50 55 60 65 70 75

FrPHFMs

0.7

0.0410 0.0408 0.0422 0.0447 0.0493 0.0552

0.8

0.0258 0.0254 0.0255 0.0261 0.0285 0.0322

0.9

0.0180 0.0173 0.0172 0.0174 0.0186 0.0223

1

0.0162 0.0152 0.0147 0.0156 0.0189 0.0301

FrRHFMs

1.2

0.0430 0.0470 0.0550 0.0627 0.0734 0.0871

1.3

0.0507 0.0521 0.0559 0.0609 0.0672 0.0753

1.4

0.0632 0.0628 0.0641 0.0665 0.0707 0.0761

1

0.0659 0.0857 0.1104 0.1419 0.2023 0.2805
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Table 3. Cont.

nmax 50 55 60 65 70 75

FrEMs

1.3

0.0468 0.0776 0.1380 0.2237 0.3363

1.4

0.0406 0.0782 0.1359 0.2169 0.3229

1.5

0.0438 0.0813 0. 1411 0.2227 0.3271

1

0.1571 0.2580 0.4266 0.6839 1.1081

In order to demonstrate image reconstruction errors more visually, a line chart was
drawn to allow for comparison of the reconstruction errors produced by the three dif-
ferent moments. Curves in different colors represent the reconstruction errors produced
by different moments for certain values of t, as shown in Figure 6. From the line chart
above, it can be seen that the reconstruction errors produced by FrPHFMs are very small
and are much smaller than those produced by FrEMs; and, as nmax increases continu-
ously, the reconstruction errors produced by the three different moments become greater
gradually, but those produced by FrPHFMs become greater more slowly, indicating that
FrPHFMs can effectively mitigate the trend of increase in image reconstruction errors.
These results show that FrPHFMs are superior to FrRHFMs and FrEMs in terms of image
reconstruction performance.
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4.2. Experiments on Geometric Invariance

The amplitudes of FrPHFMs are invariant to rotation and scaling. In other words,
the amplitudes of the FrPHFMs of the rotated and scaled images will be approximately
equal to those of the FrPHFMs of the original images. The rotation invariance and scaling
invariance of FrPHFMs are experimentally demonstrated in this section.

(1) Rotation invariance

The amplitudes of the FrPHFMs of a group of rotated images were calculated. A
grayscale image named Lena with a size of 128 × 128 pixels was used for this experiment.
After the image was rotated 5◦, 15◦, 25◦, 35◦, and 45◦, respectively, when t = 0.7, 0.8, 0.9,
the amplitudes of the FrPHFMs of the rotated images were calculated, respectively, and
compared with those of the FrPHFMs of the original image. Figure 7 shows the rotated
versions of image Lena, and the experimental results are summarized in Tables 4–6 below.
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Figure 7. Rotated Lena (a) Rotation 5◦, (b) Rotation 15◦, (c) Rotation 25◦, (d) Rotation 35◦, and (e) Rotation 45◦.

Table 4. Amplitudes of FrPHFMs of rotated Lena at t = 0.7.

Attack |FP0,1| |FP0,2| |FP0,3| |FP1,1| |FP1,2| |FP1,3| |FP2,1| |FP2,2| |FP2,3|
No attack 13.2636 6.7878 8.1325 2.6929 7.8478 4.2117 9.8186 6.1165 2.6960

Rotation 5◦ 13.2801 6.8185 8.1470 2.6878 7.8399 4.2073 9.8177 6.0874 2.6973
Rotation 15◦ 13.2447 6.8318 8.1289 2.6875 7.8376 4.2050 9.8395 6.0204 2.7022
Rotation 25◦ 13.1917 6.7881 8.0857 2.6859 7.8321 4.2021 9.8409 6.0223 2.7807
Rotation 35◦ 13.2086 6.7705 8.0581 2.6857 7.8443 4.2037 9.8415 6.0362 2.7580
Rotation 45◦ 13.2480 6.7773 8.0930 2.6916 7.8296 4.2101 9.8157 6.0943 2.7395

Table 5. Amplitudes of FrPHFMs of rotated Lena at t = 0.8.

