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Abstract: The traditional systems used in the physiotherapy rehabilitation process are evolving
towards more advanced systems that use virtual reality (VR) environments so that the patient in
the rehabilitation process can perform various exercises in an interactive way, thus improving the
patient’s motivation and reducing the therapist’s work. The paper presents a VR simulator for an
intelligent robotic system of physiotherapeutic rehabilitation of the ankle of a person who has had a
stroke. This simulator can interact with a real human subject by attaching a sensor that contains a
gyroscope and accelerometer to identify the position and acceleration of foot movement on three
axes. An electromyography (EMG) sensor is also attached to the patient’s leg muscles to measure
muscle activity because a patient who is in a worse condition has weaker muscle activity. The data
collected from the sensors are taken by an intelligent module that uses machine learning to create
new levels of exercise and control of the robotic rehabilitation structure of the virtual environment.
Starting from these objectives, the virtual reality simulator created will have a low dependence on the
therapist, this being the main improvement over other simulators already created for this purpose.

Keywords: sensors; virtual reality; machine learning; ankle rehabilitation; simulator; intelligent
robotic system

1. Introduction

In parallel with the achievements in engineering in recent years, medicine has evolved
a lot, but there are still unresolved problems. A rather important problem remains stroke
in both its forms (ischemic and hemorrhagic) which is considered the leading cause of
disability and the second leading cause of death worldwide [1], becoming a growing
problem of contemporary society and any progress made in treating this disease is a step
forward in the fight against this disease. Recovery after a stroke is different for each person,
depending on the condition of each, and to make a successful recovery in both forms
of stroke, treatment will often involve specific therapies and support, such as: speech
therapy, occupational therapy, physical recovery post-AVC, support groups, support from
friends and family [2]. Rehabilitation after a stroke should be done as soon as possible
with intensive and repetitive exercises, although this may reduce the patient’s motivation.
One way to motivate and help patients regain their motoric skills is to introduce virtual
reality technology [3].

This article presents a simulator using virtual reality for a robotic system that is
controlled by an intelligent module that uses machine learning to optimize the ankle
recovery treatment of a stroke patients, using visual stimulation in the recovery process.
The patient is in real-time interaction with the system via a special sensor device that is
attached to the patient’s limb. On this device the sensors are connected to a microcontroller
that contains a client application through which it sends data collected from the sensors
via the Wi-Fi connection to a server application that is on the computer via the TCP/IP
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protocol, and this data is retrieved and processed by the intelligent module. This module
uses a machine learning algorithm that will result in the type of exercise that the patient
will perform and the level of difficulty of this exercise. The real person will be able to do
various ankle rehabilitation exercises by interacting with the VR simulator. This simulator
can be used in the home of any patient who has had a stroke, without incurring additional
costs. Usually, a rehabilitation process takes place in specialized physiotherapy centres
where a professional in the area supervises or helps.

A recent clinical study involving a number of 23 patients with different neuro-motor
impairments demonstrated that following a 7-day rehabilitation program applied at the
level of the upper limb, no significant differences were identified between the robotic
assisted and the manual therapy. Taking into account that the robotic system used in this
experiment is still in development the results are supporting the idea of using robotic
systems in rehabilitation illustrating also the potential advantages that additional, support
technologies could improve the outcome of physical therapy [4]. Moreover, the engagement
of patients in the therapy could bring benefits for the rehabilitation procedures. In other
words, if the patient is not bored and is actively engaged in the exercises (e.g., by playing
games in an interactive way) the rehabilitation may have better outcomes by improving
the patient’s motivation and reducing the work of the therapist [5].

This article is structured as follows: after introduction, the next section reviews the
current state of the art, continuing with its robotic system architecture in Section 3. Section 4
presents development of the software application followed in Section 5 by conclusions,
acknowledgments, and references. Compared to other rehabilitation systems, the robotic
rehabilitation system presented in this paper has as a novelty the use of an intelligent
module implemented using KNN. This intelligent module, based on the data provided by
the sensors and the user’s previous results, can determine without the intervention of the
therapist the level of difficulty of the exercise to be performed by the user.

