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Abstract: This paper addresses the problem of nonlinear height tracking control of an automobile
active air suspension with the output state constraints and time-varying disturbances. The proposed
control strategy guarantees that the ride height stays within a predefined range, and converges closely
to an arbitrarily small neighborhood of the desired height, ensuring uniform ultimate boundedness.
The designed nonlinear observer is able to compensate for the time-varying disturbances caused by
external random road excitation and perturbations, achieving robust performance. Simulation results
obtained from the co-simulation (AMESim-Matlab/Simulink) are given and analyzed, demonstrating
the efficiency of the proposed control methodology.

Keywords: nonlinear height control; active air suspension; output constraints; random road excita-
tion; disturbance observer design

1. Introduction

Active vehicle suspensions are effective ways to isolate or dissipate the vibration ener-
gies transferred from irregular road excitation to vehicle body [1–3]. With the development
of automobile industry, the active suspension has demonstrated its capability in (1) improv-
ing ride comfort, i.e., reducing vehicle body acceleration, and (2) the safety performance
constraint, such as suspension dynamic displacement, tire dynamic payload, and actuator
input saturation [2,4–6]. As it is convenient to employ electronically-controlled active air
suspension (AAS) systems to adjust the ride height by inflating and deflating the air spring,
they have drawn attention from automobile manufactories (e.g., Tesla) and have been
extensively utilized in commercial vehicles [7–9].

However, there are still many challenges in regulating the ride height motion of
the vehicle body (with the AAS system) robustly and accurately under random road
excitation. Moreover, the adjustment of ride height usually changes the stiffness and
hysteresis, and generates perturbations in the AAS system [10,11]. In addition, because
of the mechanical structure and travel limitations of the AAS, the ride height movement
should always be constrained in a reliable range for safety performance [12–14]. Therefore,
an appropriate ride height controller should be designed for the AAS systems in the
presence of perturbations and output constraints.

Aiming to deal with the aforesaid problems, many results have been reported, such as
robust H∞ control [15,16], sliding mode control (SMC) [11,17,18], fuzzy logic [19], neural
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network-based [20], and backstepping control techniques [14,21]. In [16], a robust H∞
controller for AAS systems was proposed, where the ride comfort and time domain hard
constraints were considered. However, the model uncertainties are linearized by trans-
formation of their utilized dynamic model [16]. As this model cannot capture the actual
behavior of the AAS system, it could deteriorate the height tracking performance. Nonlinear
controllers were proposed by employing SMC technique to handle the external random
road excitation and perturbations in the AAS system [11,17,18]. However, the authors of [11]
dealt with the time-varying disturbances by choosing high control gains for robustness
resulting in unwanted oscillations. To cope with this drawback, an adaptive SMC scheme
was proposed by using neural networks to increase SMC properties in [18]. Simulation
results and Lyapunov-based stability proof were presented, demonstrating the proposed
control method can stabilize displacement and speed of the suspension systems. Similarly,
the backstepping control has been extensively investigated by employing fuzzy logic and
neural networks for enhancing the control performance [19,20]. However, in order to make
the approximation error arbitrarily small, the numbers of FLS rules or neurons should be
increased, resulting in a heavy computational burden. Meanwhile, to our best knowledge,
the numbers of the needed rules or neurons are difficult to be determined for keeping the
estimation error bounded in a specific range. In [14,21], nonlinear backstepping-based
height tracking controllers were designed, where some conservativeness was adopted in
the control law to reduce the effects of time-varying disturbances.

In addition to the challenge raised from developing control strategy for handling
disturbances, the output height constraint is also considered as a critical issue due to
the mechanical structure limitation of the AAS system. Although the nonlinear ride
height controllers based on the classic Quadratic Lyapunov function are presented to
track predefined trajectories in the presence of perturbations and the height constraint
are neglected for the ride height control applications with the AAS system [14,21]. By
using the backstepping control approaches, the Barrier Lyapunov Functions (BLFs) have
been developed and defined as control Lyapunov candidates for achieving the constrained
objectives control [13,22–24]. In [22], the BLFs are employed in the controller design.
Moreover, an asymmetric BLF is presented and employed in the constrained controller
design to handle the external disturbances without violation of the output constraints [23].
In addition, the author of [13] proposed the constrained adaptive controller for damping
force control by using the BLFs, improving ride comfort, and satisfying the performance
constraints. However, the height motion control of AAS systems in the presence of output
constraint has not been addressed yet.

