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Abstract: In this contribution, we suggest two proposals to achieve fast, real-time lane-keeping
control for Autonomous Ground Vehicles (AGVs). The goal of lane-keeping is to orient and keep
the vehicle within a given reference path using the front wheel steering angle as the control action
for a specific longitudinal velocity. While nonlinear models can describe the lateral dynamics of
the vehicle in an accurate manner, they might lead to difficulties when computing some control
laws such as Model Predictive Control (MPC) in real time. Therefore, our first proposal is to use
a Linear Parameter Varying (LPV) model to describe the AGV’s lateral dynamics, as a trade-off
between computational complexity and model accuracy. Additionally, AGV sensors typically work
at different measurement acquisition frequencies so that Kalman Filters (KFs) are usually needed
for sensor fusion. Our second proposal is to use a Dual-Rate Extended Kalman Filter (DREFKF) to
alleviate the cost of updating the internal state of the filter. To check the validity of our proposals,
an LPV model-based control strategy is compared in simulations over a circuit path to another
reduced computational complexity control strategy, the Inverse Kinematic Bicycle model (IKIBI),
in the presence of process and measurement Gaussian noise. The LPV-MPC controller is shown to
provide a more accurate lane-keeping behavior than an IKIBI control strategy. Finally, it is seen that
Dual-Rate Extended Kalman Filters (DREKFs) constitute an interesting tool for providing fast vehicle
state estimation in an AGV lane-keeping application.

Keywords: autonomous vehicle; dual-rate control; dual-rate EKF; MPC; LPV model

1. Introduction

Self-driving cars have been increasing in popularity year after year. They are the type
of Autonomous Ground Vehicle (AGV) that has received the greatest share of attention,
both in academia and in industry, because of the possibility that they can shift the paradigm
of transportation systems. An essential concern in the development of these automated
driving systems is the ability to obtain a controller that is able to make the vehicle follow
a pre-established path. This problem is often considered, in a hierarchical manner, as the
low level control of the AGV in opposition to a high level control, which is focused on
path or trajectory generation based on the awareness of the environment that surrounds
the vehicle.

The lateral vehicle control takes care of the path-tracking problem. The path is
composed of a sequence of positions and orientations in the plane, and the controller
has to make sure that the vehicle follows them. In order to control the vehicle, two input
variables are often considered: the steering angle (which is modified by acting on the
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steering wheel) and the longitudinal acceleration (modified via throttle). If the vehicle
must follow a feasible collision-free pre-computed path with no time constraints, the
problem is known as lane-keeping. On the contrary, if each pair of the position and
orientation of the pre-defined path has a time stamp associated with them, the problem is
considered as a trajectory-tracking problem. Since time constraints are not considered in
this application, the steering angle can be chosen as the only control variable, disregarding
the longitudinal acceleration.

To achieve successful lateral vehicle control, it is necessary that a set of sensors (GPS,
IMU, and others) is embedded in the vehicle. These sensors measure some variables
such as position, velocity, acceleration, orientation, and change of orientation, at different
rates. The use of the celebrated Kalman filter [1–3] enables fusing all of them with the
aim of being conveniently utilized by the control stage. Additionally, several authors
have proposed different models to describe the lateral dynamics of the vehicle. The use
of a kinematic bicycle model has been widely extended, where each axle is considered
as a single wheel [4]. The model was later expanded through a dynamic expression that
links, among other variables, the inertial heading time evolution with the steering wheel
angle. The lateral dynamics of wheeled ground vehicles is determined by the highly
nonlinear forces occurring in their tires. For this reason, most of the models that have been
suggested [4–10] are nonlinear models.

Therefore, in order to use the Kalman filter in a proper way, it needs to be formulated
via its extended or unscented versions (see, e.g., [11,12]). In the present approach, the
Extended Kalman Filter (EKF) was chosen, not only for fusing all the data provided by the
different sensing devices, but also for estimating the nonlinear behavior of the vehicle’s
dynamics, providing unavailable (not measurable) variables if needed and reducing the
possible process and measurement noise effect. Since every sensor may work at a different
rate (the GPS and velocimeter usually work at slower rates, but the IMU works at a
faster rate), which may be slower than the actuation (control) rate, a multi-rate EKF may
be needed. In our proposal, the different output variables are assumed to be sensed at
different rates, but the internal state of the filter is only updated at a rate M-times slower
than the actuation one. This leads to a Dual-Rate EKF (DREKF).