2. Background

Various physiotherapeutic rehabilitation systems can be found in the current literature
that are used for people who have had a stroke In recent years these systems have evolved
into more advanced systems that include virtual reality (VR) environments being used to
improve rehabilitation techniques and physical executions.

A recent example is the system called EXOMedical (University of Salamanca, Sala-
manca, Spain) which includes an exoskeleton for the elbow. This exoskeleton has an axis of
rotation corresponding to the axis of rotation of the elbow joint and consists of two parts
that are attached to the outside of the arm and forearm with a series of Velcro straps type,
being a low-cost exoskeleton because in its construction was used 3D printer technology.
This rehabilitation system uses VR technology so that the patient in the rehabilitation pro-
cess can perform various exercises in an interactive way improving the patient’s motivation
and reducing the work of the therapist. The user using this system views an avatar that
represents his movements in the virtual environment with the ability to recognize if he
has completed the task received. The system can automatically change some of the task
parameters, according to the real-time analysis provided by the Unity virtual reality envi-
ronment control unit, making it possible to modulate each difficulty level of the exercise or
the maximum time to complete the exercise [5].

Scalona et al., conducted a study evaluating muscle synergies when seventeen healthy
subjects perform throwing tasks in both a virtual and a real environment. For each subject
in the study were recorded electromyographic (EMG) signals of 11 upper limb muscles.
At the end of the study, encouraging results were found for the application of virtual reality
to complete the conventional therapy in the rehabilitation process [6].

Sierotowicz et al., described a system called BodyRig, which has the ability to track a
user’s body posture in real time, both in VR and in real life. The potential of this system is
not limited to a robotic rehabilitation system. The performance of this system is evaluated
in an online task of tracking the trajectory in VR using the device through an experiment
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involving 10 subjects, showing that an average user can reach an accuracy of 0.66 cm during
a static precision task and 6.33 cm while following a moving trajectory when tested in a
user’s complete personal space [7].

Luzio et al., show that intensive and repetitive exercises during robot-assisted reha-
bilitation can expose patients to an inappropriate and unsafe position, and in this regard
the authors introduced sensory and visual feedback in a robotic system for upper limb
rehabilitation to provide information about the incorrect posture of the neck and torso.
For the study, 10 healthy subjects were used, each of them performing 3D touch movements
using the robotic platform in three different conditions, meaning with visual feedback,
with vibrotactile feedback and without feedback, after which a comparative analysis was
performed to evaluate performance. The experimental result showed that if there is no
feedback the subjects do not maintain their correct body position, and instead with visual
or vibrotactile feedback the subjects tend to correct the inappropriate posture during the
execution of the task [8].

Joo et al., shows the effect of VR in the rehabilitation of a burned hand. In this study,
the authors used 57 patients with burned-out to compare the rehabilitation process using
exercises with VR technology and conventional rehabilitation where VR is not used. To use
VR technology in the rehabilitation process on the hands some gloves called RAPAEL
Smart Glove were used, with which patients had to do various exercises. The results of the
study suggested that VR-based rehabilitation is as effective as conventional rehabilitation
for recovering the function of a burned hand [9].

Ferreira et al., developed a game based on VR that is played by patients in different
stages of recovery of the upper limbs, motivating patients to continue performing exercises
beyond what is usual with conventional techniques [10].

Zakharov et al., tested a combination of virtual and robotic reality for 10 days of
15 min each in restoring gait for a person who had an acute stroke using a visual and
tactile biofeedback simulation based on virtual reality immersion and physical impact on
patients’ soles. At the end of this study, an improvement in the motor function of the lower
extremities was found [11].

Wang et al., presents a virtual reality simulator for a lower limb rehabilitation robot
that can simulate cycling, encouraging patients to join recovery training through a built-in
competitive game. The synchronization of the movement between the robot and the virtual
model is achieved through an interaction control strategy, the robot being able to modify
the training speed based on the feedback signal of the field in game. This training can be
paused by the patient and the doctor at any time, and the timer function could reflect the
patient’s recovery [12].

