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Abstract: Wearable auxiliary devices for visually impaired people are highly attractive research
topics. Although many proposed wearable navigation devices can assist visually impaired people in
obstacle avoidance and navigation, these devices cannot feedback detailed information about the
obstacles or help the visually impaired understand the environment. In this paper, we proposed
a wearable navigation device for the visually impaired by integrating the semantic visual SLAM
(Simultaneous Localization And Mapping) and the newly launched powerful mobile computing
platform. This system uses an Image-Depth (RGB-D) camera based on structured light as the sensor,
as the control center. We also focused on the technology that combines SLAM technology with the
extraction of semantic information from the environment. It ensures that the computing platform
understands the surrounding environment in real-time and can feed it back to the visually impaired
in the form of voice broadcast. Finally, we tested the performance of the proposed semantic visual
SLAM system on this device. The results indicate that the system can run in real-time on a wearable
navigation device with sufficient accuracy.

Keywords: wearable device; semantic segmentation; SLAM; assistance for visually impaired people;
localization; semantic map

1. Introduction

It is an important issue in social welfare to help visually impaired people live and
travel. Governments and welfare departments of various countries have issued many
policies or carried out considerable infrastructure to facilitate these people, especially the
visually impaired. Nevertheless, the daily lives, especially outdoor walking and traveling,
of the visually impaired is still significantly limited because of their physiological and
psychological factors. Thus, it is crucial to find an effective auxiliary method. The most
effective navigation method for the visually impacted people at present is to train guide
dogs. However, the popularization and promotion of guide dogs among the visually
impaired come at the cost of high expenses, long time, and low success rate; moreover,
there are no adequate laws, regulations, and assurance to keep visually impaired and the
dogs from the interference of the other people or vehicles.

More recently, there has been growing interest in wearable blindness-assistive devices,
which have already appeared and have even been for sale. These wearable blindness-
assistive devices can recognize faces, texts, traffic signals, and banknotes with high preci-
sion. As an important branch of wearable blindness-assistive devices, wearable navigation
devices (WNDs) for blind people still rely on traditional methods, such as ultrasonic
obstacle avoidance, GPS positioning, inertial odometry, and other indoor localization
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methods [1–3], which cannot meet the accuracy requirements of walking navigation and
have significant limitation in the indoor environment. Visual navigation has become a hot
research topic in recent years, which has considerable potential as WNDs. Figure 1 shows a
simple WND system concept based on computer vision. GPS (Global Positioning System),
images, and inertial information are collected and input into a microcomputer controller
unit simultaneously. Then, positioning and navigation are performed based on the data of
multi-sensor fusion among these sensors. The navigation information is sent via Bluetooth
to other auxiliary devices worn by the visually impaired, such as earphones, smartwatches,
and guide cane [4]. Additionally, the visual presentation-based brain-computer interface [5],
which has become popular in recent years, can help visually impaired people restore their
vision. It is also suitable as an output device for navigation information, especially on the
WNDs that can build three-dimensional semantic scene information.

Sensors 2021, 21, 1536 2 of 14 
 

 

precision. As an important branch of wearable blindness-assistive devices, wearable nav-
igation devices (WNDs) for blind people still rely on traditional methods, such as ultra-
sonic obstacle avoidance, GPS positioning, inertial odometry, and other indoor localiza-
tion methods [1–3], which cannot meet the accuracy requirements of walking navigation 
and have significant limitation in the indoor environment. Visual navigation has become 
a hot research topic in recent years, which has considerable potential as WNDs. Figure 1 
shows a simple WND system concept based on computer vision. GPS (Global Positioning 
System), images, and inertial information are collected and input into a microcomputer 
controller unit simultaneously. Then, positioning and navigation are performed based on 
the data of multi-sensor fusion among these sensors. The navigation information is sent 
via Bluetooth to other auxiliary devices worn by the visually impaired, such as earphones, 
smartwatches, and guide cane [4]. Additionally, the visual presentation-based brain-com-
puter interface [5], which has become popular in recent years, can help visually impaired 
people restore their vision. It is also suitable as an output device for navigation infor-
mation, especially on the WNDs that can build three-dimensional semantic scene infor-
mation. 