The literature on the DREKF is scarce and scattered. Some works appear in biomedicine,
concretely in the field of electrocardiogram signal denoising, where the DREKF has been
used in order to better estimate system states that are not updated in all time instances
and avoid unwanted errors in the estimation procedure [13,14]. Unmanned Aerial Vehicles
(UAVs) are another field where the DREKF has been employed with the aim of estimating
state variables from few measurements, which come from a low cost, low rate GPS [15].In
robotics, although factor-graph-based methods (GT-SAM, OkVIS, Cartographer, etc.) are
prevalent, the DREKF can also be utilized for ego-motion estimation so as to fuse low-rate
vision and fast-rate inertial measurements in the context of the simultaneous localization
and mapping problem [16,17]. To the best of the authors’ knowledge, the DREKF has never
been explicitly formulated in the AGV’s framework.

Several authors have explored the topic of motion planning and control for AGVs (see,
e.g., [18]) using different control approaches such as Linear Quadratic Regulator (LQR)
control, inverse kinematics controller, Model Predictive Control (MPC), and some attempts
with classical control (PID, lead-lag) [4,19]. In particular, MPC has been widely used in
trajectory reference tracking for self-driving cars [8,20–25], since it enables calculating and
optimizing the sequence of future control inputs by using an explicit model [26].

Depending on the control scheme selected, choosing a nonlinear model can cause a
relevant increase in the calculation time, which may endanger the feasible real-time solving
of the controller. On the contrary, a Linear Time-Invariant (LTI) model might be insufficient
to describe the vehicle’s dynamics, especially if high lateral tire forces are involved [6,9,10].
Linear Parameter Varying (LPV) models have been regarded as a trade-off between model
accuracy and computational complexity [24,25,27–30].
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Previous contributions on LPV-MPC for reference tracking in ground vehicles have
shown promising results [24,25]. Here, the nonlinearities of the vehicle’s dynamics are
embedded into the model’s varying parameters, which may cause prediction errors for
long time horizons if the variation from the operating point is meaningful throughout this
time interval. In a recent contribution [31], a learning algorithm for vehicular dynamics [32]
was applied to an LPV car dynamics’ model [27], to optimize the prediction results over
a long prediction horizon. It would be interesting to analyze its behavior in a realistic
scenario when used in model-based control.

Moreover, as previously mentioned, in this control problem, some sensors work at a
slower rate. In order to reach a good control performance, this rate may not be appropriate
to update the controller output. Then, instead of using a DREKF to provide a single, fast-
rate controller with faster estimates, a dual-rate controller may be considered to generate
faster control actions from slower measurements.

The main contributions of this article are three. First, were present an LPV-MPC
design that considers a model identified specifically for longer time scale predictions such
as the ones handled by MPC. Second, we introduce a Dual-Rate EKF (DREKF) that allows a
fast state update using, but not limited to, slow and noisy measurements in a autonomous
vehicle control context. Third, we compare and analyze two different low computational
complexity, dual-rate approaches for lateral vehicle controlling in the presence of process
and measurement Gaussian noise. The first of the two approaches considered in the third
contribution uses a single, fast-rate feedforward controller, which is designed from an
Inverse Kinematics Bicycle (IKIBI) model. The second considers an MPC controller, which
can be designed from a new LPV optimized model and with a prediction horizon that
allows generating a fast-rate control signal from the slow-rate measurements.

The paper is organized as follows. Section 2 details the design aspects for each
control approach (IKIBI and MPC). Then, the DREKF is introduced in Section 3. Simulated
experiments are introduced and justified in Section 4, and their results are presented and
discussed in Section 5. Finally, some conclusions summarize the present work in Section 6.

2. Control Strategies

There are diverse control laws devoted to vehicle lane-keeping, commonly called
steering controllers. In this section, two widely used methods with some variations are
considered: the Inverse Kinematic Bicycle model (IKIBI) and the Linear Parameter Varying-
Model Predictive Control (LPV-MPC).

In both cases, the purpose is to use the steering front wheels’ angle δ as the control
action in order to follow the desired path. The complete path,

[
X Y Ψ

]
traj, is planned

offline, and depending on the controller election, the next yaw rate, rre f , or yaw position
goal, Ψre f , is delivered by a pure pursuit procedure with a coherent look-ahead distance
L [7,19,33,34]. Figure 1 shows a schematic view of this process. The Dual-Rate Extended
Kalman Filter (DREKF) proposed for state estimation can also be seen in Figure 1 and is
further explained in Section 3.