Lee et al., performed a meta-analysis to examine whether virtual reality training is
effective for both lower and upper limb function and general function in patients with
chronic stroke. As a conclusion, virtual reality training has been effective in improving func-
tion in patients with chronic stroke, corresponding to a moderate effect size. Virtual reality
training has also shown a similar effect in improving upper and lower limb functions [13].

Mirelman et al., conducted a study involving 15 men and three women with chronic
hemiparesis after a stroke. Two groups were formed for this study. The first group
trained on the Rutgers ankle rehabilitation system without being connected to virtual
reality. The training was performed 3 times a week for 4 weeks for 1 h at each visit.
Subjects performed ankle movements in dorsiflexion, plantar flexion, inversion, eversion,
and a combination of these movements. At the beginning of each session, strength, speed
and performance were measured and then used as references for the following exercises.
Subjects in the second group who trained with the Rutgers ankle rehabilitation robot
using virtual reality performed exercises using foot movements to navigate an airplane
or boat using the virtual reality environment that contained a series of targets. To ensure
training, the position and timing of the targets were manipulated, including discrete and
combined ankle movements. Subjects who trained only with the robotic system without
being connected to virtual reality received the same exercises as the group who trained with
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the robotic system with virtual reality, but without the virtual environment. Subjects in the
robotic system group who did not use virtual reality were instructed by a therapist on the
direction in which to move their leg and the number of repetitions to be comparable to the
group that used the robotic system with virtual reality. Feedback for the group that used
virtual reality was provided by the simulation consisting of knowledge of performance
and knowledge of results. At the end of the training, the subjects in the group with the
robotics system without virtual reality reported fatigue earlier in the sessions compared to
the subjects in the group who used the robotics system with virtual reality. There have also
been reports of clinically significant improvements and gait improvements in subjects with
chronic hemiparesis who have been trained for 4 weeks with the robotic ankle rehabilitation
system that is coupled with virtual reality [14].

Burdea et al., made a study to feasibility of game-based robotic training of the ankle
in children with cerebral palsy. This study was done for 12 months in a university research
laboratory. The subjects were three children with cerebral palsy, aged between 7 and
12 years, all male. They were trained for 36 rehabilitation sessions for 12 weeks using the
Rutgers Ankle CP system (Rutgers, the State University of New Jersey, New Brunswick, NJ,
USA) playing two types of virtual reality games. During the game, the subjects were seated,
and trained one ankle at-a-time for strength, motor control and coordination. At the end of
the session, the results indicated varying degrees of improvement in ankle endurance, gait
and speed [15].

Zimmerli et al., investigate the influence of different design characteristics of virtual
reality exercices on engagement during lower extremity motor rehabilitation. This study
involved 10 subjects without any neurological movement disorder and 12 subjects with
spinal cord injuries (SCI), and this study was conducted at the Paraplegic Center of Balgrist
University Hospital (Zurich, Switzerland). The inclusion criteria for subjects with SCI
was to be able to stand upright for at least 30 s, with or without support. Subjects with
chronic post-injury greater than one year were also included, as well as subjects with
SCI with acute post-injury less than 1 year. Excluded were those who showed signs
of depression, skin lesions in the lower limbs, osteoporosis, cardiovascular instability,
uncontrolled spasticity that would significantly interfere with the movement of the lower
extremities, acute medical conditions, those who had a higher height of 190 cm or weighing
more than 135 kg. To verify the involvement of the subjects, four types of virtual reality
exercises were created and designed in front of the subjects, while they were introduced
in the robotic orthosis system Lokomat. The exercises performed were at constant speed,
higher speed, sprint and race. During the exercises, the heart rate and electromyographic
activity for biceps femoris were recorded. The study showed that functional feedback is
extremely important for the active participation of patients during robotic rehabilitation
care [16].

Esfahlani et al., presents a robotic system called “ReHabGame” which is a serious
game using a fusion of implemented technologies that can be easily used by patients and
therapists to evaluate and improve sensorimotor performance. This system allows a subject
to control the avatar’s movements through a Kinect Xbox sensor (Microsoft, Redmond,
Washington, WA, USA), Myo armband (Thalmic Labs, Kitchener, ON, Canada) and a
rubber foot pedal. Data is collected from sensors and taken over by a fuzzy system to create
new levels of difficulty. This system addresses the kinematic activity of the upper and
lower limbs which, at the same time, provides requirements to meet the tasks according to
the needs of the patient [17].