Inspired by the above discussion, this paper presents a novel solution to address
the height tracking control problem of nonlinear AAS system with output constraint and
external time-varying disturbances. The novelties and contributions of this paper are
summarized as follows.

• A nonlinear height tracking controller for the nonlinear AAS system is proposed,
guaranteeing that (i) the output height always stays in a predefined range and (ii)
uniform ultimate boundedness is achieved.

• A nonlinear disturbance observer is designed to compensate the time-varying distur-
bances caused by external random road excitation and perturbations in the AAS system.

With respect to the state-of-the art approaches, the main merits of the proposed con-
strained control strategy are as follows. In this research, unlike the linearized models used
in [16], the mathematical model with the time-varying disturbances is employed to describe
the perturbations in the AAS system. Unlike the disturbance rejection methods presented
in [14,19–21], a time-varying disturbance observer is designed in this paper, guaranteeing
that the estimation error is bounded by certain value. The designed disturbance observer
can guarantee the estimate converges closely to zero. Moreover, we take the output con-
straints into consideration by using the BLFs in the backstepping controller design. By
contrast, the output constraint was neglected in [11,17,19,20].
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The remainder of this paper is organized as follows. In Section 2, the notation used
throughout this paper is introduced. Section 3 presents a mathematical model of the
AAS system and formulates the control problem. In Section 4, a nonlinear disturbance
observer is designed, and a constrained ride height controller is proposed based on the
backstepping control technique with BLFs. To validate the efficiency of proposed control
strategy, co-simulation results are presented and analyzed in Section 5. At last, Section 6
summarizes the contents of this paper and describes the future work.

2. Notation

In this paper, Rn denotes the n−dimensional euclidean space. A function f is of class
Cn if the derivatives f

′
, f
′′
, ..., f n exist and are continuous. For a vector x ∈ Rn, its norm

is defined as ‖x‖ =
√

xTx.
∫ t

0 x dτ denotes the integral of x, and τ denotes the integration
variable. For the reader’s reference, Table 1 summarizes the main symbols and descriptions
for the model, controller, and parameter estimators in the paper.

Table 1. Symbols and their descriptions.

Symbol Description Symbol Description

hs (m) height of vehicle sprung mass m (kg) sprung mass of quarter vehicle
hu (m) unsprung mass displacement mu (kg) unsprung mass of quarter vehicle
hd (m) desired height ṁdes (g) desired change of air mass for air spring
hr (m) road excitation Ās (mm2) area of adjustable air spring
h0 (m) initial height of sprung mass hd (m) maximum value of desired height

b (N · s ·m−1) damping coefficient of damper hmax (m) maximum value of sprung height
ps (Pa) air spring pressure d(t) time-varying disturbances
p0 (Pa) initial air pressure dmax maximum value of disturbances
vs (m3) air spring volume kt (N ·m−1) tire stiffness

Q̇ (J · s−1) heat transfer rate u control input
Fs air spring force Fd damping force

3. Problem Formulation

The objective of this section is to formulate the problem of nonlinear ride height
tracking control with application to the AAS system in the presence of output constraints
and the time-varying disturbances. We start by presenting the mathematical model of a
quarter vehicle with AAS system. Then, the problem of constrained ride height tracking
control is formulated with the maximum boundary value of vehicle ride height and the
time-varying disturbances.

3.1. ASS Modeling

In order to describe the dynamic characteristics, a mathematical model of a quarter
vehicle with AAS is employed as a part of model-based height controller design for realizing
the control objective successfully. The schematic diagram of a quarter vehicle with AAS is
shown in Figure 1, and the dynamic equations of the sprung mass and unsprung mass are
given by

ms ḧs = Fs − Fd − Fg

mu ḧu = −Fs + Fd − Ft − Dt
(1)

where Fg = msg denotes the gravitational force; ms is the sprung mass of a quarter vehicle;
mu is the unsprung mass, which denotes mass of the wheel assembly; and Fs and Fd
represent the forces produced by the air spring and damper, respectively. Ft and Dt are
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the elasticity force and damping force of the tire, respectively. Forces produced by the
nonlinear air spring, the linear damper, and the tire yield,

Fs = Ās(ps − pa)

Fd = b(ḣs − ḣu)

Ft = kt(hu − hr)

Dt = bt(ḣu − ḣr)

(2)

where pa is the atmospheric pressure, sp = 105, and Ās = Assp is the effective area
of the adjustable air spring. hr denotes the random road excitation, and hu and hs are
the displacements of the unsprung mass and the sprung mass of the quarter vehicle,
respectively. b is the damping coefficient, kt and bt are the stiffness and damping coefficient
of the tire, respectively.