 
Figure 1. A usual wearable navigation system structure. The devices and methods we apply are shown by the solid lines. 

Considering that WND frequently works (especially navigates) in unknown environ-
ments, and as blind people cannot identify surroundings directly, it needs not only to 
determine its position, posture, and trajectory but also to establish a global map in real-
time, which is precisely the same as the SLAM problem in the robotics field. The concept 
of SLAM was put forward in the 1980s [6] and detailed the most fundamental problem 
that robots need to face when moving and recognizing their position. The earliest SLAM 
schemes were realized by simple position sensors such as sonars and odometers, which 
are usually bulky in volume. According to the reports of recent researches, SLAM schemes 
can also be established based on vision sensors. Visual SLAM, including Monocular, Ste-
reo, RGB-D cameras, and Lidars, has shown significant advantages in intelligent mobile 
robots and autonomous vehicles because of robustness, intelligence, and adaption. Some 
SLAM schemes, such as ORB-SLAM [7,8], LSD-SLAM [9], ElasticFusion [10], and SVO 
[11], are mature. 

There are many significant pieces of research about the WNDs combined with SLAM. 
Kaiser et al. [12] described a wearable navigation system based on an a priori map estab-
lished by the SLAM process of a robot. It was necessary to create a map in advance when 
applying it to navigation for the visually impaired people, since the early SLAM system 
usually relied on high-precision but heavy equipment. Lee et al. [13] proposed a method 
of using RGB-D cameras and some other equipment to realize real-time navigation with-
out the need to establish a priori map through the SLAM scheme. According to their de-
scription, the program can achieve a processing speed of 28.6 Hz. However, this solution 
requires visually impaired people to interact with a handheld smart device, especially 

Figure 1. A usual wearable navigation system structure. The devices and methods we apply are shown by the solid lines.

Considering that WND frequently works (especially navigates) in unknown envi-
ronments, and as blind people cannot identify surroundings directly, it needs not only
to determine its position, posture, and trajectory but also to establish a global map in
real-time, which is precisely the same as the SLAM problem in the robotics field. The
concept of SLAM was put forward in the 1980s [6] and detailed the most fundamental
problem that robots need to face when moving and recognizing their position. The earliest
SLAM schemes were realized by simple position sensors such as sonars and odometers,
which are usually bulky in volume. According to the reports of recent researches, SLAM
schemes can also be established based on vision sensors. Visual SLAM, including Monocu-
lar, Stereo, RGB-D cameras, and Lidars, has shown significant advantages in intelligent
mobile robots and autonomous vehicles because of robustness, intelligence, and adaption.
Some SLAM schemes, such as ORB-SLAM [7,8], LSD-SLAM [9], ElasticFusion [10], and
SVO [11], are mature.

There are many significant pieces of research about the WNDs combined with SLAM.
Kaiser et al. [12] described a wearable navigation system based on an a priori map es-
tablished by the SLAM process of a robot. It was necessary to create a map in advance
when applying it to navigation for the visually impaired people, since the early SLAM
system usually relied on high-precision but heavy equipment. Lee et al. [13] proposed a
method of using RGB-D cameras and some other equipment to realize real-time navigation
without the need to establish a priori map through the SLAM scheme. According to their
description, the program can achieve a processing speed of 28.6 Hz. However, this solution
requires visually impaired people to interact with a handheld smart device, especially
when setting a destination, which may bring potential inconvenience to the user. Zhang
et al. [14] also used RGB-D cameras to realize navigation without prior maps. Different
from the work of Lee et al., they proposed the method using voice and text recognition to
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determine the destination. Especially, geometric features at some specific locations are uti-
lized to extract semantic information so that the user could follow the preset path correctly.
Although Zhang et al. considered the perception of the visually impaired people during
navigation, the information they provided was not clear enough. Moreover, since some
other information such as the door numbers is collected by another independent camera,
the user may need to wear more equipment, which would also cause some inconvenience.

The SLAM scheme applied to the WND, according to many previous studies, is
different from the general SLAM scheme. The latter only needs to build a topological map
and not know what objects are on the map. In the process of positioning and navigation,
the WND needs to recognize various items on the map in real-time to determine whether
the object is an obstacle. Therefore, a 3D semantic scene establishment solution that can
extract semantic information from the map and perform localization simultaneously and
in real-time is urgently required.