Based on the current state of the art it was concluded that the difficulty of improving
these systems is the development of an intelligent module with VR that should help in
the rehabilitation process by replacing a significant number of tasks that were otherwise
performed by the therapist. This in turn enables the therapist to work with multiple
patients at one time.
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3. Robotic System Architecture

This section presents the architecture of the proposed system. At the beginning,
a description is made of the interconnection of the components of the intelligent robotic
system. Next, the mechanical rehabilitation structure of the robotic system is described,
and at the end a description of the user interface is made.

3.1. Components and Connections in the Robotic System

In the block diagram from Figure 1 an interconnection of the components of the logic
in the control of the intelligent robotic system can be seen. Data of the muscle state of
the lower limb is obtained via electromyography sensor (EMG), the accelerometer sensor
retrieves data about acceleration made by the lower limb during movement, and the
gyroscope sensor retrieves data on the position of the lower limb. This data, after being
collected by the data collection application and using Wi-Fi connection, will be taken over
by the server application which will send this data to the intelligent learning system. After
the data is processed by the intelligent learning system, and the level of difficulty as well
as the degree of help of the patient will be predicted, this system will send data to the
client application, which contains the virtual reality application, and this virtual reality
application can be viewed on a display. Monitoring the progress of the levels of exercises
that the patient does is done by the intelligent system, the client application (VR) sends
data related to the progress to the intelligent learning system.

Figure 1. Interconnection of components.

For the client application that is used to retrieve data from the sensors, a device has
been created that attaches to the patient limb at the sole, as can be seen in Figure 2. This
device contains the following components:

(1) microcontroller ESP32 (Figure 2a, 1), is a strong development board, containing
the following:

• Wi-Fi, Bluetooth and a dual-core processor; frequency: 2.4~2.5 GHz; power
supply: 7~3.6 V; size: 18 mm × 25.5 mm × 3.1 mm.

(2) 3-axis accelerometer and gyroscope module, model MPU6050, with the following spec-
ifications:

• supply voltage: 3.3–5 V (LDO regulator included); I2C bus voltage: 3.3 V (MAX);
current: 5 mA; programmable gyroscope range: ±250, ±500, ±1000, ±2000 o/s;
programmable accelerometer range: ±2 g, ±4 g, ±8 g, ±16 g; maximum I2C
frequency: 400 kHz.

(3) muscle sensor, MyoWare model with the following specifications:

• single supply, +2.9 V to +5.7 V with polarity reversal protection; two output
modes: EMG Envelope and Raw EMG; LED indicators; adjustable gain.
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Figure 2. (a) Device for retrieving and sending data from sensors to the Server application. (b) MyoWare—electromyography
sensor

3.2. Description of the Main Components of the Robotic Rehabilitation Structure

The robotic rehabilitation structure was designed in the Fusion360 program [18]. This
program is a cloud-based CAD, CAM and CAE 3D design tool from Autodesk (San Rafael,
California, CA, USA), a complete program available to enthusiasts and start-up companies
at no cost.

The robotic structure that was designed in this program has three degrees of freedom,
and the possible movements for the rehabilitation of a patient’s ankle with the help of this
structure are the following:

(1) rotation in horizontal plane (parallel to the xOz plane) around the Oy axis (Figure 3a);
(2) rotational motion in vertical plane (parallel to the yOz plane) around the Ox axis

(Figure 3b);
(3) the third motion shown consists of a rotation around the Oz axis (in a plane parallel

to the xOy plane) (Figure 3c).