Attack |FP0,1| |FP0,2| |FP0,3| |FP1,1| |FP1,2| |FP1,3| |FP2,1| |FP2,2| |FP2,3|
No attack 13.2636 6.7878 8.1325 5.0694 8.8202 4.0069 8.7714 4.6381 2.2499

Rotation 5◦ 13.2801 6.8185 8.1470 5.0631 8.8109 4.0025 8.7718 4.6095 2.2366
Rotation 15◦ 13.2447 6.8318 8.1289 5.0631 8.8080 4.0005 8.7888 4.5448 2.2606
Rotation 25◦ 13.1917 6.7881 8.0857 5.0638 8.7986 3.9994 8.7830 4.5582 2.3252
Rotation 35◦ 13.2086 6.7705 8.0581 5.0600 8.8145 3.9983 8.7897 4.5685 2.3052
Rotation 45◦ 13.2480 6.7773 8.0930 5.0671 8.8034 4.0062 8.7640 4.6223 2.2934

Table 6. Amplitudes of FrPHFMs of rotated Lena at t = 0.9.

Attack |FP0,1| |FP0,2| |FP0,3| |FP1,1| |FP1,2| |FP1,3| |FP2,1| |FP2,2| |FP2,3|
No attack 13.2636 6.7878 8.1325 6.7837 9.4405 3.7309 7.2897 3.1317 2.0057

Rotation 5◦ 13.2801 6.8185 8.1470 6.772 9.4300 3.7279 7.2929 3.1016 2.0008
Rotation 15◦ 13.2447 6.8318 8.1289 6.7768 9.4267 3.7258 7.3040 3.0402 2.0283
Rotation 25◦ 13.1917 6.7881 8.0857 6.7782 9.4157 3.7261 7.2892 3.0654 2.0700
Rotation 35◦ 13.2086 6.7705 8.0581 6.7717 9.4330 3.7227 7.3037 3.0755 2.0502
Rotation 45◦ 13.2480 6.7773 8.0930 6.7796 9.4248 3.7318 7.2795 3.1212 2.0468
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The amplitudes of 9 moments of the rotated images and the original image when
different values of t are taken are given in the tables above. Through comparison of the
listed data, it is found that the amplitudes of the same FrPHFMs of all rotated images
are approximately equal, indicating that the amplitudes of FrPHFMs are invariant to
rotation [36].

(2) Scaling invariance

The FrPHFMs of a group of scaled images were calculated to verify the scaling
invariance thereof. A grayscale image named Lena with a size of 128 × 128 pixels was used
for this experiment. After the image was scaled by 0.5, 0.7, 1.25, and 1.5 times, respectively,
the amplitudes of the FrPHFMs of the scaled images were calculated, respectively, and
compared with those of the FrPHFMs of the original image. Figure 8 shows the scaled
versions of image Lena, and the experimental results are summarized in Tables 7–9 below.

Figure 8. Scaled Lena. (a) Scaling 0.5. (b) Scaling 0.7. (c) Scaling 1.25. (d) Scaling 1.5.

Table 7. Amplitudes of FrPHFMs of scaled Lena at t = 0.7.

Attack |FP0,1| |FP0,2| |FP0,3| |FP1,1| |FP1,2| |FP1,3| |FP2,1| |FP2,2| |FP2,3|
No attack 13.2636 6.7878 8.1325 2.6929 7.8478 4.2117 9.8186 6.1165 2.6960
Scaling 0.5 13.1716 6.7492 8.1484 2.4992 7.6278 4.2069 9.9157 6.2099 2.7372
Scaling 0.7 13.1845 6.9783 8.0352 2.6448 8.1160 4.1109 9.6975 6.1228 2.5378
Scaling 1.25 13.2954 6.8006 8.1162 2.7297 7.8780 4.1928 9.8435 6.0695 2.6921
Scaling 1.5 13.2632 6.8049 8.0928 2.7462 7.8986 4.2022 9.8124 6.0241 2.7219

Table 8. Amplitudes of FrPHFMs of scaled Lena at t = 0.8.

Attack |FP0,1| |FP0,2| |FP0,3| |FP1,1| |FP1,2| |FP1,3| |FP2,1| |FP2,2| |FP2,3|
No attack 13.2636 6.7878 8.1325 5.0694 8.8202 4.0069 8.7714 4.6381 2.2499
Scaling 0.5 13.1761 6.7492 8.1484 4.8723 8.6258 4.0048 8.8911 4.7972 2.3052
Scaling 0.7 13.1845 6.9783 8.0352 5.0677 9.0374 3.9182 8.6079 4.6351 2.1025
Scaling1.25 13.2954 6.8006 8.1162 5.1003 8.8415 3.9868 8.7910 4.5856 2.2358
Scaling 1.5 13.2632 6.8049 8.0928 5.1172 8.8581 3.9971 8.7497 4.5346 2.2736

Table 9. Amplitudes of FrPHFMs of scaled Lena at t = 0.9.