Unsprung mass

Vehicle body

(Sprung mass)

Active 

air 

suspension

Wheel

sh

uh

rh

sm

sF

sp
svdF

u

um

tF tD

gF

Figure 1. Schematic diagram of quarter vehicle with active air suspension (AAS).

Due to the perturbations in the AAS system, the time-varying disturbances should be
considered in the employed model for ride height control. From (1), the quarter vehicle
model with the AAS can be then expressed in a compact state-space form as

ḣ1 = h2

ḣ2 = m−1
s

(
Ās(h3 − patm)− b(h2 − żu)−msg

)
ḣ3 = u− γAsh2h3v−1

s + Q̇(γ− 1)(spvs)
−1 + d(t)

(3)

where h1 = hs, h2 = ḣs, h3 = pss−1
p . vs represents the air volume; Q̇ = ht Aheat(Te − Tas)

is the heat transfer rate between the inner and the outer sides of the control volume, in
which ht is the heat transfer coefficient; Aheat represents the area of the heat transfer; Te and
Tas are temperatures of the outer and the inner sides of the control volume, respectively;
and u is viewed as the control input for inflating and deflating the adjustable air spring.
The time-varying disturbances are denoted by d(t) with the following assumption:

Assumption 1. Disturbances d(t) are unknown, time-varying and satisfy

|d(t)| ≤ dmax, |ḋ(t)| ≤ d̄
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where dmax and d̄ are known positive numbers.

3.2. Output Constraint and Barrier Lyapunov Function

In practice, because of the structure limitation, the output height of the AAS system
should be constrained by hmax, which denotes the maximum ride height of the AAS.
Inspired by the work in [24], the following BLF is used.

Vb =
1
2

Υ2(z1) (4)

where

Υ(z1) =
µ2z1

µ2 − z2
1

(5)

where z1 = h1 − hd is the velocity tracking error, hd denotes the desired height under the
assumption that |hd| < h < hmax, and µ = hmax− h. To facilitate the analysis, we formulate
a simple lemma, given as

Lemma 1. For any two nonzero scalars x ∈ R, y ∈ R, if |x| < xmax, |y| < ymax, xmax >
ymax > 0, then we have

|x| − |y| ≤ |x− y|. (6)

Furthermore, based on Equation (6), if we have |x− y| < xmax− ymax, |y| < ymax, xmax >
ymax > 0, we can obtain |x| < xmax.

Remark 1. The BLF Vb is positive definite and C1 continuous for |z1| < µ.

Remark 2. If there is no constraint on h1, that is, hmax → +∞, the BLF becomes

Vb =
1
2

z2
1 (7)

which is a quadratic Lyapunov function.

3.3. Problem Statement

For AAS systems, the following control objectives should be considered in the ride
height controller design.

• The proposed ride height controller can guarantee the accurate trajectory tracking
performance in the presence of time-varying disturbances.

• Due to the mechanical structure and travel limitation of the AAS, the dynamic height
should be restrained within its allowable maximum value, which is expressed as
|hs| < hmax.

4. Nonlinear Backstepping Controller Synthesis

In this section, the control objective is to design the virtual control input u for the
ASS that ensures convergence of the ride height to an arbitrarily small neighborhood of
the desired height without violating the requirement of output constraint |h1| < hmax.
A disturbance observer d̂(t) is first designed to estimates d(t), and then a constrained
controller is designed based on the backstepping technique by using the BLF. Details are
given in the sequel.
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4.1. Disturbance Observer Design

To design the disturbance observer for d(t), we take a clue from the work in [25] and
define two auxiliary terms as

ξ = d(t)− φ(h3),

ξ̂ = d̂(t)− φ(h3),
(8)

where φ(h3) = λdh3, λd is a positive estimation gain, and d̂(t) is the estimation of d(t).
From (8), we have

d̂(t) = ξ̂ + φ(h3) (9)

and the estimation error is
de = ξ − ξ̂. (10)

Computing the time derivative of ξ, we obtain

ξ̇ = ḋ(t)− ∂φ(h3)

∂h3

[
u− γAsh2h3v−1

s + Q̇(γ− 1)(spvs)
−1 + d(t)

]
. (11)

Then, we introduce the time derivative of the estimated ξ̂, given as

˙̂ξ = −∂φ(h3)

∂h3

[
u− γAsh2h3v−1

s + Q̇(γ− 1)(spvs)
−1 + d̂(t)

]
, (12)

leading to
ḋe = ξ̇ − ˙̂ξ

= ḋ(t)− λdde.
(13)

The main result is summarized in the following Lemma.