Figure 3. (a) Ankle movement by rotation around the Oy axis. (b) Ankle movement by rotation around Ox axis. (c) Ankle
movement by rotation around Oz axis

In order to perform rehabilitation exercises with the help of the robotic structure,
the foot must be positioned on the mobile platform in Figure 4 as follows:
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• mobile platform 1 rotates about the Oz axis in a counterclockwise and clockwise
direction, by means of a toothed wheel (2);

• toothed wheel (2) is driven by a transmission belt (3) by means of a toothed wheel (4);
• toothed wheel (4) is driven by a servomotor (M2) from TEKNIC, model CPM-SDHP-

2311S-ELS;
• the mobile platform 2 (5) rotates vertically plane around the Ox axis in a counterclock-

wise and clockwise direction (6) by means of a toothed wheel (7);
• toothed wheel (7) is driven by a drive belt by means of a toothed wheel (8) being

driven by a servomotor (M3) from TEKNIC, model CPM-SDHP-2311S-ELS;
• the mobile platform 3 (9) make a rotation in horizontal plane (parallel to the xOz

plane) around the Oy axis in the counterclockwise and clockwise direction (10) by
means of a toothed wheel (11);

• toothed wheel (11) is driven by a transmission belt by means of a toothed wheel
(12) being driven by a servomotor (M1) from the company TEKNIC, model CPM
SDHP-3411S-ELS.

Figure 4. Robotic rehabilitation structure.

3.3. Description of the Graphical User Interface

The software application architecture includes the server application and two client
applications: one associated with the microcontroller to retrieve information from the
sensors, and the other for the virtual reality application. In the analysis phase, for a clear
specification of the server application, the use case diagram [19] is made (Figure 5) using
UML [20].
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Figure 5. Use case diagram corresponding to the server application.

Starting from the functionalities specified in the use case diagram, the graphical user
interface of the server application was developed using the C # programming language [21]
and the Microsoft Visual Studio development environment [22]. In order to be able to com-
municate between the data collection system from the sensors, the intelligent module and
the virtual reality, a user interface is used (Figure 6). To use the user interface, the following
steps will be followed:

• first the “ConnectESP32” button (1) is pressed to make the connection via Wi-Fi
connection between the Server application and the Client application located on the
ESP32 microcontroller;

• to receive the data from the sensors, we must press the “Start” button (2);
• after pressing the button, the data is collected and displayed from the gyroscope

sensor (3) for position, accelerometer (4) to identify the acceleration and the muscle
activity sensor (5) to identify the state of muscle tone.

• to make the connection between the server and the client application of the virtual
reality application, the “ConnectUnity” button must be pressed (6);

• after the communication has been established, we must press the “Start” button (7)
to start the communication for the manual control of the virtual reality application,
without including the intelligent module;

• using the following buttons (8), a test of the robotic rehabilitation structure is per-
formed to perform the various exercises, as follows:

- when we press the “Ox−” button a clockwise rotation is made around the Ox axis;
- when we press the “Ox+” button a counterclockwise rotation is made around the

Ox axis;
- when we press the “Oy−” button a clockwise rotation is made around the Oy axis;
- when we press the “Oy+” button a counterclockwise rotation is made around the

Oy axis;
- when we press the “Oz−” button a clockwise rotation is made around the Oz axis;
- when we press the “Oz+” button a counterclockwise rotation is made around the

Oz axis;

• by pressing the “Start” button (10) the virtual reality application is started automati-
cally, the application communicating with the intelligent module to create the range
of levels for the virtual reality application (9).
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Figure 6. User interface.

4. Software Application Development
4.1. Description of the Operation of the Virtual Reality Application

Before starting the virtual reality application, the system for retrieving data from the
sensors is attached on the foot of a real human subject and an EMG sensor is attached to the
foot muscles, as can be seen in Figure 2. When starting the virtual reality application, first
run the server application by pressing the “ConnectESP32” button to make the connection
between the server application and the client application located on the microcontroller
(Figure 6, 1), then click on the “Start” button to start the client application to receive data
from sensors (Figure 6, 2), these data being taken over by the intelligent module and
processed. The next step is to connect between the server and the virtual reality application
which is a client application, by pressing the “ConnectUnity” button (Figure 6, 6). Once
the connection with the virtual reality application has been made, it is necessary to press
the “Start” button (Figure 6, 10) to start the communication between the intelligent module
and the virtual reality application. At this point the real human subject must look at the
computer monitor while running the virtual reality application (Figure 7) and identify the
falling apples (Figure 7b, 3) in order to catch them in the basket (Figure 7b, 2) using the
human virtual character (Figure 7b, 1). To catch apples, the real human subject must make
different movements of the foot paw to position and move the human virtual character
in order to collect the apples. In this process the real human subject performs different
ankle rehabilitation exercises, and all this time in the virtual reality application the robotic
rehabilitation structure makes different rehabilitation movements for the human virtual
character, as can be seen in Figure 7a). During the control of the human virtual character
who has to pick apples, the following movements must be made, as follows:

• to control the walking of the human virtual character, the patient must make a rotation
in vertical plane of the ankle (parallel to the yOz plane) around the Ox axis (Figure 3b).
By rotating the ankle around the Ox axis in the counterclockwise direction, the human
virtual character goes slowly, and by rotating the ankle around the Ox axis in the
clockwise direction, the human virtual character begins to run;

• to direct the human virtual character as it goes left and right, the real human subject
must make a rotational movement of the ankle in a horizontal plane (parallel to the
xOz plane) around the Oy axis (Figure 3a). When a rotation movement is made in a
counterclockwise direction, the human virtual character turns to the left, and when
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a rotation is made in a clockwise direction, the human virtual character turns to
the right;

• in order to make a 180-degree rotation of the human virtual character, the patient must
make a rotation of the ankle around the Oz axis (in a plane parallel to the xOy plane)
(Figure 3c) in counterclockwise and clockwise direction.

Figure 7. (a) Virtual patient who performs rehabilitation exercises with robotic structure. (b) Virtual human character
picking apples

The intelligent module receives information from sensors (Figure 2) on the condition
of the ankle and from the virtual reality application on the performance of the human
virtual character in picking apples (Figure 7b). Depending on the performance of the real
human subject in performing exercises that train the human virtual character to pick apples,
the intelligent module creates new levels of exercises (Figure 7b, 4) and levels of control of
the virtual robotic structure (Figure 7a).

4.2. Intelligent Module Description

Machine learning [23], according to the specialized literature, includes both unsuper-
vised learning [24] and supervised learning. Supervised learning [25] is based on a training
model that uses a set of labeled data. This model is then used to map between a series of
new observations and their category based on a function that generates it at the time of
training. There are two types of supervised learning: classification [26] and regression [27].

4.2.1. K-Nearest Neighbours

For the project presented in this paper, supervised learning based on classification
was used because the data set used for learning is a labeled one, and the labels are discrete
values. The presented project aims to automate the process of determining the level of
difficulty, as well as the help given by the platform to the patient to perform the tasks in the
rehabilitation game. Since there are 5 levels of difficulty for the rehabilitation game, and the
platform will be able to help the patient in 4 steps for each level, the machine learning
algorithm will have to be a classifier that will have an output that will fall into one of the
20 possible classes (20 = 5 × 4).

The classification algorithm, as a supervised learning technique, is provided with both
the instances and their labels, and in the processing phase the algorithm must find patterns
between the instances and their classes, so that when they have to classify a new instance



Sensors 2021, 21, 1537 11 of 17

to may decide, on the basis of the instances already classified, the class to which the new
instance belongs.

There are several classification techniques such as: K-nearest neighbors [28], decision
trees [29], random forest [30] and feed-forward neural network [31]. This project will use
the K-nearest neighbors (KNN) algorithm which is based on a similarity of characteristics,
which means that the level of similarity of the instances characteristics with those of the
training set determines how a new observation will be classified. A new set of observations
is classified based on the characteristics of its neighbors, the class being determined by
the majority among its neighbors. In order to be able to carry out this process, KNN must
keep in memory the entire data set required at the time of classification, as there is no prior
training process. The process of selecting neighbors and determining the final class of an
instance is represented graphically in Figure 8.

Figure 8. Graphical representation of KNN algorithm.

