
sensors

Article

Generating Datasets for Anomaly-Based Intrusion Detection
Systems in IoT and Industrial IoT Networks

Ismael Essop 1, José C. Ribeiro 2,*, Maria Papaioannou 1,2 , Georgios Zachos 1,2, Georgios Mantas 1,2 and
Jonathan Rodriguez 2,3

����������
�������

Citation: Essop, I.; Ribeiro, J.C.;

Papaioannou, M.; Zachos, G.; Mantas,

G.; Rodriguez, J. Generating Datasets

for Anomaly-Based Intrusion

Detection Systems in IoT and

Industrial IoT Networks. Sensors 2021,

21, 1528. https://doi.org/10.3390/

s21041528

Academic Editor: David Plets

Received: 8 January 2021

Accepted: 18 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK;
i.a.essop@gre.ac.uk (I.E.); m.papaioannou@av.it.pt (M.P.); g.zachos@gre.ac.uk (G.Z.); gimantas@av.it.pt (G.M.)

2 Instituto de Telecomunicações, Aveiro 3810-193, Portugal; jonathan@av.it.pt
3 Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
* Correspondence: jcarlosvgr@av.it.pt

Abstract: Over the past few years, we have witnessed the emergence of Internet of Things (IoT) and
Industrial IoT networks that bring significant benefits to citizens, society, and industry. However, their
heterogeneous and resource-constrained nature makes them vulnerable to a wide range of threats.
Therefore, there is an urgent need for novel security mechanisms such as accurate and efficient
anomaly-based intrusion detection systems (AIDSs) to be developed before these networks reach
their full potential. Nevertheless, there is a lack of up-to-date, representative, and well-structured
IoT/IIoT-specific datasets which are publicly available and constitute benchmark datasets for training
and evaluating machine learning models used in AIDSs for IoT/IIoT networks. Contribution to
filling this research gap is the main target of our recent research work and thus, we focus on the
generation of new labelled IoT/IIoT-specific datasets by utilising the Cooja simulator. To the best of
our knowledge, this is the first time that the Cooja simulator is used, in a systematic way, to generate
comprehensive IoT/IIoT datasets. In this paper, we present the approach that we followed to generate
an initial set of benign and malicious IoT/IIoT datasets. The generated IIoT-specific information was
captured from the Contiki plugin “powertrace” and the Cooja tool “Radio messages”.

Keywords: IoT; Industrial IoT; benign datasets generation; malicious datasets generation; Cooja sim-
ulator; Contiki OS; anomaly-based intrusion detection

1. Introduction

Despite the significant benefits that IoT and Industrial IoT (IIoT) networks bring to
citizens, society, and industry, the fact that these networks incorporate a wide range of
different communication technologies (e.g., WLANs, Bluetooth, and Zigbee) and types of
nodes/devices (e.g., temperature/humidity sensors), which are vulnerable to various types
of security threats, raises many security and privacy challenges in IoT/IIoT-based systems.
For instance, attackers may compromise IoT/IIoT networks in order to manipulate sensing
data (e.g., by injecting fake data) and cause malfunction to the IoT/IIoT-based systems that
rely on the compromised IoT/IIoT networks. It is worthwhile to mention that IoT/IIoT
networks can become an attractive target of attackers with a wide spectrum of motivations
ranging from criminal intents aimed at financial gain to industrial espionage and cyber-
sabotage. Therefore, security solutions protecting IoT/IIoT networks from attackers are
critical for the acceptance and wide adoption of such networks in the coming next years.
Nevertheless, the high resource requirements of complex and heavyweight conventional
security mechanisms cannot be afforded by (i) the resource-constrained IoT/IIoT nodes
(e.g., sensors) with limited processing power, storage capacity, and battery life; and/or (ii)
the constrained environment in which the nodes are deployed and interconnected using
lightweight communication protocols. Consequently, there is an urgent need for novel secu-
rity mechanisms, such as accurate and efficient anomaly-based intrusion detection systems

Sensors 2021, 21, 1528. https://doi.org/10.3390/s21041528 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3830-7190
https://doi.org/10.3390/s21041528
https://doi.org/10.3390/s21041528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041528
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1528?type=check_update&version=2

Sensors 2021, 21, 1528 2 of 31

(AIDSs) tailored to the resource-constrained characteristics of IoT/IIoT networks, to be
developed in order to address the pressing security challenges of IoT/IIoT networks with
reasonable cost, in terms of processing and energy, before IoT/IIoT networks gain the trust
of all involved stakeholders and reach their full potential in the market [1–3]. However,
there is a lack of up-to-date, representative and well-structured IoT/IIoT-specific datasets
that are publicly available to the research community and constitute benchmark datasets
for training and evaluating machine learning (ML) models used in AIDSs for IoT/IIoT net-
works [4,5]. This lack of benchmark IoT/IIoT datasets constitutes a significant research gap
that should be addressed in order to develop more accurate and efficient IoT/IIoT-specific
AIDS whose effectiveness is evaluated based on their performance to detect IoT/IIoT
attacks which is a process reliant on comprehensive IoT/IIoT-specific datasets.

In fact, although several datasets, such as KDDCUP99 [6], NSL-KDD [7], UNSW-
NB15 [8], and CICD2017 [9] have been created over the past two decades for evaluation
purposes of network-based intrusion detection systems (IDSs), they do not include any
specific characteristics of IoT/IIoT networks as these datasets do not contain sensors’
reading data or IoT/IIoT network traffic [4,5]. To respond to this major issue, few efforts
focused on the generation of IoT-specific datasets have also been seen in the literature
recently. However, they are characterised by some limitations in terms of the IoT-specific
information they include. For instance, the datasets proposed in [10,11] are IoT-specific
datasets but they lack of events reflecting attack scenarios. To address this limitation, the
IoT-specific and network-related datasets proposed in [12,13] contain events reflecting
attack scenarios; however, they do not cover a diverse set of attack scenarios and do not
include sensors’ reading data or information related to the behaviour of the IoT/IIoT
devices (e.g., sensors/actuators) within the network. Therefore, these IoT datasets can
mainly be used for detecting only a limited number of network-based attacks against
IoT/IIoT networks as they do not contain adequate information for detecting a wide range
of network-based attacks and/or attacks that manipulate sensor measurement data or
compromise IoT/IIoT devices within the IoT/IIoT network.