Much work has been done in the field of 3D semantic scene establishment. The
semantic information labels were tagged by the decision-level tree random forest pixel-level
semantic prediction in the early years. SLAM++, proposed by Salas-Moreno et al. [15], is the
earliest prototype, which is based on the dense reconstruction of scenes and optimized by
setting camera nodes and object nodes after detecting a specific object. The work of Zhang
et al. [14] also proposed the idea of using semantic information to assist positioning, but
they only used simple geometric features to obtain semantic information, which could not
achieve 3D semantic scene recognition. However, CNN (Convolutional Neural Network)
has become a popular method for image target recognition and detection with machine
learning technology developed in recent years. There are many studies on CNN image
semantic segmentation, such as FCN [16], DeepLab [17], ResNet [18], and PSPNet [19]. The
CNN image detection and semantic segmentation are applied to autonomous driving and
robotics widely. It is a considerable suit choice for us to use CNN to realize 3D semantic
scene identification.

This paper has proposed a real-time 3D semantic scene SLAM solution for WNDs,
integrating a semantic segmentation network and a SLAM system to construct a new
semantic visual SLAM system. Firstly, we have built a wearable navigation system. We
extend the data structure of map points by probability fusion between SLAM’s Mapping
processing and semantic information and finally construct a SLAM system for the WNDs
with semantic label output. We have done accuracy and speed evaluation using the TUM
RGB-D database [20] on the wearable navigation system. This SLAM system can generate
three kinds of maps, including the sparse map, dense map, and semantic map. Compared
with the general semantic SLAM scheme, our work can ensure the speed of real-time
operation on low-cost devices. Finally, we set up a test scenario to simulate navigation for
visually impaired people through voice enlightening.

2. Real-Time Semantic Visual SLAM

The real-time semantic vision SLAM solution for WNDs consists of two parts: one is a
high-precision SLAM system, the other is a real-time semantic segmentation network. The
combination of the SLAM system and semantic segmentation network will be discussed in
the third part.

2.1. Real-Time SLAM System

The SLAM system is the fundamental part of the Semantic visual SLAM system, which
is positively correlated with the accuracy and final performance of the WND system. There
are currently three methods for constructing the SLAM scheme: the first is the feature-based
method, which extracts some feature points with descriptors in the image, and matches
these feature points between different images for tracking and mapping; the second is the
direct method, which directly calculates the luminosity changes of some pixel blocks (not
only using feature points); the third is the optical flow method, which uses the optical
flow changes of feature points, pixel gradient points, and even the entire picture. The
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semantic information needs to be fused through data association, which further requires
data association and localization estimation to be decoupled. The feature-based method
needs to match feature points with the current position, demonstrating compatibility with
semantic information fusion.

In fact, the feature-based method is not highly efficient. As is shown in Figure 2, we
have done an operation speed test with a single thread for some popular feature extractors,
including Star (or CenSurE, Center Surround Extremes, by Agrawal et al. [21]), GFTT (Good
Feature to Track by Shi et al. [22]), SIFT (by Lowe et al. [23]), SURF (by Bay et al. [24,25]),
ORB (by Rublee et al. [26]), BRISK (by Leutenegger et al. [27]), and FAST (by Rosten
et al. [28]). The feature extraction is such a time-consuming task that only a few extractors
can meet real-time operation requirements. However, FAST and another extractor with
better performance, Star, are both feature-only extractors without descriptors, which cannot
be used directly in SLAM. Considering not only to meet the application requirements of
SLAM but also to satisfy the real-time performance on the low-cost devices, we finally
chose the ORB feature extractor.
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It is worth noting that in recent years, a SLAM solution based on the ORB feature
extractor has been proposed. As one of the most famous feature-based visual SLAM
solutions, ORB-SLAM, presented by Mur-Artal et al. [7,8], has shown significant operating
speed, robustness, and localizing accuracy. There are numerous designs in the ORB-SLAM
to improve efficiency, which can be executed using a CPU and reach at least 30 FPS.
The real-time nature of ORB-SLAM is precisely in line with the real-time requirements
of this work. At the same time, it also provides interfaces for monocular, stereo, and
RGB-D cameras, which provides the foundation of SLAM construction. However, the
final result of the ORB-SLAM has limited readability and practicality, which needs to be
processed. We first established a dense global map based on the original ORB-SLAM
to ensure that the generated semantic map can match the global map. In addition, we
reassigned the threads that SLAM runs and performed further processing during the
extraction of keyframes to ensure the efficient operation of the entire program, which are
introduced in the next section.