Lemma 2. Through the use of designed disturbance observer (9), the estimate |de(t)| exponentially
converges to the circle centered at the origin with radius de(t)(4ε(λd − ε))−

1
2 , which can be made

arbitrarily small by increasing the estimation gain λd, where ε is a positive constant.

Proof. We start the proof by defining a Lyapunov candidate function, given as

Vd(t) =
1
2

de(t)2. (14)

Computing the time derivative of Vd(t), we have

V̇d(t) = −λdde(t)2 + de(t)ḋ(t)

≤ −2(λd − ε)Vd(t) + d̄2(4ε)−1, (15)

where λd > ε. Solving (15), we obtain

Vd(t) ≤ e−2(λd−ε)Vd(0) + d̄2(8ε(λd − ε))−1. (16)

From here we can conclude that Vd converges to a circle of radius d̄2(8ε(λd − ε))−1.
It follows that |de(t)| converges to a circle of radius d̄(4ε(λd − ε))−

1
2 , which can be made

arbitrarily small by increasing λd.
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4.2. Constrained Controller Design

Let the desired height hd be a curve of class at least C3, with all its time derivatives
bounded. In order to address the constrained height tracking problem, we consider (4) as
an initial Lyapunov function candidate given by

V1 = Vb =
1
2

Υ(z1)
2, (17)

whose time derivative yields

V̇1 = Υ(z1)Υ̇(z1), (18)

where

Υ̇(z1) =
2µ2z2

1
(µ2 − z2

1)
2

ż1 +
µ2

µ2 − z2
1

ż1, (19)

For the sake of simplicity, we define δ1 and δ2 as

δ1 =
2µ2z2

1
(µ2 − z2

1)
2

, δ2 =
µ2

µ2 − z2
1

, (20)

then, Equation (18) can be rewritten as

V̇1 = Υ(z1)(δ1ż1 + δ2ż1). (21)

Isolating a negative definite term in Υ(z1) and rearranging the terms of V̇1, we get

V̇1 = −W1(z1) + Υ(z1)(δ1ż1 + δ2ż1 + k1Υ(z1)). (22)

where W1(z1) = k1Υ(z1)
2, and k1 is a positive number. Following the backstepping

technique, we define the new error z2 as

z2 = δ1ż1 + δ2ż1 + k1Υ(z1), (23)

and rewriting (22), we have

V̇1 = −W1(z1) + Υ(z1)z2. (24)

Constructing a new Lyapunov function candidate by incorporating z2, we obtain

V2 =
1
2

Υ(z1)
2 +

1
2

z2
2, (25)

with time derivative

V̇2 = −W2(z1, z2) + z2

(
(m−1

s Ās(h3 − patm)−m−1
s b(h2 − żu)− g− ḧd)(δ1 + δ2) (26)

+ Υ(z1) + (δ̇1 + δ̇2)ż1 + k1Υ̇(z1) + k2z2

)
,

where W2(z1, z2) = W1(z1) + k2z2
2, k2 is a positive number,

δ̇1 =
4µ2z1ż1

(µ2 − z2
1)

2
+

8µ2z3
1ż1

(µ2 − z2
1)

3
, δ̇2 =

2µ2z1ż1

(µ2 − z2
1)

2
. (27)



Sensors 2021, 21, 1539 8 of 16

Furthermore, we can rewrite (26) as

V̇2 = −W2(z1, z1) + z2(δ1 + δ2)
[
m−1

s Ās(h3 − patm)−m−1
s b(h2 − żu)− g− ḧd (28)

+
Υ(z1)

δ1 + δ2
+
( δ̇1 + δ̇2

δ1 + δ2
+ k1

)
ż1 +

k2z2

δ1 + δ2

]
.