Consequently, there is an urgent need for comprehensive IoT/IIoT-specific datasets
containing not only network-related information (e.g., packet-level information and flow-
level information) but also events reflecting multiple benign and attack scenarios from
current IoT/IIoT network environments, sensor measurement data, and information re-
lated to the behaviour of the IoT/IIoT devices deployed within the IoT/IIoT network for
efficient and effective training and evaluation of AIDSs suitable for IoT/IIoT networks.
Towards this direction, the recent work of [4] has proposed, for the first time, to the best
of our knowledge, a new dataset that includes events of a variety of IoT-related attacks
and legitimate scenarios, IoT telemetry data collected from heterogeneous IoT/IIoT data
sources, network traffic of IoT/IIoT network, and audit traces of operating systems [4].
Therefore, it is clear that more comprehensive IoT/IIoT-specific datasets including events
reflecting multiple benign and attack scenarios, sensor measurement data, network-related
information, and information related to the behaviour of the IoT/IIoT devices are required
to be generated and become publicly available to the research community so as to fill this
significant research gap of lack of benchmark IoT/IIoT datasets and more accurate and
efficient IoT/IIoT-specific AIDS to be developed.

Contribution to filling this research gap is the main target of our recent research
work. In particular, our focus is on the generation of new labelled IoT/IIoT datasets that
will be publicly available to the research community and include: (a) events reflecting
multiple benign and attack scenarios from current IoT/IIoT network environments, (b)
sensor measurement data, (c) network-related information (e.g., packet-level information
and flow-level information) from the IoT/IIoT network, and (d) information related to the
behaviour of the IoT/IIoT devices deployed within the IoT/IIoT network. It is worthwhile
to mention that the new labelled IoT/IIoT datasets are generated by implementing various
benign IoT/IIoT network scenarios and IoT/IIoT network attack scenarios in the Cooja
simulator which is the companion network simulator of the open source Contiki Operating

Sensors 2021, 21, 1528 3 of 31

System (OS) that is one of the most popular OSs for resource constrained IoT devices [14].
To the best of our knowledge, this is the first time that the Cooja simulator is going to be
used, in a systematic way, to generate comprehensive IoT/IIoT datasets. In this paper, we
present the approach that we followed to generate an initial set of benign IoT/IIoT datasets
(i.e., including only normal events) and malicious IoT/IIoT datasets (i.e., including attack
and normal events) by utilising the Cooja simulator that was the simulation environment
where the corresponding benign and attack scenarios were implemented.

The rest of this paper is organised as follows. In Section 2, the main threats against
the IoT/IIoT network (i.e., perception domain) are presented and in Section 3, examples
of anomaly-based intrusion detection systems for IoT/IIoT networks are discussed. In
Section 4, a detailed description of the approach followed to generate a set of benign
datasets by implementing a benign IIoT network scenario in the Cooja simulator is provided.
In Section 5, a detailed description of the approach followed to generate a set of malicious
datasets by implementing a User Datagram Protocol (UDP) flooding attack scenario in the
Cooja is provided as well. In Section 6, a discussion on the generated datasets is given.
Finally, Section 7 concludes this paper.

2. Threat Analysis of the IoT/IIoT Network (Perception Domain)

The perception domain, as shown in Figure 1, can be perceived as the device layer in
the ITU-T reference model [15]. As the main purpose of the perception domain is to gather
data, the security challenges in this domain target to forge collected IoT/IIoT data and
damage perception devices, as presented below.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 32

[14]. To the best of our knowledge, this is the first time that the Cooja simulator is going

to be used, in a systematic way, to generate comprehensive IoT/IIoT datasets. In this pa-

per, we present the approach that we followed to generate an initial set of benign IoT/IIoT

datasets (i.e., including only normal events) and malicious IoT/IIoT datasets (i.e., includ-

ing attack and normal events) by utilising the Cooja simulator that was the simulation

environment where the corresponding benign and attack scenarios were implemented.

The rest of this paper is organised as follows. In Section 2, the main threats against

the IoT/IIoT network (i.e., perception domain) are presented and in Section 3, examples of

anomaly-based intrusion detection systems for IoT/IIoT networks are discussed. In Sec-

tion 4, a detailed description of the approach followed to generate a set of benign datasets

by implementing a benign IIoT network scenario in the Cooja simulator is provided. In

Section 5, a detailed description of the approach followed to generate a set of malicious

datasets by implementing a User Datagram Protocol (UDP) flooding attack scenario in the

Cooja is provided as well. In Section 6, a discussion on the generated datasets is given.

Finally, Section 7 concludes this paper.

2. Threat Analysis of the IoT/IIoT Network (Perception Domain)

The perception domain, as shown in Figure 1, can be perceived as the device layer in

the ITU-T reference model [15]. As the main purpose of the perception domain is to gather

data, the security challenges in this domain target to forge collected IoT/IIoT data and

damage perception devices, as presented below.

Figure 1. IoT/IIoT Network (Perception Domain).

2.1. Sinkhole Attacks

In this type of attacks, a compromised IoT/IIoT node (i.e., IoT/IIoT gateway [16]) in

the perception domain proclaims very appealing capabilities of power, computation and

communication [17] so that nearby nodes (i.e., IoT/IIoT sensors) will choose it as the for-

warding node in the routing process due to its very attractive capabilities. As a conse-

quence, the compromised IoT/IIoT node can increase the amount of data obtained before

it is delivered to the cloud domain of the IoT-based monitoring system. Therefore, a sink-

hole attack can not only compromise the confidentiality of the manufacturing data but

also can comprise an initial step to launch additional attacks such as DoS/DDoS attacks

[17], [18].

2.2. Node Capture Attacks

In this type of attack, the adversary is able to extract important information about the

captured node, such as the group communication key, radio key, etc. [17]. Additionally,

the adversary can copy the important information related to the captured node to a mali-

cious node, and afterwards fake the malicious node as a legitimate node to connect to the

IoT/IIoT network (i.e., perception domain). This type of attack is also known as node clon-

ing/replication attack [17], [19]. This attack may lead to compromising the security of the

complete IoT/IIoT-based monitoring system.

Figure 1. IoT/IIoT Network (Perception Domain).

2.1. Sinkhole Attacks

In this type of attacks, a compromised IoT/IIoT node (i.e., IoT/IIoT gateway [16])
in the perception domain proclaims very appealing capabilities of power, computation
and communication [17] so that nearby nodes (i.e., IoT/IIoT sensors) will choose it as
the forwarding node in the routing process due to its very attractive capabilities. As a
consequence, the compromised IoT/IIoT node can increase the amount of data obtained
before it is delivered to the cloud domain of the IoT-based monitoring system. Therefore,
a sinkhole attack can not only compromise the confidentiality of the manufacturing data
but also can comprise an initial step to launch additional attacks such as DoS/DDoS
attacks [17,18].

2.2. Node Capture Attacks

In this type of attack, the adversary is able to extract important information about the
captured node, such as the group communication key, radio key, etc. [17]. Additionally, the
adversary can copy the important information related to the captured node to a malicious
node, and afterwards fake the malicious node as a legitimate node to connect to the

Sensors 2021, 21, 1528 4 of 31

IoT/IIoT network (i.e., perception domain). This type of attack is also known as node
cloning/replication attack [17,19]. This attack may lead to compromising the security of
the complete IoT/IIoT-based monitoring system.