2.2. Framework of Semantic Visual SLAM

As is shown in Figure 3, the system can be divided into two parts: the SLAM end and
the semantic segmentation end. The SLAM end can also be divided into three threads:
Keyframe, Local Mapping, and Loop Closing. Then, the global map is constructed through
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global pose optimization and Loop Correction. In the meantime, semantic segmentation
threads are expanded into this system. The semantic segmentation result can be mapped to
a dense semantic map through the Cloud Map Generation step, which combines the gener-
ated semantic results with the depth information from the RGB-D camera and generates
the corresponding position and posture information from the global map of the SLAM end.
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Semantic segmentation usually takes up too much computing resource, which causes
the overall system to run at a slower speed. Here, we have applied two methods in this
system to solve this problem.

Maximizing the use of computing resources is a critical way to improve operational
efficiency. Although localization and navigation are the essential parts of the WNDS, it is im-
possible to devote all computing resources to solve SLAM. Current small high-performance
computing devices have begun to use GPUs to enhance AI (Artificial Intelligence) ca-
pabilities, which can usually operate in parallel. The computing ability of the GPU can
be used as much as possible to handle the task of semantic segmentation, to save CPU
computing resources. Due to the requirement for complex matrix operations, the semantic
segmentation coincides with the functional characteristics of the GPU as well. In short, the
considerate allocation of computing power by the three threads of SLAM and the semantic
segmentation thread can effectively ensure the real-time performance of the system.

Secondly, many redundant frames appear in SLAM, and the semantic segmentation
of these frames also causes low efficiency. Considering the step of extracting keyframes
in the SLAM thread, it is feasible to record the timestamps of keyframes and then index
the images near the time stamps for semantic segmentation. The keyframe refers to the
graph node captured during the mapping process associated with the previous keyframe,
which, at the same time, has a significant difference. The cloud points mapped by the
keyframes are finally combined into a point cloud map as a result. Therefore, semantic
segmentation is performed on the images closest to the keyframes so that the map with
semantic information can be established through point cloud reconstruction. Semantic
segmentation of images near keyframes can minimize the amount of calculation and
improve the efficiency of segmentation.
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2.3. Semantic Segmentation

Semantic segmentation by the decision-level tree random forests has many limitations
on the application. With the rapid development of CNN, Neural Networks are gradually
becoming more popular in the field of the pixel-level segment. Moreover, the development
of the Semantic Segment also aims to apply intelligent mobile robots and automatic driving
vehicles. We can choose the base segment network from existing research and improve
it. A highly efficient but succinct image semantic segmentation network is needed for the
parallel process between SLAM and segment network. The target detection network can
replace pixel-level semantic segmentation in some schemes, but it focuses on enhancing
the performance of SLAM and has little effect on generating semantic maps.

Although there are many excellent CNN image segmentation networks, most of
them rely on high-performance computing equipment for training and operation. ENet
(proposed by Paszke et al. [29]) is an efficient pixel-level semantic segmentation network.
It uses a 34-layer residual network to form an asymmetric Encoder-Decoder structure. Due
to the small number of network layers, the training speed of this network is fast, and the
training model is small. To improve the accuracy and ensure the running speed, we have
made a simple change of this network, mainly to increase the number of convolution layers
but retain the asymmetric structure of the network.