Continuing with the backstepping procedure, we define the last error term as

z3 = m−1
s Ās(h3 − patm)−m−1

s b(h2 − żu)− g− ḧd +
Υ(z1)

δ1 + δ2

+
( δ̇1 + δ̇2

δ1 + δ2
+ k1

)
ż1 +

k2z2

δ1 + δ2
,

(29)

and augment the Lyapunov function candidate as

V3 = V2 +
1
2

z2
3. (30)

The closed-loop time derivative is then

V̇3 = −W3(z1, z2, z3) + z3

[
m−1

s Ās ḣ3 −m−1
s b(h2 − żu)− h(3)d

+
( δ̇1 + δ̇2

δ1 + δ2
+ k1 + k2 + 1

)
z̈1 +

( δ̈1 + δ̈2

δ1 + δ2
− δ̇1 + δ̇2

(δ1 + δ2)2

+
k1k2

δ1 + δ2

)
ż1 +

δ̇1 + δ̇2

(δ1 + δ2)2 k1k2Υ(z1)

+ (δ1 + δ2)z2 + k3z3

]
.

(31)

where

δ̈1 =
4µ2ż2

1
(µ2 − z2

1)
2
+

40µ2z2
1ż2

1
(µ2 − z2

1)
3
+

48µ2z4
1ż2

1
(µ2 − z2

1)
4
+

4µ2z1z̈1

(µ2 − z2
1)

2
+

8µ2z3
1z̈1

(µ2 − z2
1)

3
,

δ̈1 =
2µ2ż2

1
(µ2 − z2

1)
2
+

8µ2z2
1ż2

1
(µ2 − z2

1)
3
+

2µ2z1z̈1

(µ2 − z2
1)

2
,

(32)

and W3(z1, z2, z3) = W2(z1, z2) + k3z2
3, and k3 is a positive number

Here, note that the time derivative of V̇3 is dependent on the disturbances d(t) through
the dependency of ḣ3 in these quantities. In order to exploit the dependency of ḣ3 in the
uncertain quantities, the time derivative ḣ3 can be expressed as

ḣ3 = u− γAsh2h3v−1
s + Q̇(γ− 1)(spvs)

−1 + d̂(t) + de(t), (33)

where de(t) is the estimation error. We now establish the final Lyapunov function candidate
by adding the terms of disturbance estimate error to V3 as follows,

V3b = V̇3 +
1
2

de(t)2. (34)

Computing the time derivative of V3b, we obtain

V̇3b = −W3(z1, z2, z3) + z3

[
M + m−1

s Ās

(
u− γAsh2h3v−1

s + Q̇(γ− 1)(spvs)
−1

+ d̂(t)
)
−m−1

s b(h2 − żu)− h(3)d

]
+ z3m−1

s Āsde(t) + de(t)(ḋ(t)− de(t)).
(35)
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where

M =
( δ̇1 + δ̇2

δ1 + δ2
+ k1 + k2 + 1

)
z̈1 +

( δ̈1 + δ̈2

δ1 + δ2
− δ̇1 + δ̇2

(δ1 + δ2)2 +
k1k2

δ1 + δ2

)
ż1

+
δ̇1 + δ̇2

(δ1 + δ2)2 k1k2Υ(z1) + (δ1 + δ2)z2 + k3z3.
(36)

Here, we notice that apart from the time derivative of disturbances ḋ(t) and estimated
error de(t), V̇3b is also dependent on the z1, z2, z3. To cancel the dependency of V̇3b on
z1, z2, z3 in (35), the virtual control law u is chosen as

u = Ā−1
s ms(−M + h(3)d ) + Ā−1

s b(ḣ2 + z̈u) + γAsh2h3v−1
s

− Q̇(γ− 1)(spvs)
−1 − d̂(t),

(37)

Substituting (33) and (37) into (35), in closed-loop, we have

V̇3b = −k1Υ(z1)
2 − k2z2

2 − k3z2
3 − λdde(t)2 + z3m−1

s Āsde(t) + ḋ(t)de(t). (38)

The main result of this paper is summarized in the following theorem.

Theorem 1. Let hd ∈ C3 in (5) be the desired height whose time derivatives are bounded, and
|z1(0)| < µ. By considering the designed time-varying disturbance observer (9) and input (37),
the errors z = [Υ(z1), z2, z3, de]T converge to an arbitrarily small neighborhood of zero, achieving
uniform ultimate boundedness without violating the output constraint.