2.3. Malicious Code Injection Attacks

An attacker can take control of an IoT/IIoT node or device in the perception domain
by exploiting its security vulnerabilities in software and hardware and injecting malicious
code into its memory. Afterwards, using the malicious code, the attacker can force the node
or device to perform unintended operations. For example, the infected IoT/IIoT node(s)
or device(s) can be used as a bot(s) to launch further attacks (e.g., DoS and DDoS) against
other devices or nodes within the perception domain or even against the other domains
(i.e., Network domain and Cloud domain). In addition, the attacker can use the injected
malicious code in the infected device or node to get access into the IoT/IIoT-based system
and/or get full control of the system [19].

2.4. False Data Injection Attacks

After capturing an IoT/IIoT node or device in the perception domain, the adversary
can inject false data in place of benign data measured by the captured IoT/IIoT node or
device and transmit the false data to the Cloud domain [17]. Thereafter, receiving the false
data, the IoT/IIoT-based system may provide wrong services, which further negatively
impacts the effectiveness of system itself.

2.5. Replay Attacks

In the perception domain, the attacker can use a malicious IoT/IIoT node or device
to transmit to the destination host (i.e., IoT/IIoT gateway) with legitimate identification
information, already received by the destination host, so that the malicious node or device
can become a trusted node/device to the destination host [17]. Replay attacks are commonly
launched in authentication process to destroy the validity of certification.

2.6. Eavesdropping

As the IoT/IIoT nodes and devices in perception domain communicate via wireless
networks, an attacker (i.e., eavesdropper) can retrieve sensitive manufacturing data by
overhearing the wireless transmission. For instance, an adversary within the perception
domain can eavesdrop exchanged information by tracking wireless communications and
reading the contents of the transmitted packages [17]. The eavesdropper can passively
intercept the wireless communication between a sensor (e.g., environment industrial
sensors or sensors on the machine resources) and the IoT/IIoT gateway, and extract
confidential data (e.g., through traffic analysis) in order to maliciously use them.

2.7. Sleep Deprivation Attacks or Denial of Sleep Attacks

These attacks target to drain the battery of the resource constrained IoT/IIoT devices
of the perception domain. In principle, the IoT/IIoT devices in the perception domain are
usually programmed to follow a sleep routine when they are inactive in order to reduce
the power consumption and extend their life cycle. However, an adversary may break
the programmed sleep routines and keep the IoT/IIoT devices of the perception domain
continuously active until they are shut down due to a drained battery. Attackers can
achieve this by running infinite loops in these devices using malicious code or by artificially
increasing their power consumption [20].

2.8. Sybil Attacks

In a sybil attack, a malicious or sybil node or device can illegitimately claim multiple
identities, allowing it to impersonate them within the perception domain. For instance, the
malicious node can achieve to connect with several other devices in order to maximise its
influence and even deceive the complete system to draw incorrect conclusions [21].

Sensors 2021, 21, 1528 5 of 31

2.9. Denial of Service (DoS) Attacks

The main target of these attacks is to deplete resources of the perception domain
in order to make the whole IoT/IIoT network or specific nodes (e.g., machine or/and
environment resources) or devices (e.g., IoT/IIoT gateway) unavailable. For instance,
jamming attacks are a type of DoS attacks where an attacker transmits a high-range
signal to overload the communication channel between two communicating entities and
disrupt their communication. Within the perception domain of the IoT/IIoT-based system,
jamming attacks can disrupt the communication between the IoT/IIoT sensors and the
Gateway in order to prevent data from being transmitted to the Gateway, leading to
malfunctions in the provided services to the authorised users. Jamming attacks can be
performed by passively listening to the wireless medium so as to broadcast on the same
frequency band as the legitimate transmitting signal. Finally, distributed denial of service
(DDoS) attacks are a large-scale variant of DoS attacks and in the case of the perception
domain an example of DDoS attack is when a large number of nodes (e.g., IoT/IIoT sensors)
are compromised so as to flood the Gateway with a lot of transmitted data/requests and
render it unavailable or disrupt its normal operations [22,23].

3. Anomaly-Based Intrusion Detection Systems for IoT/IIoT Networks

In this Section, two examples of anomaly-based intrusion detection systems for
IoT/IIoT networks are discussed. Moustafa et al. in [24] proposed an ensemble net-
work intrusion detection technique which utilises established statistical flow features. The
goal is to mitigate malicious events, and more specifically botnet attacks against DNS,
HTTP and MQTT protocols that are employed in IoT networks. The first step of their work
revolves around the deep analysis of the TCP/IP model and the subsequent extraction of a
set of features from the network traffic protocols MQTT, HTTP, and DNS protocols. The
Bro-IDS tool is used by the authors for basic features while they also employ, in parallel,
their own extractor module to generate additional statistical features of the transactional
flows. Consequently, features are filtered and only the most important ones are selected in
order to simplify the NIDS and decrease its computational cost. In this step, the authors
utilise the correlation coefficient on result features as a means of features selection. Lastly,
an AdaBoost ensemble learning method is developed to detect the attacks. The method
is based on the combination of three different Machine Learning (ML) algorithms; deci-
sion tree (DT), Naive Bayes (NB), and artificial neural network (ANN) algorithms. These
classification techniques were chosen mainly due to the core entropy measure that was
calculated from the feature vectors. The AdaBoost (Adaptive Boosting) method improves
the performance of the detection in comparison to using each machine learning algorithm
separately. In case of small differences of the feature vectors, an error function is employed.
The importance of the error function lies in computing the error value for each instance of
the distributed input data. Based on this error value, it is possible to understand and evalu-
ate which learners are best suited to classify each instance. The experiments results show
that the ensemble technique achieved a high detection rate (95.25%–99.86%) and a low false
positive rate (between 0.01% and 0.72%) compared to existing state-of-the-art techniques.
The authors employed the UNSWNB15 and NIMS botnet datasets with simulated IoT
sensor data to support their findings.

Furthermore, a multi-layer perceptron (MLP), which is a type of supervised artificial
neural network [25]), is used in an offline IDS for IoT networks [26]. The ANN consists
of 3 layers and each of the hidden and output layers’ neurons use a unipolar sigmoid
transfer function to transform their input values to a specific output value. The network
was trained using a stochastic learning algorithm with mean square error function. The
training process included both feed-forward and backward training algorithms. To perform
its task, the ANN analyses the Internet packet traces and attempts to detect DoS and DDoS
attacks in IoT network. In order to evaluate the IoT IDS, an experimental architecture was
created with four client nodes and a server relay node. The server node was subjected not
only to DOS attacks from a single host with more than 10 million UDP packets sent but

Sensors 2021, 21, 1528 6 of 31

also to DDoS attacks from three hosts each sending over 10 million UDP packets at wire
speed. The results of their simulations showed a detection accuracy of 99.4% and 0.6% false
positive rate. The authors used a training dataset consisting of a total of 2313 samples, 496
of them deployed for validation and 496 of them for testing [5].