Control Plant
Look

Ahead

Reference
Generator

(offline)

DREKF

[X, Y, Ψ]traj Ψre f ,T

rre f ,T

δT

XT , YT ay,T , Vx,T , ΨT

XMT , YMT ,

ay,MT , Vx,MT , ΨMT

Figure 1. Proposed closed-loop control. DREKF, Dual-Rate Extended Kalman Filter.
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2.1. Inverse Kinematic Bicycle Model-Based Controller

In this work, the IKIBI is used by adding a proportional feedforward controller in
order to consider the yaw rate measurement r. The control law yields:

δ(k + 1) =
[

atan2

( rre f Lv

vx(k)
+ Kp(rre f (k + 1)− r(k))

)]
γ (1)

where Kp is the feedforward controller’s proportional gain, rre f is the yaw rate goal es-
tablished by the pure pursuit, Lv is the vehicle’s longitudinal length, and γ is a vehicle
coefficient that translates the tire angle into the steering angle. Since the input signal is
considered directly as the tire angle, γ = 1. Furthermore, the function atan2 represents the
fourth-quadrant inverse tangent.

2.2. Linear Parameter Varying-Model Predictive Control

Model predictive control can be used for lateral vehicle control [8,20,21]. A linear
model of the system should be considered to implement an MPC controller in real time in
order to avoid computational delays [21,35,36]. The lateral dynamics’ model that is used
for this controller was presented in [27]:

ψ̇(k) =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 δ(k) (2)

where ψ̇ is the yaw rate in the body frame coordinates of the vehicle and δ the front steering
angle. The presented model is Linear Parameter Varying (LPV), and its coefficients (b0−2
and a1,2) depend on the lateral acceleration and longitudinal velocity in the local body
frame of the vehicle. Previous research has suggested an optimized method for identifying
the system’s parameters [31] by minimizing the model prediction errors over a long time
horizon.

Since the goal of this controller is to follow a trajectory reference described in terms of
position (X and Y) and orientation (Ψ) in absolute coordinates, it is interesting to set the
orientation of the vehicle (ψ) as the output of the system rather than its rate of change (ψ̇).
A forward Euler method is used where:

ψ(k) =
T

z− 1
ψ̇(k) =

Tz−1

1− z−1 ψ̇(k) (3)

where T is the sampling period of the system. Then:

ψ(k) =
Tb0z−1 + Tb1z−2 + Tb2z−3

1 + (a1 − 1)z−1 + (a2 − a1)z−2 − a2z−3 δ(k) (4)

Therefore, the model used in MPC is:

x(k + 1) = Ax(k) + Bu(k) (5)

y(k) = Cx(k) + Du(k) (6)

where u and y are the discrete-time input (δ(k)) and output (ψ(k)) variables, respectively,
and:

A =

1− a1 a1 − a2 a2
1 0 0
0 1 0

 (7)

B =
[
1 0 0

]T (8)

C =
[
Tb0 Tb1 Tb2

]
(9)

D = 0 (10)
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The quadratic cost function chosen for solving this problem at each time step k is:

JU(k) =
k+M

∑
i=k+1

(y(k)− yre f (k))TQ(y(k)− yre f (k)) +
k+M−1

∑
i=k

u(k)T Ru(k) (11)

where U is the input signal sequence of the control horizon that minimizes the cost function
over the MPC prediction horizon for every metaperiod and Q and R are positive semi-
definite weight matrices that penalize the controlled variables and inputs, respectively.
Furthermore, yre f (k) is determined by the look-ahead algorithm.

This optimization problem is subject to the discrete-time model of the system (5),
(6) and a set of linear constraints on the control and output that preserve the physical
feasibility of the solution:

FU(k) ≤ f (12)

GY(k) ≤ g (13)

where Y is the sequence of discrete-time output variables in the prediction horizon of the
MPC problem. Furthermore, the rate of change of the output variable is limited by the
slew rate, S, to avoid abrupt vehicle turns that would have a detrimental effect on the
passengers’ comfort:

l∞(y(k + 1)− y(k)) ≤ S (14)

The choice of the cost function as convex, as well as a linear model, and convex
constraint sets makes the whole problem convex, which is beneficial for the computation
of the problem since if a solution exists, it is the globally optimal one [37].

Finally, one of the aspects of MPC is the generation of the sequence of the M future
discrete-time control actions to achieve the goal reference. However, it is typical that only
the first control action is injected. Therefore, MPC is a natural dual-rate control in the sense
that it calculates M future control actions with each of the measurement data.

3. Dual-Rate Extended Kalman Filter

In previous work [31], the set of hardware available (an inertial measurement unit, a
differential GPS, and a computer) for data acquisition in the car was able to measure X, Y,
Ψ, and Vx, but Vy and r were difficult to access.

Moreover, the measurements are available at different frequencies, the GPS’s at a slow
frequency (about 10 Hz) and the same for velocity acquisition. The orientation ψ is acquired
by the IMU with a frequency of 100 Hz. For this reason, dual-rate control is a natural
proposal to deal with this problem, assuming slow-rate measurements, but a fast (M-times
faster) steering control action. The acceleration could be varied at a slow frequency. In
the case of the dual-rate EKF, it may be needed when some of the measurements are not
available due to its slow-rate acquisition (for instance, X and Y from the GPS). Then, state
estimation is carried out at a faster rate from (Vx, ψ).