4.2.2. Preliminary Analysis and Preprocessing of the Data Set

To obtain data from the EMG sensor for the detection of electromyographic activity
(EMG), surface electrodes are fixed on the skin covering the muscle, forming a charge
layer at the interface between the metal electrode and an electrolyte solution. During
the measurement with this sensor there are two sources of motion artifact in the surface
electrodes, namely: mechanical disturbance of the charging layer of the electrode and
deformation of the skin under the electrodes. In order to have a more accurate measurement
with this sensor it is necessary to use a filter that filters these disturbances. We chose to use
the Kalman filter on the microcontroller. This filter is an algorithm that provides estimates
of unknown variables given the measurements observed over time. To calibrate the Kalman
filter algorithm, raw voltage data samples were first read and taken from the EMG sensor
during operation, after which these data were entered in an Excel table to determine the
variance. After the variance was determined, the variance value obtained was entered
as a variable (R) in the Kalman filter algorithm. For the process variation variable (Q) a
value was set which was subsequently adjusted by experimentation to obtain the desired
filter performance.

When using the MPU6050 sensor which includes the gyroscope and accelerometer due
to the influence of semiconductor thermal noise and electromagnetic interference the output
has a certain noise that affects the signal accuracy, thus interfering with the accuracy of the
stability of the entire system. In order to obtain more accurate data during the operation
of the MPU6050 sensor we chose to filter the data using the Kalman filter. This filter not
only can filter the signal coming from the gyroscope, but also can filter the signal coming
from the accelerometer [32]. To filter the signal from the gyroscope and accelerometer
we implemented a program with the Kalman algorithm on the microcontroller that takes
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data from these sensors, and to implement the Kalman algorithm we used the steps we
described in implementing the EMG sensor algorithm.

The data set is a collection of labeled observations that define certain characteristics
of an instance with respect to the rehabilitation exercises. Based on such a collection of
observations, learning algorithms are used to predict the labels of instances with similar
characteristics to the collection. An example of the input data set is shown in Table 1.
The format of the input data set has the following structure:

• M—the value returned by the sensor that measures muscle intensity;
• Ax—projection on the Ox axis of the measured acceleration;
• Ay—projection on the Oy axis of the measured acceleration;
• Az—projection on the Oz axis of the measured acceleration;
• Px—projection on the Ox axis of foot position;
• Py—projection on the Oy axis of foot position;
• Pz—projection on the Oz axis of foot position;
• S—value that specifies the score obtained by the patient in the previous game.

Table 1. The format of the input data.

M Ax Ay Az Px Py Pz S

0.0774 −0.0498 0.0007 0.9277 248.554 1297.854 1765.564 0
0.0105 −0.1013 0.0378 0.9338 246.6993 1284.16 1777.141 0.4
0.2208 −0.1143 0.2205 0.8694 256.5768 1259.951 1792.288 0.8
0.7986 −0.1304 0.1609 0.885 243.2331 1246.401 1810.49 0.6
0.9203 −0.1643 0.1575 0.8877 250.1196 1231.634 1817.76 1

For the performance of a classification model to be optimal, it must have a well-
structured data set and a large number of instances. Labels are the classes in which a
measurement can be classified, and for this data set the number of classes is 20. Each
measurement will belong to one of these classes.

In order to analyze the data set, a histogram was generated (Figure 9) representing
the number of instances with the same value of muscle intensity in the data set. The figure
shows that there are values of muscle intensity that predominate in the data set and there
are others that have a small number of occurrences. It follows that the data set has an
imbalance between the labeled instances, as they are labels that predominate considerably
in the data set and labels that have a very small number of instances compared to the
majority classes. In conclusion, a data preprocessing process is required by using a data set
balancing technique.

Figure 9. Histogram for muscle activity.
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An optimal solution is to use the oversampling method followed by the application
of the undersampling method to the result of the first method. The purpose of applying
the two methods is to eliminate the overfitting of the data set created by oversampling.
The undersampling method [33] involves reducing the number of records in the majority
classes by random deletion or by certain established criteria until the data set becomes
balanced. The oversampling method [34] is the opposite of the previous method, involving
the generation of artificial data using minority classes and replicating the data in order to
balance the data set. This method has a major advantage over the other method because
it does not lose the existing information, but, through replication, the overfitting effect
can occur. Following the combination of the 2 methods, the data distribution is balanced.
Figure 10 shows how most instances regardless of label are distributed approximately
evenly between classes. Thus, for the KNN model, the data set will be easier to learn and
easier to predict new instances provided to the model.