4. Generation of Benign IoT/IIoT Datasets

In this Section, we provide a detailed description of the approach followed to generate
a set of benign datasets by implementing a benign IoT/IIoT network scenario in the Cooja
simulator, as shown in Figure 2. The generated IoT/IIoT-specific information from the
simulated scenario was captured from the Contiki plugin “powertrace” (i.e., features such
as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic features) in
order to generate the “powertrace” dataset and the network traffic dataset for the simulated
benign IoT/IIoT network scenario.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 32

4. Generation of Benign IoT/IIoT Datasets

In this Section, we provide a detailed description of the approach followed to gener-

ate a set of benign datasets by implementing a benign IoT/IIoT network scenario in the

Cooja simulator, as shown in Figure 2. The generated IoT/IIoT-specific information from

the simulated scenario was captured from the Contiki plugin “powertrace” (i.e., features

such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic fea-

tures) in order to generate the “powertrace” dataset and the network traffic dataset for the

simulated benign IoT/IIoT network scenario.

Figure 2. Benign datasets generation by utilizing the Cooja simulator.

The network topology of the simulated benign IoT/IIoT network scenario in the Cooja

simulator environment consists of 5 yellow UDP-client motes (i.e., motes 2, 3, 4, 5, and 6)

and the green UDP-server mote (i.e., mote 1), as depicted in Figure 2. The simulation du-

ration was set to 60 mins and the motes’ outputs were printed out in the respective win-

dow (e.g., Mote output) while simulations run, as shown in Figure 3. In addition, the yel-

low UDP-client motes were configured to send text messages every 10 seconds, approxi-

mately, to the green UDP-sever mote that was configured to provide a corresponding re-

sponse. The UDP protocol was used at the Transport Layer and the IPv6 at the network

layer. Moreover, the type of motes used in this scenario was the Tmote Sky that is an ultra-

low power wireless module for use in sensor networks, monitoring applications, and

rapid application prototyping. In addition, Tmote Sky motes leverage industry standards

such as USB and IEEE 802.15.4 to interoperate seamlessly with other devices. By using

industry standards, integrating humidity, temperature, and light sensors, and providing

flexible interconnection with peripherals, Tmote Sky motes enable several mesh network

applications [27].

Figure 2. Benign datasets generation by utilizing the Cooja simulator.

The network topology of the simulated benign IoT/IIoT network scenario in the Cooja
simulator environment consists of 5 yellow UDP-client motes (i.e., motes 2, 3, 4, 5 and 6)
and the green UDP-server mote (i.e., mote 1), as depicted in Figure 2. The simulation
duration was set to 60 min and the motes’ outputs were printed out in the respective
window (e.g., Mote output) while simulations run, as shown in Figure 3. In addition, the
yellow UDP-client motes were configured to send text messages every 10 s, approximately,
to the green UDP-sever mote that was configured to provide a corresponding response.
The UDP protocol was used at the Transport Layer and the IPv6 at the network layer.
Moreover, the type of motes used in this scenario was the Tmote Sky that is an ultra-
low power wireless module for use in sensor networks, monitoring applications, and
rapid application prototyping. In addition, Tmote Sky motes leverage industry standards
such as USB and IEEE 802.15.4 to interoperate seamlessly with other devices. By using
industry standards, integrating humidity, temperature, and light sensors, and providing
flexible interconnection with peripherals, Tmote Sky motes enable several mesh network
applications [27].

Sensors 2021, 21, 1528 7 of 31

Sensors 2020, 20, x FOR PEER REVIEW 7 of 32

Figure 3. Cooja Simulator—motes’ outputs.

4.1. Benign “powertrace” Dataset Generation

4.1.1. Benign “powertrace” Dataset Generation

The “powertrace” dataset includes information about features such as total CPU en-

ergy consumption and low power mode (LPM) energy consumption. In fact, it is the da-

taset of the simulated benign IIoT network scenario that includes records about infor-

mation related to the energy consumption of the IIoT devices (i.e., motes) deployed within

the simulated IIoT network. To enable the “powertrace” plugin and generate the “power-

trace” dataset, we programmed the motes of the benign IIoT network to make use of the

“powertrace” plugin for collecting “powertrace” related features every 2 seconds. In par-

ticular, we included the “powertrace.h” library into the code of each mote (i.e. #include

“powertrace.h”), as shown in Figure 4, and defined to start powertracing, once every 2

seconds, in the code of each mote as shown in Figure 5.

Figure 4. “powertrace.h” library in the mote code.

Figure 5. Powertracing Begin.

More precisely, the “powertrace” plugin captured raw information, every 2 seconds,

about the set of features summarised in Table 1. In particular, the “powertrace” plugin

tracks the duration (i.e., number of cpu ticks) of activities of a mote being in each power

state. Particularly, the outputs demonstrate the fraction of time in which a mote remains

for a given power state. There are the following six power states: i) cpu; ii) lpm; iii) trans-

mit; iv) listen; v) idle_transmit; and vi) idle_listen, as shown in Table 1. These are meas-

ured with a hardware timer (i.e., clock frequency is defined in RTIMER_SECOND or

32,768 Hz for XM1000).

Figure 3. Cooja Simulator—motes’ outputs.

4.1. Benign “Powertrace” Dataset Generation
4.1.1. Benign “Powertrace” Dataset Generation

The “powertrace” dataset includes information about features such as total CPU
energy consumption and low power mode (LPM) energy consumption. In fact, it is
the dataset of the simulated benign IIoT network scenario that includes records about
information related to the energy consumption of the IIoT devices (i.e., motes) deployed
within the simulated IIoT network. To enable the “powertrace” plugin and generate the
“powertrace” dataset, we programmed the motes of the benign IIoT network to make
use of the “powertrace” plugin for collecting “powertrace” related features every 2 s. In
particular, we included the “powertrace.h” library into the code of each mote (i.e., #include
“powertrace.h”), as shown in Figure 4, and defined to start powertracing, once every 2 s, in
the code of each mote as shown in Figure 5.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 32

Figure 3. Cooja Simulator—motes’ outputs.

4.1. Benign “powertrace” Dataset Generation

4.1.1. Benign “powertrace” Dataset Generation

The “powertrace” dataset includes information about features such as total CPU en-

ergy consumption and low power mode (LPM) energy consumption. In fact, it is the da-

taset of the simulated benign IIoT network scenario that includes records about infor-

mation related to the energy consumption of the IIoT devices (i.e., motes) deployed within

the simulated IIoT network. To enable the “powertrace” plugin and generate the “power-

trace” dataset, we programmed the motes of the benign IIoT network to make use of the

“powertrace” plugin for collecting “powertrace” related features every 2 seconds. In par-

ticular, we included the “powertrace.h” library into the code of each mote (i.e. #include

“powertrace.h”), as shown in Figure 4, and defined to start powertracing, once every 2

seconds, in the code of each mote as shown in Figure 5.