Analogously, the DREKF includes a linearization procedure, which is based on the
use of the Jacobian matrix (a matrix of partial derivatives). At each time step, this matrix is
evaluated with the current predicted states. The DREKF, different from a standard EKF,
carries out some slow-rate computations (such as the correction stage) only when output
variables are available, that is when they are sensed. Otherwise, predictions are shifted to
the next iteration.

The DREKF presented in this section takes a nonlinear model based on Newton’s
second law that uses the bicycle model and assumes a constant tire load [5,24,29] for state
estimation. Expressing the model in discrete time for period T yields:
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Fy f (k) = −Cα f arctan
(

Vy(k− 1) + r(k− 1)a
max(Vx(k− 1), Vmin)

− δ(k− 1)
)

(15)

Fyr(k) = −Cαr arctan
(

Vy(k− 1)− r(k− 1)b
max(Vx(k− 1), Vmin)

)
(16)

ax(k) = ax(k− 1) (17)

ay(k) = −Vx(k− 1)r(k− 1) +
Fy f (k− 1) + Fyr(k− 1)

m
(18)

ṙ(k) =
aFy f (k− 1) cos(δ(k− 1))− bFyr

Izz
(19)

Vx(k) = Vx(k− 1) + T · ax(k− 1) (20)

Vy(k) = Vy(k− 1) + T · ay(k− 1) (21)

r(k) = r(k− 1) + T · ṙ(k− 1) (22)

X(k) = X(k− 1) +

+ T
[
Vx(k− 1) cos(ψ(k− 1))−Vy(k− 1) sin(ψ(k− 1))

]
(23)

Y(k) = Y(k− 1) +

+ T
[
Vx(k− 1) sin(ψ(k− 1)) + Vy(k− 1) cos(ψ(k− 1))

]
(24)

ψ(k) = ψ(k− 1) + T · r(k− 1) (25)

where, as mentioned earlier, X and Y are the position coordinates in the absolute inertial
frame, Ψ is the orientation coordinate also in absolute coordinates, ψ is the orientation
coordinate in the body-frame coordinates, r its rate of change, and Vx, Vy, ax, and ay are
the velocities and accelerations, respectively, in the body-frame coordinates. Moreover, the
different constants that appear in these equations are defined in Appendix A, where their
numerical values are also given to allow the reproducibility of the results. Additionally, let
us denote this global nonlinear dynamic model as the next state-space representation{

ξ(k) = f (ξ(k− 1), n1(k− 1), u(k− 1))
z(k) = h(ξ(k), n2(k))

(26)

where the AGV state ξ(k) is composed of
(
Vx(k), Vy(k), X(k), Y(k), ψ(k), r(k)

)T, the control
signal is u(k − 1) = (ax(k− 1), δ(k− 1))T, the output consists of z(k) = (Vx(k), X(k),
Y(k), ψ(k))T, and n1(k− 1) and n2(k) are process and measurement noises, respectively,
which are both assumed to be zero mean multivariate Gaussian noises with variance
Q̄(k) = 0.01 and R̄(k) = 0.01, respectively.

Assuming that the notation ξ̂(j|i) means the state estimated for the instant jT at the
instant iT, the prediction and correction steps of the DREKF are defined as follows:

• Fast-rate calculations:

– Prediction of the next state ξ̂(k|k− 1) and propagation of the covariance P(k|k−
1). These computations are calculated ∀k:

ξ̂(k|k− 1) = f
(
ξ̂(k− 1|k− 1), n1(k− 1), u(k− 1)

)
P(k|k− 1) = A(k)P(k− 1|k− 1)A(k)T + L(k)Q̄(k− 1)L(k)T (27)

where ξ̂(0) = E[ξ(0)] P(0) = E
[
(ξ(0)− E[ξ(0)])(ξ(0)− E[ξ(0)])T

]
, E[· ] being

the expectation, and where A(k) and L(k) are Jacobian matrices computed in
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order to respectively linearize the process model about the current state and
about the process noise:

Ā(k) =
∂ f
∂ξ

∣∣∣∣
ξ̂(k−1|k−1),n1(k−1),u(k−1)

L(k) =
∂ f
∂n1

∣∣∣∣
ξ̂(k−1|k−1),n1(k−1),u(k−1)

(28)

– State and covariance shifts, for ξ̂(k|k) and P(k|k), respectively. These computa-
tions are calculated when measurements are not provided, that is for k 6= MT:

ξ̂(k|k) = ξ̂(k|k− 1)

P(k|k) = P(k|k− 1)
(29)

• Slow-rate calculations, which are computed when measurements are provided, that is
for k = MT:

– Prediction of the future output ẑ(k):

ẑ(k) = h
(
ξ̂(k|k− 1), n2(k)

)
(30)

– Computation of the Kalman filter gain K(k):

K(k) = P(k|k− 1)H(k)T
(

H(k)P(k|k− 1)H(k)T + M(k)R̄(k)M(k)T
)−1

(31)

where H(k) and M(k) are Jacobian matrices calculated in order to respectively
linearize the output model about the predicted next state and about the measure-
ment noise:

H(k) =
∂h
∂ξ

∣∣∣∣
ξ̂(k|k−1),n2(k)

M(k) =
∂h
∂n2

∣∣∣∣
ξ̂(k|k−1),n2(k)

(32)

– Correction of the state ξ̂(k|k) and correction of the covariance P(k|k):

ξ̂(k|k) = ξ̂(k|k− 1) + K(k)(z(k)− ẑ(k))

P(k|k) = K(k)R̄(k)K(k)T + (I − K(k)H(k))P(k|k− 1)(I − K(k)H(k))T (33)

Finally, it should be mentioned that if M = 1 is assumed, the state and covariance
shifts in (29) are replaced by the corrections in (33), resulting in a (single-rate) EKF.

4. Implementation

In this section, we present the experiments that were performed in order to compare
the two proposed controllers for lane-keeping and justify the appeal of using a DREKF in
this application.

The design choices for the controllers and some simulation details are presented first,
followed by a discussion of the tests’ selection. Afterwards, we introduce the cost indexes
that quantify each controllers’ performance, and we present the results obtained.

4.1. Simulation Details and Design Choices for the Controllers

Simulations were carried out using the vehicle parameters of a 2017 Lincoln MKZ on
a circuit path. The sampling period of the simulated discrete-time plant was assumed to be
T = 0.01 s, which is the same as the fastest acquisition frequency of sensors installed in the
test-bed vehicle.
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The IKIBI-based controller design resulted in Kp = 0.55, and as mentioned earlier,
γ = 1. On the other hand, the LPV model parameters used for the MPC strategy were
obtained from previous research results [31]. Moreover, the convex optimization problem
of the MPC was solved using CVXGEN [38].

Moreover, the prediction and the control horizons in the MPC problem were chosen
to be equal to 10 steps (N = 10), to ensure a small computation time, and the weighting
matrices that penalize the output deviation from its reference and the input were, Q = 1
and R = 0.001, respectively. Since the main goal of this implementation was to obtain
an accurate control, the vehicle’s orientation error was penalized much more heavily
compared to the input signal.

Furthermore, to verify that the low computational complexity of the two controllers
allows a real-time implementation, the calculation time for each controller was computed
throughout the entire trajectory. The results are shown in Figure 2. It can be seen that all
calculations were below the vehicle’s sampling period, which was equal to 10 milliseconds.
The average and standard deviation for the IKIBI and the MPC controllers were equal to
0.003 ± 0.001 milliseconds and 0.637 ± 0.276 milliseconds, respectively. Furthermore, the
slowest execution time recorded was 0.0040 milliseconds for the IKIBI controller and 2.086
milliseconds for the MPC controller.

200 400 600 800 1000 1200 1400 1600

0

1

2

3

4

5

6

7

8

9

10

11

Threshold

Figure 2. Calculation duration throughout the trajectory.

4.2. Performed Tests’ Selection

The performed tests compared the behavior of the two proposed controllers, the IKIBI-
based controller and MPC-based controller. The tests were performed focusing on the
lateral dynamics of the vehicle, and therefore, it was assumed that a longitudinal controller
was able to maintain a constant longitudinal speed throughout the entire trajectory (ax = 0).
The tests were performed using two different longitudinal velocities: 8 and 12 m/s.

The circuit that was used to generate the path references includes abrupt lateral
movements such as a fast double-lane turn and a 180 degree turn. These maneuvers are
so aggressive that when driving the real car through this path, the longitudinal velocity
was as low as 2.5 m/s in the most critical segments. Therefore, using constant longitudinal
velocities of 8 and 12 m/s would allow us to drive close to the vehicle’s dynamic limits.
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Moreover, the most realistic tests would assume that new sensor data would be
obtained every 0.1 seconds, so M = 10. Thus, only in the presence of the DREKF, both
controllers would be able to receive new data every T = 0.01 s. However, if a single rate
EKF (SREKF) were implemented instead of the DREKF, the controllers would have to be
calculated every MT = 0.1 s.

In this last situation, the MPC-based controller was still able to provide a different
control signal every T since M ≤ N, which means that the first M discrete-time control
signals (M = 10) of the control horizon (N = 10) would be used at every controller
calculation. On the contrary, the IKIBI-based controller had to calculate one control signal
every MT in the absence of the DREKF. Finally, both controllers were tested considering
process and measurement noises and also without these noises.