Proof. Let us go back to (38) and apply Young’s inequality, we have

V̇3b ≤ −k1Υ(z1)
2 − k2z2

2 −
(

k3 −
m−1

s Ās

4

)
z2

3 −
(

λd −m−1
s Ās − 1

)
de(t)2 +

d2
max
4

(39)

where k3 are chosen such that k3 > m−1
s Ās/4, λd > 1+m−1

s Ās. Setting z = [Υ(z1), z2, z3, de]T,
V̇3b can be further written as

V̇3b ≤ −kmin||z||2 +
d2

max
4

= −kmin

(
||z||2 − d2

max
4kmin

) (40)

which is negative definite for

||z|| >

√
d2

max
4kmin

+ ε

where ε is an arbitrarily small positive constant. It follows that ||z|| is ultimately bounded by

zmax =

√
d2

max
4kmin

+ ε (41)

which can be made arbitrarily small by increasing the control gains, k1, k2, k3 and λd.
Consequently, global uniform ultimate boundedness is achieved. Notice that |Υ(z1)| > |z1|,
therefore, bounded |Υ(z1)| leads to bounded |z1|. Moreover, it is important to point out
that if the output constraint is violated, |Υ(z1)| will be infinity. However, as we established
above, for |z1(0)| < µ, the error ‖z‖ will converge to a bounded value instead of infinity,
from which we can conclude that the output constraint is guaranteed.

Remark 3. From Theorem 1, we know that larger k1, k2, k3, λd would lead to smaller ultimate
error. However, larger gains could also cause unwanted oscillation. Consequently, we cannot choose
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them arbitrarily large. In summary, we need to find a trade-off between the amplitude of oscillation
and tracking accuracy.

5. Simulation Verification

In order to verify the performance of proposed controller, a co-simulation is conducted
in this section by combining the virtual plant of quarter vehicle with the AAS system in
AMEsim software with the proposed controller in Matlab/Simulink to regulate the sprung
height by inflating and deflating the air spring. The control block diagram of co-simulation
is displayed in Figure 2. Unlike the mathematical model of the controller implemented in
Matlab/Simulink, the AMESim-based quarter vehicle plant is established based on the
actual pneumatic system configuration so that it is closer to the actual pneumatic system.

Sensor 

information

Proposed control strategy  

Nonlinear dynamic quarter 

vehicle model with AAS

Time-varying disturbance 

observer

BLFs for height constrains

Constrained Backstepping

 control law

Change of 

air mass

AMEsimMatlab/Simulink

PWM signal 

saturated control input

u

PWM generator

Air inflating and deflating 

circuit 

Quarter vehicle with active 

air suspension plant

Virtual Vehicle Plant

uh uh sv Qsh shsh
uh sp

Figure 2. Co-simulation block diagram.

5.1. Simulation Conditions

The desired height hd is a sine trajectory, given by

hd = 0.015 sin(ωt), (42)

where ω = 0.5 (rad/s) . The time-varying disturbances are chosen as

d(t) = sin(π/2t) sin(πt) + 10 sin(πt) cos(2πt) + ϑ(t), (43)

where ϑ(t) is a class of band-limited white noise. The road excitation hu is set as the class
C of ISO profile with a driving speed of 50 (km · h−1), whose graphic representation is
shown in Figure 2. The main parameters used in the co-simulation are given in Table 2,
where the control gains are chosen through a trial–error process.

Table 2. Parameters for co-simulation.

Parameter Value Parameter Value

Ā 178 (mm2) k1 9
b 1140 (N · s ·m−1) k2 40
h0 0.2047 (m) k3 4
h̄ 0.4047 (m) λd 100
ms 300 (kg) γ 1.4
mu 30 (kg) p0 5.11 (Bar)
dmax 1.8 pa 1.01 (Bar)
kt 7.5× 106 (N ·m−1) bt 300 (N · s ·m−1)
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5.2. Simulation Results and Analysis