Figure 4. “powertrace.h” library in the mote code.

Figure 5. Powertracing Begin.

More precisely, the “powertrace” plugin captured raw information, every 2 seconds,

about the set of features summarised in Table 1. In particular, the “powertrace” plugin

tracks the duration (i.e., number of cpu ticks) of activities of a mote being in each power

state. Particularly, the outputs demonstrate the fraction of time in which a mote remains

for a given power state. There are the following six power states: i) cpu; ii) lpm; iii) trans-

mit; iv) listen; v) idle_transmit; and vi) idle_listen, as shown in Table 1. These are meas-

ured with a hardware timer (i.e., clock frequency is defined in RTIMER_SECOND or

32,768 Hz for XM1000).

Figure 4. “powertrace.h” library in the mote code.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 32

Figure 3. Cooja Simulator—motes’ outputs.

4.1. Benign “powertrace” Dataset Generation

4.1.1. Benign “powertrace” Dataset Generation

The “powertrace” dataset includes information about features such as total CPU en-

ergy consumption and low power mode (LPM) energy consumption. In fact, it is the da-

taset of the simulated benign IIoT network scenario that includes records about infor-

mation related to the energy consumption of the IIoT devices (i.e., motes) deployed within

the simulated IIoT network. To enable the “powertrace” plugin and generate the “power-

trace” dataset, we programmed the motes of the benign IIoT network to make use of the

“powertrace” plugin for collecting “powertrace” related features every 2 seconds. In par-

ticular, we included the “powertrace.h” library into the code of each mote (i.e. #include

“powertrace.h”), as shown in Figure 4, and defined to start powertracing, once every 2

seconds, in the code of each mote as shown in Figure 5.

Figure 4. “powertrace.h” library in the mote code.

Figure 5. Powertracing Begin.

More precisely, the “powertrace” plugin captured raw information, every 2 seconds,

about the set of features summarised in Table 1. In particular, the “powertrace” plugin

tracks the duration (i.e., number of cpu ticks) of activities of a mote being in each power

state. Particularly, the outputs demonstrate the fraction of time in which a mote remains

for a given power state. There are the following six power states: i) cpu; ii) lpm; iii) trans-

mit; iv) listen; v) idle_transmit; and vi) idle_listen, as shown in Table 1. These are meas-

ured with a hardware timer (i.e., clock frequency is defined in RTIMER_SECOND or

32,768 Hz for XM1000).

Figure 5. Powertracing Begin.

Sensors 2021, 21, 1528 8 of 31

More precisely, the “powertrace” plugin captured raw information, every 2 s, about
the set of features summarised in Table 1. In particular, the “powertrace” plugin tracks
the duration (i.e., number of cpu ticks) of activities of a mote being in each power state.
Particularly, the outputs demonstrate the fraction of time in which a mote remains for a
given power state. There are the following six power states: (i) cpu; (ii) lpm; (iii) transmit;
(iv) listen; (v) idle_transmit; and (vi) idle_listen, as shown in Table 1. These are measured
with a hardware timer (i.e., clock frequency is defined in RTIMER_SECOND or 32,768 Hz
for XM1000).

Table 1. “powertrace” plugin—Set of Captured Features.

Index Feature Description

1 sim time simulation time

2 clock_time() clock time (i.e.,by default, 128 ticks/second)

3 ID Mote ID

4 P label

5 rimeaddr rime address

6 seqno sequence number

7 all_cpu accumulated CPU energy consumption

8 all_lpm accumulated Low Power Mode energy consumption

9 all_transmit accumulated transmission energy consumption

10 all_listen accumulated listen energy consumption

11 all_idle_transmit accumulated idle transmission energy consumption

12 all_idle_listen accumulated idle listen energy consumption

13 cpu CPU energy consumption for this cycle

14 lpm LPM energy consumption for this cycle

15 transmit transmission energy consumption for this cycle

16 listen listen energy consumption for this cycle

17 idle_transmit idle transmission energy consumption for this cycle

18 idle_listen idle listen energy consumption for this cycle

In Figure 6, the depicted Mote output window displays the captured “powertrace” in-
formation every 2 s and also the messages sent and received by each mote (printouts/printf
messages from each mote).

Sensors 2020, 20, x FOR PEER REVIEW 9 of 32

Figure 6. Cooja Simulator—Mote output window.

Furthermore, the Simulation script editor, shown in Figure 7, is a Cooja tool used to

display messages and set a timer on the simulation. As shown in Figure 7, the upper part

of the Simulation script editor was used to create scripts and the lower part to show the

captured “powertrace” information and the printouts (i.e., printf messages) from the

motes until the timeout occurs. In our implementation, we considered the simulation du-

ration to be 60 mins and thus, the timeout was set at 3,600,000 ms. When the timeout oc-

curred, the simulation stopped, and all the captured information and prints were stored

in the log file named “COOJA.testlog”.

Figure 7. Simulation script editor.

Having collected all the captured raw information from the “powertrace” plugin in

the “COOJA.testlog” file, the challenging task was to extract this information from the

“COOJA.testlog” file to a csv file that would be the “powertrace” dataset of the simulated

benign IIoT network scenario including records about the energy consumption of the

motes. To address this challenge, we developed the “IoT_Simul.sh” bash file in order to

extract all the required “powertrace” information from the “COOJA.testlog” file to the

“pwrtrace.csv” file. An extract of the “IoT_Simul.sh” bash file is shown in Figure 8.

Figure 6. Cooja Simulator—Mote output window.

Sensors 2021, 21, 1528 9 of 31

Furthermore, the Simulation script editor, shown in Figure 7, is a Cooja tool used to
display messages and set a timer on the simulation. As shown in Figure 7, the upper part
of the Simulation script editor was used to create scripts and the lower part to show the
captured “powertrace” information and the printouts (i.e., printf messages) from the motes
until the timeout occurs. In our implementation, we considered the simulation duration to
be 60 min and thus, the timeout was set at 3,600,000 ms. When the timeout occurred, the
simulation stopped, and all the captured information and prints were stored in the log file
named “COOJA.testlog”.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 32

Figure 6. Cooja Simulator—Mote output window.

Furthermore, the Simulation script editor, shown in Figure 7, is a Cooja tool used to

display messages and set a timer on the simulation. As shown in Figure 7, the upper part

of the Simulation script editor was used to create scripts and the lower part to show the

captured “powertrace” information and the printouts (i.e., printf messages) from the

motes until the timeout occurs. In our implementation, we considered the simulation du-

ration to be 60 mins and thus, the timeout was set at 3,600,000 ms. When the timeout oc-

curred, the simulation stopped, and all the captured information and prints were stored

in the log file named “COOJA.testlog”.

Figure 7. Simulation script editor.