4.3. Cost Indexes Used to Measure Performance

Two different cost indexes were used in order to better quantify and compare each
control solution in each of the tests:

• J1, which is based on the `2-norm, and its goal is to provide a measure of how
accurately the path is followed:

J1 =
l

∑
k=1

min
1≤k′≤l

√
(Xk − Xre f ,k′)2 + (Yk −Yre f ,k′)2 (34)

where l is the number of iterations required by the AGV to reach the final point of the
path, (X, Y)k is the current AGV position, and (Xre f , Yre f )k′ is the nearest kinematic
position reference to the current AGV position.

• J2, which is based on the `∞-norm and is defined to obtain the maximum difference
between the desired path and the current AGV position:

J2 = max
1≤k≤l

{
min

1≤k′≤l

√
(Xk − Xre f ,k′)2 + (Yk −Yre f ,k′)2

}
(35)

5. Results and Discussion

This section shows and discusses the results that were obtained from the different tests.

5.1. Noiseless, Fast Sensor Feedback Test

The first experiment considered the situation where sensor feedback is received every
T (fast sampling rate). Therefore, the controllers can also directly calculate the input signal
(steering angle) every T. Moreover, since it was assumed in this test that there is no
measurement or process noises, there was no need for a filter.

This test was used to compare each of the two controllers that we proposed for this
application. Figures 3–5 show the results. Figure 3 plots the X and Y coordinates of each
simulation, and Figures 4 and 5 show the temporal evolution of the steering angle and the
yaw rate, respectively.

Because of the abruptness of the maneuvers, a degradation of the behavior when
the longitudinal velocity of the vehicle is higher is clearly observed in Figure 3. Such an
aggressive maneuver is handled by each of the controllers in two different ways.

On the one hand, the IKIBI controller simply increases the steering angle in order to
achieve a higher yaw rate. While this may suffice for more moderate maneuvers, in a real
scenario, the front wheel angular position is physically bounded, and therefore, the control
signal calculated with this controller would not be feasible.
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Figure 3. Vehicle path: noiseless, fast sensor feedback test. (left) vx = 8 m/s and (right) vx = 12 m/s.
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Figure 4. Front wheel steering temporal evolution: noiseless, fast sensor feedback test. (left)
vx = 8 m/s and (right) vx = 12 m/s.

The degradation in the lane-following accuracy when the control signal is saturated
for the IKIBI controller with the maximum steering angle of the car can be seen in Figure 3.
Here, the front wheels cannot physically turn more than 0.32 radians. This degradation
becomes more noticeable the more aggressive the maneuver is; here, the higher the longitu-
dinal velocity is.

On the other hand, MPC can explicitly consider in its calculations that the front
wheel steering angle has to be bounded to never violate the physical limitations of the
real vehicle. Moreover, because of the prediction horizon, when the car has to perform an
abrupt maneuver, the MPC anticipates it and starts steering the wheel before the time that
the IKIBI controller does.

As mentioned, Figure 4 shows the front-wheel steering temporal evolution. It can
be seen here how the MPC controller is able to keep the steering angle inside the desired
boundaries, whereas the IKIBI controller will saturate.
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Figure 5. Yaw rate temporal evolution: noiseless, fast sensor feedback test. (left) vx = 8 m/s and
(right) vx = 12 m/s.

Moreover, Figure 5 plots the temporal evolution of the yaw rate throughout the
trajectory. As mentioned earlier, because of the predictive nature of the MPC controller in
a longer term horizon than the IKIBI controller, it is able to anticipate when a big turn is
required and starts steering the vehicle earlier than the other controller analyzed.

As a consequence, the trajectory whose input references were generated by MPC will
be smoother. Moreover, MPC can explicitly control the feeling of comfort experienced by
the vehicle passengers using the expression (14). Since this expression acts by limiting the
yaw rate, the driving experience will be more satisfying when using MPC rather than the
IKIBI controller.

Finally, Table 1 shows the performance cost indexes for each of the controllers in this
fast, noiseless test. It can be seen how, by explicitly considering the physical limitations of
the vehicle such as the maximum front-wheel steering angle over a prediction horizon, the
MPC is able to follow the reference path more accurately than its IKIBI counterpart.

Table 1. Cost indexes: noiseless, fast sensor feedback test.

Controller vx = 8 m/s vx = 12 m/s
J1 (m) J2 (m) J1 (m) J2 (m)

IKIBI 492.13 0.9 2090.2 5.15
IKIBI saturated 667.3 1.88 3036.1 8.39

MPC 561 1.67 1817.2 6.5

5.2. Fast Sensor Feedback Test with Noise Using EKF

Process and measurement noises are present in a real scenario for this lane-keeping
application. Unfortunately, the previous test was observed to turn unstably if these noises
were present. Thus, the use of EKF is justified.