Figure 10. Histogram for muscle activity after balancing.

4.2.3. Model Training

An important decision in the design and implementation of the solution is represented
by the establishment of the data set for training, testing and validation. For the training
data set we kept 75% of the initial data set, for the test data set we kept 15% of the initial
data set, and for the validation data set the remaining 10%. Before being distributed
between the three sets, we randomly shuffled the data to preserve the proportions of class
distribution and to avoid consecutive instances with similar attributes that could affect
model performance.

After implementing the KNN classifier in Python [35] using the TensoFlow library [36],
its performance was tested based on the test set by determining the accuracy based on
the classes predicted by it compared to the real classes of the instances. An accuracy of
81.35% was obtained, which is a fairly high accuracy that can be improved by parameter
tuning [37]. For the KNN classifier the parameter that has been adjusted to determine
maximum performance is k. This parameter represents the number of neighbors considered
to determine classes for new unlabeled data instances. Thus, the instance to be classified
is compared with its k neighbors and the final label for the new instance is determined.
Figure 11 shows the accuracy of the classifier according to the parameter k. It can be seen
that the best accuracy was obtained for k = 5.
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Figure 11. k tuning.

4.2.4. Evaluation of the Trained Model

Among the existing models for the evaluation and validation of classifiers, the K-folds
Cross-Validation method was used [38]. This method has as a principle the division of the
data set into k complementary parts where k-1 of these parts are used for training and the
last part is used for testing. This process is repeated of k times so that each subset of the
data set is used for testing and the rest for training. Figure 12 shows both the functioning
and data sharing in the K-folds Cross-Validation process [39,40]. This method can cause
problems such as overfitting and can provide insight into how the system will evolve on
new data.

Figure 12. Graphical representation of K-fold cross-validation.

To perform this validation phase, 5-fold cross-validation and 10-fold cross-validation
were used, which involves two different validation processes. In the case of the first process
the data were divided into five equal parts, and in the case of the second process in 10 equal
parts. Each of these parts was used by turn for both model validation and training. After
dividing the data into five parts, the accuracy of the KNN algorithm is represented in
Figure 13. The model accuracy of 81.35% on the training data set and the accuracy after
the Cross-Validation process are approximately equal which implies that the model does
not have the problem of data overfitting. Because performances are approximately equal,
it means that the model has generalized and found patterns in the dataset so that decisions
are made based on the entire dataset and not on a particular dataset.
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Figure 13. Five-fold cross-validation results.

Figure 14 shows the performance of the KNN model for 10-fold cross-validation
process. an analysis of the results leads to the same conclusions as in the case of 5-fold
cross-validation process.

Figure 14. Ten-fold cross-validation results.

5. Conclusions

This article presents the development of a simulator for an intelligent robotic system
designed to rehabilitate the ankle of a person who has had a stroke. In order to be able
to make an interaction between the simulator and a real human subject, a sensor system
is used that is attached to the real human subject. The simulator was developed in order
to improve rehabilitation exercises through an interactive and motivating game for the
people who use it. This simulator is able to detect muscle tone, position and acceleration of
the lower limb to be rehabilitated during the exercises via the sensor system.

Compared to other rehabilitation systems that use virtual reality for interactive ex-
ercises, this system uses an intelligent module with machine learning to monitor patient
progress and to establish the levels of exercise and a control of the robotic structure in the
virtual environment. The KNN classification method was chosen for the implementation
of the intelligent mode. The evaluation of the performances of the KNN algorithm was
performed by balancing the data set used in the classification process, and by parameter
tuning. Thus, an accuracy of the classification process of 81.35% was obtained. By using
this intelligent module by the rehabilitation system, the patient’s recovery process can
be improved, as he will no longer need the therapist at each rehabilitation session. As a
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future line of work, we want the physical construction of the robotic structure found in
the virtual reality application and the use of more types of exercises for rehabilitation.
At the same time, it is desired to implement other classification algorithms (Decision Trees,
Random Forests) for the intelligent module and their comparison, so that the accuracy of
the algorithm used in this rehabilitation system is as close as possible to 100%.
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