The co-simulation results of the proposed control strategy for ride height control
with the AAS system are displayed in Figures 3–7. As shown in Figure 3, the height of
vehicle sprung mass with the proposed controller can track the desired height within
1 s. Moreover, the tracking errors, with µ = 10 mm and µ = 5 mm, all stay within the
predefined range of ±10 mm and ±5 mm as shown in Figure 4. Moreover, compared
with the proposed controller without considering the output state constraint (i.e., choosing
µmax very large), although the height of vehicle sprung mass is able to track the desired
value as displayed in Figure 5, the height tracking error exceeds its allowable maximum
value that results probably in a poor performance or even insecurity as illustrated in
Figure 6. Furthermore, the time-varying disturbances d(t) could be estimated by the
developed nonlinear disturbance observer and d̂(t) can also be kept within the range of
±0.1 as depicted in Figure 7. It means that the designed disturbance observer is effective.
Additionally, in order to simulate the real operating conditions, white noise is considered
during the height measurement procedure. As Figure 8 displayed, the proposed controller
still can track the desired height under the presence of measurement noise.
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Figure 3. Height tracking performance of quarter vehicle with AAS in co-simulation.
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Figure 4. Height tracking error of quarter vehicle with AAS in co-simulation, where |z1| always stays
within its corresponding bound.
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Figure 5. Height comparison of quarter vehicle with AAS in co-simulation.
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Figure 6. Error comparison of quarter vehicle with AAS in co-simulation, where |z1| exceeds its
allowable maximum value.
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Figure 8. Tracking height and error of quarter vehicle with measurement noise in co-simulation.

5.3. Comparison of Simulation Results

In order to further demonstrate the benefits of the considerations of output state con-
straint and time-varying disturbances, Figures 9–11 also show the simulation results of ride
height with nonlinear robust controller [14] and hybrid model predictive controller (HMPC) [7]
under the same simulation parameters, disturbances, and road excitation. As demonstrated
in Figure 9, the height of vehicle sprung mass reaches the target value within 1 s, which is
much shorter than 4 s obtained for the controller presented in [14]. Meanwhile, during the
time from 10 s to 20 s, the steady-state error achieved by the robust controller presented in [14]
is bounded by 0.8 mm, which is larger than the bound of 0.5 mm obtained with the proposed
controller, as depicted in Figure 10. Moreover, the proposed controller can track the desired
height during both leveling up and lowering down processes so that the height of vehicle
sprung mass reaches the target height as illustrated in Figure 11. The desired height used in
the test is presented in [7]. The simulation results in Figures 10 and 11, and the performance
comparison in Tables 3 and 4 indicates that the proposed control technique is more effective
than the robust controller presented in [14] and the HMPC presented in [7].
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Figure 9. Height comparison of quarter vehicle with AAS in co-simulation.
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Figure 10. Error comparison of quarter vehicle with AAS in co-simulation.
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Figure 11. Tracking performance comparison of quarter vehicle with hybrid model predictive
controller (HMPC) presented in [7].

Table 3. Performance index comparison of co-simulation.

Performance Index Robust Controller in [14] Proposed Controller Improvement *

RMS of tracking error 4.6824× 10−1 (mm) 1.6230× 10−1 (mm) 65.3%
SD of tracking error 4.6809× 10−1 (mm) 1.6012× 10−1 (mm) 65.6%
Adjusting time 4 (s) 1 (s) 75%

* denotes relative to robust controller presented in [14].

Table 4. Performance index comparison of co-simulation.

Performance Index HMPC in [7] Proposed Controller Improvement *

RMS of tracking error 7.7785 (mm) 4.3781 (mm) 43.71%
SD of tracking error 6.0746 (mm) 3.2452 (mm) 46.58%
Adjusting time 3 (s) 1 (s) 66.67%

* denotes relative to HMPC presented in [7].

6. Conclusions

This paper presents a solution to the task of vehicle height tracking for an electroni-
cally controlled AAS system. By employing the BLF-based backstepping technique, a novel
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constrained control strategy is proposed to drive the vehicle height to the neighborhood of
preset desired values in the presence of output state constrains and perturbations in the
AAS system, achieving uniform ultimate boundedness. To realize the robust performance,
a nonlinear disturbance observer is introduced in the adaptive control law to compensate
for the time-varying disturbances caused the external random road excitation and pertur-
bations, achieving robust performance. Co-simulation results illustrate that the proposed
control strategy is effective, robust, and superior to other recent techniques. With respect to
our future research, it includes (i) designing a robust height tracking controller for a full-car
model with the AAS system, and (ii) developing a noise filter and delay compensator for
the system so as to improve the closed-loop performance in real applications.
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