Figure 6 plots the planar coordinates of the trajectories in the case where both of
these noises are present and an EKF is implemented. As mentioned, since using an EKF is
essential to have a stable trajectory, we will not show the unstable results for the tests that
did not consider using the EKF.

The behavior seen in Figure 6 is analogous to the former experiment that did not
consider noises: the behavior degrades when increasing the longitudinal velocity of the
vehicle, and the IKIBI controller is saturated. On the other hand, MPC is still able to control
the system from this velocity.

Table 2 shows a quantitative version of what is graphically presented in Figure 6.
The MPC controller allows a more accurate lane-keeping behavior when compared to the
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proposed IKIBI controller, and this is accentuated the more extreme the situation is: in the
presence of measurement and process noises and with high longitudinal velocities.
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Figure 6. Vehicle path: fast sensor feedback test with noise using EKF. (left) vx = 8 m/s and (right)
vx = 12 m/s.

Table 2. Cost indexes: fast sensor feedback test with noise using EKF.

Controller vx = 8 m/s vx = 12 m/s
J1 (m) J2 (m) J1 (m) J2 (m)

IKIBI saturated 999.4 3.42 3660.9 10.77
MPC 834.3 2.63 1269.5 4.54

5.3. Noiseless, Slow Sensor Feedback Test

Nonetheless, the most relevant situation occurs when sensor measurements are not
updated every T, but they are updated every MT (here, M = 10). In this situation, the
controllers have to be calculated M-times slower than in the previous situations. This test
explores the situation where no EKF is used and there is no measurement or process noise.

For the IKIBI controller, this situation will necessarily involve keeping the control
action constant throughout MT. However, MPC is capable of acting differently. Even
though usually, MPC calculates a control sequence over a whole prediction horizon, but
only the first control action of this sequence is applied, it is also possible to apply the
different control actions of the control horizon if the update rate of the MPC calculations is
not fast enough.

Figure 7 shows the comparison between an IKIBI controller calculated every MT
and an MPC controller that is calculated every MT, but updates its control signal every T
because it uses its entire control horizon.

The disadvantage of this implementation strategy for the MPC controller is that the
anticipation ability of MPC is lost, especially in this application where the control horizon
is equal to the prediction horizon. As a consequence, the lane-keeping behavior degrades,
as seen in Table 3.

However, the MPC strategy is still a more accurate option than the IKIBI controller
because of its ability to explicitly constrain physical variables such as the steering angle of
the front wheels.



Sensors 2021, 21, 1531 13 of 17

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

140

Figure 7. Vehicle path test: noiseless, slow sensor feedback test: (left) vx = 8 m/s and (right) vx = 12 m/s.

Table 3. Cost indexes: noiseless, slow sensor feedback test.

Controller vx = 8 m/s vx = 12 m/s
J1 (m) J2 (m) J1 (m) J2 (m)

IKIBI saturated 800.9 1.91 3039.8 7.49
MPC 613.8 1.69 2026.6 6.86

5.4. Slow Sensor Feedback Test with Noise Using the DREKF

Finally, we also considered the situation where the sensor feedback was obtained at a
slow rate (every MT) and there were process and measurement noises. The initial test per-
formed in these conditions was to analyze the behavior of each of the two controllers when
a Single-Rate EKF (SREKF) was used with a slow sampling frequency. The controllers were
also meant to be calculated every MT. However, neither of the two controller strategies
(MPC and IKIBI) were able to produce a stable lane-keeping behavior in this situation.

Thus, the use of a Dual-Rate EKF (DREKF) is necessary. The DREKF has the ability to
provide new measurements every T while only updating its internal matrices and acquires
measured variables every MT. Figure 8 shows the results for implementing the DREKF
to calculate both controllers every T while only receiving new sensor data every MT.
Moreover, Table 4 shows the cost indexes for this experiment. It can be seen how the
DREKF allows an accurate lane-keeping behavior in situations where only slow and noisy
sensor feedback is available.
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Figure 8. Vehicle path: slow sensor feedback test with noise using the DREKF. (left) vx = 8 m/s
(right) vx = 12 m/s.
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Table 4. Cost indexes: slow sensor feedback test with noise using the DREKF.

Controller vx = 8 m/s vx = 12 m/s
J1 (m) J2 (m) J1 (m) J2 (m)

IKIBI saturated 764.76 1.58 1057.3 4.67
MPC 738 1.3 1040.2 4.75

6. Conclusions

The formulation of the model predictive control problem is especially well suited
for controlling self-driving cars since it is able to take into consideration long prediction
horizons that would be especially important in the event of abrupt maneuvers and in the
presence of measurement and process noise.