Attack |FP0,1| |FP0,2| |FP0,3| |FP1,1| |FP1,2| |FP1,3| |FP2,1| |FP2,2| |FP2,3|
No attack 13.2636 6.7878 8.1325 6.7837 9.4405 3.7309 7.2897 3.1317 2.0057
Scaling 0.5 13.1761 6.7492 8.1484 6.6378 9.2852 3.7349 7.4022 3.3393 2.0626
Scaling 0.7 13.1845 6.9783 8.0352 6.7760 9.6124 3.6438 7.0870 3.1491 1.8804
Scaling 1.25 13.2954 6.8006 8.1162 6.8009 9.4509 3.7117 7.3133 3.0747 1.9787
Scaling 1.5 13.2632 6.8049 8.0928 6.8111 9.4619 3.7229 7.2655 3.0225 2.0219



Sensors 2021, 21, 1544 15 of 21

The amplitudes of 9 moments of the scaled images and the original image when
different values of t are taken are given in the tables above. Through comparison of the
listed data, it is found that the amplitudes of the same FrPHFMs of all scaled images are
approximately equal, indicating that the amplitudes of FrPHFMs are invariant to scaling.

4.3. Object Recognition

In this section, the proposed FrPHFMs are experimentally compared with other
fractional-order continuous orthogonal moments, including fractional-order polar complex
exponential transforms (FrPCETs), fractional polar cosine transforms (FrPCTs), fractional
polar sine transforms (FrPSTs), and FrZMs, from the perspective of object recognition.
Firstly, relevant operations were performed on the test images, the moments of tested
images were calculated, and these moments were used as image features. Because errors
will occur when orthogonal moments are calculated, accurate moments need to be selected
and used for comparative experiments on object recognition in order to ensure accurate
object recognition. The sets of different fractional-order orthogonal moments and the
number of moments in each set used for object recognition are listed in Table 10. It is to be
noted that low-order moments are used as image features for comparative experiments on
object recognition because such moments can represent more image information using less
data.

Table 10. Moment sets used in object recognition and the number of moments in moment sets.

Moment Conjugated Moment Final Moment Set Number of Moments

FrPHFMs FP(t)
n,m = FP(t)

n,−m SFrPHFMs =
{

FP(t)
nm, n + |m| ≤ K, m ≥ 0, m 6= 4i, i ∈ Z

} |S|FrPHFMs =
3K2+6K

8 , K = 4i or K = 4i + 2
3K2+6K−1

8 , K = 4i + 1
3K2+6K+3

8 , K = 4i + 3

FrRHFMs FM(t)
n,m = FM(t)

n,−m SFrRHFMs =
{

FM(t)
nm, n + |m| ≤ K, m ≥ 0, m 6= 4i, i ∈ Z

} |S|FrRHFMs =
3K2+6K

8 , K = 4i or K = 4i + 2
3K2+6K−1

8 , K = 4i + 1
3K2+6K+3

8 , K = 4i + 3

FrPCETs FM(t)
n,m = FM(t)

−n,−m SFrPCETs =
{

FM(t)
nm, |n|+ |m| ≤ K, m ≥ 0, m 6= 4i, i ∈ Z

} |S|FrPCETs ={
3K2+3K

4 , K = 4i or K = 4i + 3
3K2+3K−2

4 , K = 4i + 1 or K = 4i+2

FrPCTs FM(t)
n,m = FM(t)

n,−m SFrPCTs =
{

FM(t)
nm, n + |m| ≤ K, m ≥ 0, m 6= 4i, i ∈ Z

}
|S|FrPCTs =


3K2+6K

8 , K = 4i or K = 4i + 2
3K2+6K−1

8 , K = 4i + 1
3K2+6K+3

8 , K = 4i + 3

FrPSTs FM(t)
n,m = FM(t)