Having collected all the captured raw information from the “powertrace” plugin in

the “COOJA.testlog” file, the challenging task was to extract this information from the

“COOJA.testlog” file to a csv file that would be the “powertrace” dataset of the simulated

benign IIoT network scenario including records about the energy consumption of the

motes. To address this challenge, we developed the “IoT_Simul.sh” bash file in order to

extract all the required “powertrace” information from the “COOJA.testlog” file to the

“pwrtrace.csv” file. An extract of the “IoT_Simul.sh” bash file is shown in Figure 8.

Figure 7. Simulation script editor.

Having collected all the captured raw information from the “powertrace” plugin in
the “COOJA.testlog” file, the challenging task was to extract this information from the
“COOJA.testlog” file to a csv file that would be the “powertrace” dataset of the simulated
benign IIoT network scenario including records about the energy consumption of the motes.
To address this challenge, we developed the “IoT_Simul.sh” bash file in order to extract all
the required “powertrace” information from the “COOJA.testlog” file to the “pwrtrace.csv”
file. An extract of the “IoT_Simul.sh” bash file is shown in Figure 8.

Sensors 2021, 21, 1528 10 of 31

Sensors 2020, 20, x FOR PEER REVIEW 10 of 32

Figure 8. Extract of the “IoT_Simul.sh” bash file.

Initially, the “IoT_Simul.sh” file created the root folder which was named with the

simulation date and time (i.e., “2020-11-19-17-45-22” folder), as shown below in the left

part of Figure 9. Afterwards, the bash file created the “log” folder, inside the “2020-11-19-

17-45-22” folder, where the “COOJA.testlog” file was copied from the “…/cooja/build”

folder located in the Cooja Simulator environment.

In addition, in the “IoT_Simul.sh” file, we used the Linux tool “grep” in order to

extract the required “powertrace” information by selecting the label “P” in each power-

trace row (i.e., grep " P " log/COOJA.testlog >> dataset/pwrtrace.csv) from the

“COOJA.testlog” file and save it in the “pwrtrace.csv” file in the “dataset” folder that was

created by the batch file inside the “2020-11-19-17-45-22” folder, as shown in the left part

of Figure 9. In the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh”

file generated two more files, based on the information included in the “COOJA.testlog”

file, as shown in Figure 9; the “recv.csv” file and the “send.csv” file that include the “re-

ceived” and “sent”messages printed by the motes, respectively.

Figure 9. Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” file .

Finally, the “IoT_Simul.sh” file extracted the information related to each mote, from

the “pwrtrace.csv” file, and generated one csv file for each mote with the corresponding

information from the “pwrtrace.csv” file. The generated 6 csv files (i.e., mote1.csv,

mote2.csv, mote3.csv, mote4.csv, mote5.csv, mote6.csv) were stored in the “motedata”

folder. The “motedata” folder was also created by the “IoT_Simul.sh” file inside the “2020-

11-19-17-45-22” folder.

An overview of the above mentioned process followed to extract the required infor-

mation from the “COOJA.testlog” file to the “pwrtrace.csv”, “recv.csv”, and “send.csv”,

“mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files

are depicted in the Figure 10.

Figure 8. Extract of the “IoT_Simul.sh” bash file.

Initially, the “IoT_Simul.sh” file created the root folder which was named with the
simulation date and time (i.e., “2020-11-19-17-45-22” folder), as shown below in the left
part of Figure 9. Afterwards, the bash file created the “log” folder, inside the “2020-11-19-
17-45-22” folder, where the “COOJA.testlog” file was copied from the “ . . . /cooja/build”
folder located in the Cooja Simulator environment.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 32

Figure 8. Extract of the “IoT_Simul.sh” bash file.

Initially, the “IoT_Simul.sh” file created the root folder which was named with the

simulation date and time (i.e., “2020-11-19-17-45-22” folder), as shown below in the left

part of Figure 9. Afterwards, the bash file created the “log” folder, inside the “2020-11-19-

17-45-22” folder, where the “COOJA.testlog” file was copied from the “…/cooja/build”

folder located in the Cooja Simulator environment.

In addition, in the “IoT_Simul.sh” file, we used the Linux tool “grep” in order to

extract the required “powertrace” information by selecting the label “P” in each power-

trace row (i.e., grep " P " log/COOJA.testlog >> dataset/pwrtrace.csv) from the

“COOJA.testlog” file and save it in the “pwrtrace.csv” file in the “dataset” folder that was

created by the batch file inside the “2020-11-19-17-45-22” folder, as shown in the left part

of Figure 9. In the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh”

file generated two more files, based on the information included in the “COOJA.testlog”

file, as shown in Figure 9; the “recv.csv” file and the “send.csv” file that include the “re-

ceived” and “sent”messages printed by the motes, respectively.

Figure 9. Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” file .

Finally, the “IoT_Simul.sh” file extracted the information related to each mote, from

the “pwrtrace.csv” file, and generated one csv file for each mote with the corresponding

information from the “pwrtrace.csv” file. The generated 6 csv files (i.e., mote1.csv,

mote2.csv, mote3.csv, mote4.csv, mote5.csv, mote6.csv) were stored in the “motedata”

folder. The “motedata” folder was also created by the “IoT_Simul.sh” file inside the “2020-

11-19-17-45-22” folder.

An overview of the above mentioned process followed to extract the required infor-

mation from the “COOJA.testlog” file to the “pwrtrace.csv”, “recv.csv”, and “send.csv”,

“mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files

are depicted in the Figure 10.

Figure 9. Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” file.

In addition, in the “IoT_Simul.sh” file, we used the Linux tool “grep” in order to
extract the required “powertrace” information by selecting the label “P” in each powertrace
row (i.e., grep “P” log/COOJA.testlog >> dataset/pwrtrace.csv) from the “COOJA.testlog”
file and save it in the “pwrtrace.csv” file in the “dataset” folder that was created by the
batch file inside the “2020-11-19-17-45-22” folder, as shown in the left part of Figure 9. In
the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh” file generated
two more files, based on the information included in the “COOJA.testlog” file, as shown
in Figure 9; the “recv.csv” file and the “send.csv” file that include the “received” and
“sent”messages printed by the motes, respectively.

Finally, the “IoT_Simul.sh” file extracted the information related to each mote, from
the “pwrtrace.csv” file, and generated one csv file for each mote with the corresponding in-
formation from the “pwrtrace.csv” file. The generated 6 csv files (i.e., mote1.csv, mote2.csv,
mote3.csv, mote4.csv, mote5.csv, mote6.csv) were stored in the “motedata” folder. The
“motedata” folder was also created by the “IoT_Simul.sh” file inside the “2020-11-19-17-45-
22” folder.

Sensors 2021, 21, 1528 11 of 31

An overview of the above mentioned process followed to extract the required infor-
mation from the “COOJA.testlog” file to the “pwrtrace.csv”, “recv.csv”, and “send.csv”,
“mote1.csv”, “mote2.csv”, “mote3.csv”, “mote4.csv”, “mote5.csv”, and “mote6.csv” files
are depicted in the Figure 10.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 32

Figure 10. An overview of the process followed by the “IoT_Simul.sh” file to extract all the re-

quired “powertrace” information from the “COOJA.testlog” file.