As shown in Figure 4, five kinds of convolution layers are adapted to establish the
Semantic Segmentation network. The entire network can be divided into seven stages,
where stages 1–5 constitute the encoder and stages 6–7 constitute the decoder. The order of
the internal convolution layers of stages 3–5 is the same. Although it is not deliberately
emphasized in the figure, except for the initial layer of the first stage, each layer adopts
a Bottleneck structure. The Bottleneck structure is shown in Figure 4b. The initialization
layer, which can be seen as Figure 4c, directly concatenates the result of convolution using
a 3 × 3 (stride 2) kernel together with the max-pooling result to achieve rapid compression
and reduce the storage space of a single image. There are three types of convolution kernels
used in this network, including standard kernels, dilated kernels [30,31], and asymmetric
kernels [31], which are shown in Figure 4d. The use of multiple convolution kernels
can effectively expand the receptive field, which can significantly increase the speed and
efficiency of the network while ensuring the accuracy of segmentation.

2.4. Probabilistic Data Association

The single semantic segmentation has not yet made the computer controller match
the segmentation result with the detected terrain. Section 2.2 mentioned that the semantic
information is extended to three-dimensional space based on the localization results and
point cloud information, which only generates a separate semantic map. Therefore, another
method is needed to associate the generated semantic map with the point cloud map,
which is the so-called data association. Probabilistic Data Association was first proposed by
Bowman et al. [32]. It extracts the location-related information by searching the maximum
probability coincident position of the current coordinates in the point cloud map. Moreover,
since the input sizes of the SLAM end and the segmentation network do not match, the
two need to be processed uniformly.

When building a semantic visual SLAM system, data association is the most crucial
part. In the particular scenarios applied to WNDs, this data association does not need to
achieve high accuracy or correct the result of SLAM. WNDs need to perceive the semantic
information of the surrounding environment in a three-dimensional manner, which means
the devices need to know what they have seen and how far these objects are. Consequently,
only relying on semantic segmentation of captured images cannot achieve this goal. The
so-called data association refers to correlating semantic recognition results with the results
of the cloud points map, which is equivalent to extending semantic information to three-
dimensional space. The general SLAM solution solves the classic positioning and mapping
problems. The mobile sensor moves in an unknown environment and establishes a total
of M static landmark sets L = {lm}M

1 . The corresponding measurement value set of the
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sensor is Z = {zk}K
1 . The task of SLAM is to use the estimated landmark L to restore the

sensor trajectory position and attitude set X = {xn}n
1 .

X̂, L̂ = argmax
X,L

log p(Z|X, L) (1)Sensors 2021, 21, 1536 7 of 14 
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The Semantic SLAM needs not only to be able to restore posture through landmarks
but also to combine semantic labels with map points. Therefore, it is necessary to associate
semantics signs, landmarks, and restored poses in the set D̂:

X̂, L̂ = argmax
X,L

log p(Z|X, L, D̂) (2)

D̂ = argmax
D

p(D|X0, L0, Z) (3)

where X0, L0 are the prior estimated value and D is the maximum likelihood estimate
based on X0, L0. It is worth noting that the landmarks here are those that already contain
semantic information. The keyframe records the association between the restored pose
X and the landmark L containing semantic information. In the process of loop closing
detection, keyframes with the same semantic distribution are pre-screened as the key
detection object. The semantic information will be connected with the generated point
cloud image by fusing data association with landmarks. Therefore, when indexing semantic
information, the keyframes that can be matched with the coordinates in the map and the
corresponding semantics are extracted.
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In order to make SLAM better cooperate with the semantic segmentation network,
some changes in semantic information are necessary. On the one hand, the input images
need to be segmented, and on the other hand, the landmarks need data expansion.

The image input size is set to 472 × 472 (pixels) to prevent the directionality problem
of the images input to the network. The image input size of SLAM is the resolution of the
camera 640 × 480. We unified the two by cutting. The center of these two input images
coincide with each other, and the edge parts of the network input were ignored. The
landmarks at the ignored positions are uniformly classified as “unclassified” to ensure
matrix operations. This cutting method also avoids the mismatch, to a certain extent, that
may occur when the network recognizes objects with incomplete edges on the image.

The semantic labels of landmarks are variable to avoid the classification errors that
often occur. Each landmark continuously records the number of times where a keypoint
is classified as a specific category during the entire SLAM process. With the work of
the backend non-real-time optimization process, the largest category with a number of
occurrences above a certain threshold other than uncategorized is selected as its own
classification. If the mismatches are distributed with the normal distribution, this method
can exclude most mismatch cases.