n,−m SFrPSTs =
{

FM(t)
nm, n + |m| ≤ K, m ≥ 0, m 6= 4i, i ∈ Z

} |S|FrPSTs =
3K2

8 , K = 4i
3K2−3

8 , K = 4i + 1 or K = 4i + 3
3K2−4

8 , K = 4i + 2

FrZMs FM(t)
n,m = FM(t)

n,−m SFrZMs =

{
FM(t)

nm, n− |m| = even, |m| ≤ n ≤ K,
m ≥ 0, m 6= 4i, i ∈ Z

}
|S|FrZMs =


3K2+8K

16 , K = 4i
3K2+10K+3

16 , K = 4i + 1
3K2+8K+4

16 , K = 4i + 2
3K2+10K+7

16 , K = 4i + 3

Experiment 1. In this experiment, the binary images of 26 capitalized English letters
were used for object recognition, and the relationship between the number of moments
used for object recognition and correct classification percentage (CCP) was tested. The size
of each image was 64 × 64 pixels, as shown in Figure 9. Firstly, each of the 26 letters was
rotated 0− 180◦ at an interval of 5◦, producing 37 rotated images, from which 19 images
were selected randomly as training images, and the remaining 18 images were used as
test images. Nine hundred and sixty-two test images were produced in total, including
494 images in the training set and 468 images in the test set. Gaussian noise with average
intensity of 0 and variance of σ2 = 0.20 was added to the images in the test set, which were
classified using the K-Nearest Neighbors (KNN) algorithm [37]. The changes in the CCP
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of different fractional-order continuous orthogonal moments with changing number of
moments are shown in Figure 10 below.

Figure 9. Capital images.

Figure 10. Correct classification percentage (CCP) (%) comparison of different fractional-order
continuous orthogonal moments with the number of moments.

From the figure above, it can be seen that the CCP of FrPHFMs is higher than those
of other fractional-order continuous orthogonal moments, indicating that FrPHFMs are
superior to other fractional-order continuous orthogonal moments in terms of classification
performance. Additionally, it can also be observed that, as the number of moments
increases, the CCP will increase gradually, and it will start to decrease after reaching a
certain value, which is known as the overfitting problem in machine learning.

Experiment 2. One hundred grayscale images with an equal size of 128 × 128 pixels
selected from database COIL-100 were used as the test images for this experiment. Figure 11
shows some images randomly selected from this database. Firstly, each image was rotated
0− 90◦ at an interval of 5◦, producing 19 images, from which 10 images were randomly
selected as training images, and the remaining 9 images were used as test images. One
thousand nine hundred test images were produced in total, including 1000 images in the
training set and 900 images in the test set. Salt and pepper noises with varying density of
σ2 = 0.00, 0.05, · · · , 0.25 were added to the images in the test set, which were classified
using the multi-class naive Bayes classifier [38]. Six, 18, 45 and 96 low-order moments were
selected and used, respectively, as the image features for this experiment, and the CCPs of
these different moments were compared. The experimental results are shown in Figure 12.
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Figure 11. Some images in COIL-100 database.

Figure 12. CCP (%) comparison of different fractional-order continuous orthogonal moments with the density of salt and
pepper noise.
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From Figure 12, it can be clearly observed that the CCP of FrPHFMs is higher than
those of other fractional-order continuous orthogonal moments, indicating that FrPHFMs
have the best classification performance. Additionally, it can also be observed that, when
nose is not added to the images, the CCP of each moment is 100% but will decline with the
increase in noise density. However, the CCP of FrPHFMs decreases very slowly, indicating
that FrPHFMs can effectively mitigate the trend of rapid decline of object recognition rate.

Experiment 3. The 100 grayscale images used in experiment 2 were used as the
training images for this experiment. Various conventional attacks were applied to the
images, and the object recognition rates of different moments of images subjected to
such attacks were compared. Firstly, all images were rotated 0◦, 5◦, . . . , 90◦, respectively,
producing 1900 images in total, which were included into the test set. Then different
attacks were applied to the test images. The applied attacks included JPEG compression
with quality factor of 10, 20, 50, and 80, Wiener filtering with a window size of 2 × 2
and Gaussian filtering with a window size of 4 × 4, contrast enhancement filtering with
alpha factor of 0.2 and 0.4, and circular averaging filtering at radius of 2 and 4. The
images in the test set were then classified using a multi-class support vector machine
(MSVM) [39]. Five and 13 low-order moments were selected and used, respectively, as
the image features for this experiment, and the CCPs of these different moments were
compared. The experimental results are shown in Table 11.