4.1.2. Benign “powertrace” Datasets—Results

• Benign “pwrtrace.csv”: The generated benign “pwrtrace.csv” file consists of 10,794

records and its first 38 records (i.e., 1–38) and its last 38 records (10,757–10,794) are de-

picted in Figure 11 and Figure 12, respectively.

Figure 11. Benign “pwrtrace.csv”—1 to 38 records.

Figure 10. An overview of the process followed by the “IoT_Simul.sh” file to extract all the required
“powertrace” information from the “COOJA.testlog” file.

4.1.2. Benign “Powertrace” Datasets—Results

Benign “pwrtrace.csv”: The generated benign “pwrtrace.csv” file consists of 10,794
records and its first 38 records (i.e., 1–38) and its last 38 records (10,757–10,794) are depicted
in Figures 11 and 12, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 32

Figure 10. An overview of the process followed by the “IoT_Simul.sh” file to extract all the re-

quired “powertrace” information from the “COOJA.testlog” file.

4.1.2. Benign “powertrace” Datasets—Results

• Benign “pwrtrace.csv”: The generated benign “pwrtrace.csv” file consists of 10,794

records and its first 38 records (i.e., 1–38) and its last 38 records (10,757–10,794) are de-

picted in Figure 11 and Figure 12, respectively.

Figure 11. Benign “pwrtrace.csv”—1 to 38 records. Figure 11. Benign “pwrtrace.csv”—1 to 38 records.

Sensors 2021, 21, 1528 12 of 31

Sensors 2020, 20, x FOR PEER REVIEW 12 of 32

Figure 12. Benign “pwrtrace.csv”—10,757 to 10,794 records.

• Benign “recv.csv”: The generated benign “recv.csv” file consists of 3586 records and

its first 25 records (i.e., 1–25) are depicted below in Figure 13.

Figure 13. Benign “recv.csv”—1 to 25 records.

4.2. Benign Network Traffic Dataset Generation

4.2.1. Benign Network Traffic Dataset Generation

The generated network traffic dataset constitutes the dataset of the simulated benign

IIoT network scenario that includes records consisting of IIoT network traffic features

such as source/destination IPv6 address, packet size, and communication protocol. The

Cooja simulator provides the “Radio messages” tool that allowed the collection of data

related to the corresponding network traffic features. In Figure 14, the “Radio messages”

Figure 12. Benign “pwrtrace.csv”—10,757 to 10,794 records.

Benign “recv.csv”: The generated benign “recv.csv” file consists of 3586 records and
its first 25 records (i.e., 1–25) are depicted below in Figure 13.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 32

Figure 12. Benign “pwrtrace.csv”—10,757 to 10,794 records.

• Benign “recv.csv”: The generated benign “recv.csv” file consists of 3586 records and

its first 25 records (i.e., 1–25) are depicted below in Figure 13.

Figure 13. Benign “recv.csv”—1 to 25 records.

4.2. Benign Network Traffic Dataset Generation

4.2.1. Benign Network Traffic Dataset Generation

The generated network traffic dataset constitutes the dataset of the simulated benign

IIoT network scenario that includes records consisting of IIoT network traffic features

such as source/destination IPv6 address, packet size, and communication protocol. The

Cooja simulator provides the “Radio messages” tool that allowed the collection of data

related to the corresponding network traffic features. In Figure 14, the “Radio messages”

Figure 13. Benign “recv.csv”—1 to 25 records.

4.2. Benign Network Traffic Dataset Generation
4.2.1. Benign Network Traffic Dataset Generation

The generated network traffic dataset constitutes the dataset of the simulated benign
IIoT network scenario that includes records consisting of IIoT network traffic features such
as source/destination IPv6 address, packet size, and communication protocol. The Cooja
simulator provides the “Radio messages” tool that allowed the collection of data related

Sensors 2021, 21, 1528 13 of 31

to the corresponding network traffic features. In Figure 14, the “Radio messages” output
window is depicted along with the three configuration options that are provided by the
“Radio messages” tool:

Sensors 2020, 20, x FOR PEER REVIEW 13 of 32

output window is depicted along with the three configuration options that are provided

by the “Radio messages” tool:

Figure 14. “Radio messages” tool—output window.

The “6LoWPAN Analyzer with PCAP” option was selected and the “Radio mes-

sages” tool saved the captured network traffic data from the simulated IIoT network into

a pcap file whose file-naming format was as follows: “radiolog-“+ System.currentTimeM-

illis()+“.pcap”.

Figure 15. Network traffic information from the benign scenario in the “Radio messages” output window.

During the simulation, the network traffic information about the transmitted data

was also being shown in the top part of the “Radio messages” output window as depicted

in the top part of Figure 15. When the simulation stopped, the generated pcap file was

saved as “radiolog-1605811324302.pcap” within the “…/cooja/build” folder.

Having now saved all the captured raw network traffic information, through the “Ra-

dio messages” tool, into a pcap file, the challenging task was to extract this information

from the pcap file to a csv file that would be the network traffic dataset of the simulated

benign IIoT network scenario. This challenge was addressed by utilising the

“IoT_Simul.sh” file that was also used in the “powertrace” dataset generation process, as

described in Section 4.1, and the well-known network protocol analyser Wireshark [28].

Figure 14. “Radio messages” tool—output window.

The “6LoWPAN Analyzer with PCAP” option was selected and the “Radio messages”
tool saved the captured network traffic data from the simulated IIoT network into a pcap file
whose file-naming format was as follows: “radiolog-” + System.currentTimeMillis() + “pcap”.

During the simulation, the network traffic information about the transmitted data was
also being shown in the top part of the “Radio messages” output window as depicted in
the top part of Figure 15. When the simulation stopped, the generated pcap file was saved
as “radiolog-1605811324302.pcap” within the “ . . . /cooja/build” folder.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 32

output window is depicted along with the three configuration options that are provided

by the “Radio messages” tool:

Figure 14. “Radio messages” tool—output window.

The “6LoWPAN Analyzer with PCAP” option was selected and the “Radio mes-

sages” tool saved the captured network traffic data from the simulated IIoT network into

a pcap file whose file-naming format was as follows: “radiolog-“+ System.currentTimeM-

illis()+“.pcap”.

Figure 15. Network traffic information from the benign scenario in the “Radio messages” output window.

During the simulation, the network traffic information about the transmitted data

was also being shown in the top part of the “Radio messages” output window as depicted

in the top part of Figure 15. When the simulation stopped, the generated pcap file was

saved as “radiolog-1605811324302.pcap” within the “…/cooja/build” folder.