3. Experiments and Results

We have done some experimental validation of our system, especially the performance
of executing speed, the experiments of Global Map, the accuracy of SLAM trajectory based
on the TUM database, and the performance of Semantic Segment Network. Low-cost
computers limited a large enough batch size, for which the convergence effect may not be
ideal. This problem can be solved by renting a cloud server with higher performance. We
also built a simple scenario to test the actual performance of the system.

3.1. Experimental Platform Setup

There is no doubt that the SLAM system for WNDs, which has strict requirements on
the weight of the related devices and the computing ability of the controller, is different
from the one used in robot navigation. Therefore, we need to reduce the hardware quantity
and mass of the test platform as much as possible. The entire hardware system needs to be
built on a high-performance embedded development platform. As is shown in Figure 5, we
used an embedded graphics processing module made by NVIDIA as the control terminal
to process the images collected by the RGB-D camera. The processed result was sent to
the receiver through a WIFI-Bluetooth module with the M.2 interface. The user can obtain
the output information by wearing a wireless Bluetooth earphone. The hardware part of
the test system consists of only RGB-D cameras, controllers, and power supply facilities.
There are no specific requirements for the wireless Bluetooth earphones so that users can
purchase them according to their needs and interests. We also used the speech synthesis
method provided by IFLYTEK to construct a voice broadcast solution that can be sent to
the earphone through Bluetooth. Moreover, since the use of GPS and inertial odometry are
effective methods for improving localization and navigation accuracy, we have retained
the interface of these two devices for subsequent research.

3.2. Performance Evaluation of the Real-Time SLAM

We have done a variety of validations on the TUM database faced with the RGB-D
camera. There are many tools of this database that we can use to give a quantitative test
on the accuracy of localization and the executing speed of tracking, as Table 1 shows.
The localization error of the system is about 5 cm (centimeter-level). Notably, the error
of the first sample in Table 1 is huge, which is caused by the too fast running speed
and severe image shaking. After the experiments, we believe that only relying on the
visual odometry in SLAM is likely to produce cumulative errors under long-term working
conditions. Therefore, we have achieved navigation through voice enlightening, but
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accurate navigation requires the solution to be combined with IMU (indoor) or GPS
(outdoor) to reduce errors.
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Table 1. SLAM trajectory evaluation.

Name
Trajectory Error Specifications

Root Mean Squared Error/m Median/m Max Error/m

Fr1_360 0.2411 0.2275 0.4667
Fr1_desk 0.0225 0.0150 0.0822
Fr1_floor 0.0216 0.0170 0.0656
Fr1_room 0.0303 0.0249 0.1076
Fr2_hemi 0.0954 0.0939 0.3040

Fr2_pioneer 0.0716 0.0754 0.1470
Fr3_office 0.0098 0.0092 0.0256

The single SLAM speed can reach 30 fps (limited by the specification of the camera
in the database), which meets the real-time requirements completely. When the whole
system is performed, the SLAM speed evaluation result can be seen in Table 2. During
operation, the computing resources occupied by the graphical interface cannot be ignored.
Therefore, the entire system still has considerable potential for speed improvement. We
designed an experimental scene for on-site testing with the background of guiding the
visually impaired into the workstation. Our work can generate sparse maps, dense maps,
and semantic maps based on octrees, as shown in Figure 6. After feeling that the camera
is in a static state at the same position for a period of time, the program can return the
most critical semantic information in the related keyframe and the distance and direction
between the centroid of the object and the camera (e.g., “chair, front-left, 0.5 m”). Utilizing
the offline speech synthesis platform provided by iFLYTEK®, we can produce sound and
send it to the earphone through the Bluetooth module.
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Table 2. SLAM execution speed evaluation.