Table 11. CCP (%) comparison of different fractional-order continuous orthogonal moments under various attacks.

Number of
Moments Attack FrPHFMs FrRHFMs FrPCETs FrPCTs FrPSTs FrZMs

5

No attack 100.00 100.00 100.00 100.00 100.00 100.00
JPEG Compression 10 99.68 97.16 96.52 93.95 93.79 96.52
JPEG Compression 20 100.00 100.00 100.00 99.58 100.00 100.00
JPEG Compression 50 100.00 100.00 100.00 100.00 100.00 100.00
JPEG Compression 80 100.00 100.00 100.00 100.00 100.00 100.00
Wiener filtering 2 × 2 100.00 100.00 100.00 100.00 99.89 99.82
Wiener filtering 4 × 4 100.00 100.00 99.72 99.63 99.74 99.65

Gaussian filtering 2 × 2 100.00 97.58 100.00 95.42 93.16 100.00
Gaussian filtering 4 × 4 100.00 97.58 100.00 95.42 93.16 100.00

Unsharp filtering 0.2 100.00 100.00 100.00 100.00 100.00 100.00
Unsharp filtering 0.4 100.00 100.00 99.36 100.00 100.00 100.00

Disk filtering 2 99.76 99.43 98.10 99.95 98.75 98.63
Disk filtering 4 98.23 96.89 93.42 92.58 97.05 94.00

13

No attack 100.00 100.00 100.00 100.00 100.00 100.00
JPEG Compression 10 99.85 99.21 98.42 98.79 98.68 99.74
JPEG Compression 20 100.00 100.00 100.00 100.00 100.00 100.00
JPEG Compression 50 100.00 100.00 100.00 100.00 100.00 100.00
JPEG Compression 80 100.00 100.00 100.00 100.00 100.00 100.00
Wiener filtering 2 × 2 100.00 100.00 100.00 100.00 100.00 100.00
Wiener filtering 4 × 4 100.00 100.00 100.00 100.00 100.00 100.00

Gaussian filtering 2 × 2 100.00 99.68 97.95 99.05 97.95 100.00
Gaussian filtering 4 × 4 100.00 99.68 97.95 99.05 97.95 100.00

Unsharp filtering 0.2 100.00 100.00 100.00 100.00 100.00 100.00
Unsharp filtering 0.4 100.00 100.00 100.00 100.00 100.00 100.00

Disk filtering 2 100.00 100.00 100.00 100.00 100.00 100.00
Disk filtering 4 98.31 97.95 95.26 94.89 96.32 96.78

From the Table 11, it can be seen that the CCPs of all fractional-order continuous
orthogonal moments are 100% under various attacks because such moments are highly
robust to attacks. It can also be observed that, regardless of which attack is applied to
the images, the CCP of FrPHFMs is always higher than those of other fractional-order
continuous orthogonal moments, indicating that FrPHFMs are highly robust and superior
to other fractional-order continuous orthogonal moments in terms of resistance to attacks.
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5. Conclusions

In this paper, in order to improve the anti-noise and reconstruction performance
of PHFMs, the traditional PHFMs, which can only take integer-order, are extended to
FrPHFMs. By modifying the radial polynomial of integer-order PHFMs, FrPHFMs are
constructed according to fractional radial polynomial, and the properties of FrPHFMs are
introduced and detailed experiments are carried out according to their properties. Firstly,
the traditional integer-order PHFMs are introduced, and then FrPHFMs are constructed by
using fractional radial polynomial, and their properties are described in detail. FrPHFMs
have good orthogonality, rotation invariance, and scaling invariance and are superior to
integer-order PHFMs. Secondly, the change of radial polynomial is analyzed in detail. Fi-
nally, the constructed FrPHFMs are applied to image reconstruction, geometric invariance,
and object recognition experiments, which further verifies their good geometric invariance
and image description ability. From the numerical and experimental analysis, the follow-
ing conclusions can be drawn: FrPHFMs not only maintain the orthogonality, rotation
invariance, and scaling invariance of integer-order PHFMs, but they also have good image
description ability. Their performance in image reconstruction, anti-noise performance, and
object recognition is better than integer-order PHFMs and other fractional-order continuous
orthogonal moments. In the future, the improvement of FrPHFMs performance will be
made an important area of research.
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