Additionally, the physical limitations of the vehicle can be explicitly considered,
and the comfort of the passengers can be directly taken into consideration by using this
control scheme.

For these reasons, MPC provides a more accurate lane-keeping behavior than an
IKIBI control strategy. The difference in the accuracy of each of the two controllers can be
quantified by the cost indexes introduced in Section 4.

The use of EKF has been essential to obtain a stable behavior of the system in this
application when measurement and process noises are present. If the update rate of the
sensor data is fast enough, it will suffice to use a standard EKF, called the SREKF in
this work.

However, if the update rate of the filter’s internal state is too slow, a DREKF should
be used, since it will allow providing new variable estimations every T to the controllers so
that they can be calculated at a fast rate while updating the internal state every MT.

One alternative to the use of a DREKF would be to use all the input sequence of the
control horizon when calculating the MPC controller every MT. Nonetheless, this is a
suboptimal solution since there is a loss of the anticipation ability, which is characteristic
of MPC. Furthermore, this alternative is only feasible when noise is not present, which
happens scarcely in a real application.

Finally, we observe that including a DREKF allows obtaining a degree of lane-keeping
accuracy with a slow and noisy sensor feedback similar to the one obtained for the test where
there was no noise and sensor data were acquired at a fast rate for both proposed controllers.
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Abbreviations
The following abbreviations are used in this manuscript:

MPC Model Predictive Control
IKIBI Inverse Kinematics Bicycle
EKF Extended Kalman Filter
AGV Autonomous Ground Vehicle
LPV Linear Parameter Varying
IMU Inertial Measurement Unit
DOF Degrees of Freedom

Appendix A. Simulation Model

Simulations were performed using MATLAB Simulink’s Vehicle Dynamics Blockset.
This toolbox is equipped with a Vehicle Body 3DOF block that implements a rigid two-
axle vehicle body model to calculate longitudinal, lateral, and yaw motion. The dynamic
equations of the internal model used in this block are [39]:

ÿ = −ẋr +
Fy f + Fyr + Fy,ext

m
(A1)

ṙ =
aFy f − bFyr + Mz,ext

Izz
(A2)

Ψ̇ = r (A3)

where Fy f and Fyr are the lateral forces applied to the front and rear wheels, respectively,
along the vehicle-fixed y-axis. Additionally, the external forces that act on the vehicle center
of gravity are:

Fx/y/z,ext = Fd,x/y/z + Fx/y/z,input (A4)

Mx/y/z,ext = Md,x/y/z + Mx/y/z,input (A5)

where the subindex d indicates that they are drag forces/moments. Then:

Fx f t = 0 (A6)

Fx f t = −Cα f α f µ f
Fz f

Fz,nom
(A7)

Fxrt = 0 (A8)

Fxrt = −Cαrαrµr
Fzr

Fz,nom
(A9)

where the subindex t indicates that the forces are acting on the tires. Here,

Fz f =
bmg− (ẍ− ẏr)mh + hFx,ext + bFz,ext −My,ext

a + b
(A10)

Fzr =
amg + (ẍ− ẏr)mh− hFx,ext + aFz,ext + My,ext

a + b
(A11)
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Moreover, the tire forces can be calculated with the slip angles (α):

α f = arctan
(

ẏ + ar
ẋ

)
− δ f (A12)

αr = arctan
(

ẏ− br
ẋ

)
− δr (A13)

Fx f = Fx f t cos(δ f )− Fy f t sin(δ f ) (A14)

Fy f = −Fx f t sin(δ f ) + Fy f t cos(δ f ) (A15)

Fxr = Fxrt cos(δr)− Fyrt sin(δr) (A16)

Fyr = −Fxrt sin(δr) + Fyrt cos(δr) (A17)

The physical variables needed to calculate these equations are:

• m, the vehicle body mass.
• a and b, the distance of the front and rear wheels, respectively, from the normal

projection point of vehicle’s CG onto the common axle plane.
• Izz, the vehicle body moment of inertia about the vehicle-fixed z-axis.
• Cα, cornering stiffness. This constant represents a linear approximation for the rela-

tionship between the slip angle, α, and the lateral force, Fy.
• µ, the wheel friction coefficient.
• h, the height of the vehicle’s center of gravity above the axle plane.

Furthermore, subscripts f and r refer to the front and rear axles, respectively.
Finally, Table A1 shows the numerical values used for the constants presented earlier.

Table A1. Simulation model constants.

Constant Value Unit

m 1800 kg
a 1.6 m
b 1.65 m

µ f 0.6 -
µr 0.6 -

Cα, f 120 kN/rad
Cα,r 110 kN/rad

h 0.35 m
Izz 3270 kg ·m2
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