Name
Speed Specification

Keyframes Number Average Tracking Times/s Frames Per Second *

Fr1_360 127 0.236929 23.45
Fr1_desk 62 0.377419 20.25
Fr1_floor 56 0.890536 27.15
Fr1_room 224 0.218304 15.4
Fr2_hemi 523 0.174914 20.85

Fr2_pioneer 373 0.195565 20.58
Fr3_office 224 0.388795 16.1

* Refers to the SLAM processing speed with the visual interface rather than the speed of the input video stream.
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3.3. Result of Semantic Segmentation

We have evaluated the Semantic Map. We also trained and validated the CNN in a
low-cost computer installed with an NVIDIA GTX 1060 with 6 GB of Video Memory. The
fundamental specifications are listed in Table 3. Training reaches a steady state after about
10k iterations, and the final mIoU (mean Intersection over Union) of training is about 70%.
The mIoU evaluation method is as follows:

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(4)

where k is the number of the input test samples, p is a rate of the total that stands for the
comparison output between evaluated and actual results, and footmarks, and i and j, stand
for the right and wrong situation respectively. The same two footmark letters of the p refer
to the right judgment. Obviously, the sum of the four different p is just 1.



Sensors 2021, 21, 1536 11 of 13

Table 3. The performance of the proposed semantic segment networks.

The Output Parameter of Semantic Segment Networks

Output size 10.3 MB
Speed of Segment ~13 Fps

mIoU 60.2% for Validation
Pixel Accuracy 89.1% for Validation

Some well-known methods were tested on our device, of which the results can be seen
in Table 4. This scheme can be executed in real-time on the device, though because there
was not enough computing capacity, it reached about 13 fps. The output training model is
only 10M and can be developed on embedded devices.

Table 4. Comparison of the segmentation execution speed.

Name Segment Speed (Fps) mIoU for Validation (%)

FCN [16] 1.1 61.2
DeepLab V3+ [17] 0.3 85.1

ICNet [33] 8 68.5
SegNet [34] 5 53.0
Our work 13 60.2

We have discussed the performance of the SLAM system and the segmentation net-
work separately. In this part, we show the overall performance of the system. The speed
of the system is lower than that of the individual test but not obvious (about 25 Fps for
SLAM and about 10 Fps for Semantic Segment). Figure 7 shows the comparison between
the Ground Truth of the scene part and the 3D semantic map. It can be seen that the 3D
semantic map can also run normally for a complicated scene.
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4. Conclusions

This paper has proposed a scheme to apply mature SLAM and semantic segmentation
methods to wearable assistive devices for visually impaired people. We chose SLAM
based on ORB feature extraction as the basis and constructed a real-time visual semantic
SLAM solution for WNDs through a fast and efficient semantic segmentation network. To
ensure the real-time performance of the system running on low-cost embedded devices, we
made full use of the computing resources of the device and divided SLAM and semantic
segmentation into multiple threads, which were allocated to different types of computing
units according to their characteristics. The experimental results show that even under
the condition of retaining the visual graphical interface, the program can still run on
embedded devices at a processing speed of about 25 Fps. At the same time, the error
is limited to centimeter-level. Finally, the generated semantic map and the SLAM cloud
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map are associated with each other through probabilistic association, which can further
utilize mature speech synthesis solutions to broadcast location and object information to
the visually impaired and further enlighten them to reach the destination. In general, the
experimental results show that this system can be run in real-time on the platform we built,
and the semantic map and SLAM map can be established synchronously.

Our solution shows the potential of semantic SLAM in wearable navigation devices,
which can still improve in several aspects. Firstly, consider the miniaturized, lightweight,
and integrated design. In fact, there are many small high-performance chips and high-
precision cameras that can be used to develop wearable navigation devices. Secondly,
the user experience can be improved through developing the navigation program and
enhancing the human-computer interaction and appearance of the production. In addition,
research in the fields of semantic SLAM fusion and multi-sensor fusion will also help
further to improve the efficiency and accuracy of wearable navigation devices. Limited by
the computing power and accuracy of the device, we can only implement voice-heuristic
navigation currently. Accurate navigation requires the use of multi-sensor fusion, integrat-
ing GPS, IMU, and other indoor localization methods to obtain high-precision location
information. Moreover, the interaction method between wearable devices and visually
impaired people is also an important research topic. Simplifying the interaction operation
as much as possible and increasing voice communication and text understanding can
provide greater convenience for the visually impaired. In the future, we will try to utilize
the GPS module and inertial measurement units while reducing the size and weight of the
system to improve the operating accuracy and application scenarios of the devices.
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