Having now saved all the captured raw network traffic information, through the “Ra-

dio messages” tool, into a pcap file, the challenging task was to extract this information

from the pcap file to a csv file that would be the network traffic dataset of the simulated

benign IIoT network scenario. This challenge was addressed by utilising the

“IoT_Simul.sh” file that was also used in the “powertrace” dataset generation process, as

described in Section 4.1, and the well-known network protocol analyser Wireshark [28].

Figure 15. Network traffic information from the benign scenario in the “Radio messages” output window.

Having now saved all the captured raw network traffic information, through the
“Radio messages” tool, into a pcap file, the challenging task was to extract this information
from the pcap file to a csv file that would be the network traffic dataset of the simulated
benign IIoT network scenario. This challenge was addressed by utilising the “IoT_Simul.sh”
file that was also used in the “powertrace” dataset generation process, as described in
Section 4.1, and the well-known network protocol analyser Wireshark [28].

Sensors 2021, 21, 1528 14 of 31

In particular, the first step was the use of the “IoT_Simul.sh” file in order to copy the
“radiolog-1605811324302.pcap” file from the “ . . . /cooja/build” folder located in the Cooja
Simulator environment to the “nettraffic” folder that was created by the “IoT_Simul.sh”
file inside the root folder “2020-11-19-17-45-22” that was also created by the “IoT_Simul.sh”
during the “powertrace” dataset generation process. The “nettraffic” folder inside the root
folder “2020-11-19-17-45-22” and the copy of the “radiolog-1605811324302.pcap” file in the
“nettraffic” folder is shown in Figure 16.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 32

In particular, the first step was the use of the “IoT_Simul.sh” file in order to copy the

“radiolog-1605811324302.pcap” file from the “…/cooja/build” folder located in the Cooja

Simulator environment to the “nettraffic” folder that was created by the “IoT_Simul.sh”

file inside the root folder “2020-11-19-17-45-22” that was also created by the

“IoT_Simul.sh” during the “powertrace” dataset generation process. The “nettraffic”

folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-

1605811324302.pcap” file in the “nettraffic” folder is shown in Figure 16.

Figure 16. The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-

1605811324302.pcap” file.

After having the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic”

folder, the next step was the extraction of the stored network traffic information from the

“radiolog-1605811324302.pcap” file to the “radiolog.csv” file. This was achieved through

Wireshark as Wireshark allows opening a pcap file and exporting data to a csv file. In

Figure 17, the upper panel of the Wireshark window shows the seventeen first packets

included in the “radiolog-1605811324302.pcap” file that was opened via Wireshark. The

middle panel shows the protocol details of the 10th packet selected in the upper panel and

the bottom panel presents the protocol details of the selected 10th packet in both HEX and

ASCII format.

Figure 17. The first seventeenth packets in the “radiolog-1605811324302.pcap” file.

Figure 16. The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-
1605811324302.pcap” file.

After having the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic”
folder, the next step was the extraction of the stored network traffic information from the
“radiolog-1605811324302.pcap” file to the “radiolog.csv” file. This was achieved through
Wireshark as Wireshark allows opening a pcap file and exporting data to a csv file. In
Figure 17, the upper panel of the Wireshark window shows the seventeen first packets
included in the “radiolog-1605811324302.pcap” file that was opened via Wireshark. The
middle panel shows the protocol details of the 10th packet selected in the upper panel and
the bottom panel presents the protocol details of the selected 10th packet in both HEX and
ASCII format.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 32

In particular, the first step was the use of the “IoT_Simul.sh” file in order to copy the

“radiolog-1605811324302.pcap” file from the “…/cooja/build” folder located in the Cooja

Simulator environment to the “nettraffic” folder that was created by the “IoT_Simul.sh”

file inside the root folder “2020-11-19-17-45-22” that was also created by the

“IoT_Simul.sh” during the “powertrace” dataset generation process. The “nettraffic”

folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-

1605811324302.pcap” file in the “nettraffic” folder is shown in Figure 16.

Figure 16. The “nettraffic” folder inside the root folder “2020-11-19-17-45-22” and the copy of the “radiolog-

1605811324302.pcap” file.

After having the copy of the “radiolog-1605811324302.pcap” file in the “nettraffic”

folder, the next step was the extraction of the stored network traffic information from the

“radiolog-1605811324302.pcap” file to the “radiolog.csv” file. This was achieved through

Wireshark as Wireshark allows opening a pcap file and exporting data to a csv file. In

Figure 17, the upper panel of the Wireshark window shows the seventeen first packets

included in the “radiolog-1605811324302.pcap” file that was opened via Wireshark. The

middle panel shows the protocol details of the 10th packet selected in the upper panel and

the bottom panel presents the protocol details of the selected 10th packet in both HEX and

ASCII format.

Figure 17. The first seventeenth packets in the “radiolog-1605811324302.pcap” file. Figure 17. The first seventeenth packets in the “radiolog-1605811324302.pcap” file.

Sensors 2021, 21, 1528 15 of 31

The data from the “radiolog-1605811324302.pcap” file were exported and saved,
through Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project
environment, as shown in Figure 18. Furthermore, it is worthwhile to mention that
we also used Wireshark to filter the “radiolog-1605811324302.pcap” file based on the
ICMPv6 protocol and the UDP protocol and then exported and saved the filtered results,
through Wireshark, in the “radiologICMPv6.csv” file and the “radiologUDP.csv” file,
respectively, in the “nettraffic” folder in the project environment, as shown in Figure 19.
The radiologICMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the
capture traffic as shown in Section 6.Sensors 2020, 20, x FOR PEER REVIEW 15 of 32

Figure 18. The “radiolog.csv” file in the “nettraffic” folder in the project environment.

The data from the “radiolog-1605811324302.pcap” file were exported and saved,

through Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project en-

vironment, as shown in Figure 18. Furthermore, it is worthwhile to mention that we also

used Wireshark to filter the “radiolog-1605811324302.pcap” file based on the ICMPv6 pro-

tocol and the UDP protocol and then exported and saved the filtered results, through

Wireshark, in the “radiologICMPv6.csv” file and the “radiologUDP.csv” file, respectively,

in the “nettraffic” folder in the project environment, as shown in Figure 19. The radiolog-

ICMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the capture

traffic as shown in Section 6.

Figure 19. The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project environ-

ment.

Finally, an overview of the above mentioned process followed to extract the required

information from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiolog-

ICMPv6.csv” and “radiologUDP.csv” files is depicted in Figure 20.

Figure 20. An overview of the process followed to extract all the required network traffic infor-

mation from the “radiolog-1605811324302.pcap” file.

4.2.2. Benign Network Traffic Datasets—Results

• “radiolog.csv”: The generated benign “radiolog.csv” file consists of 116,463 records

and its first 40 records (i.e., 1–40) are depicted below in Figure 21.

Figure 18. The “radiolog.csv” file in the “nettraffic” folder in the project environment.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 32

Figure 18. The “radiolog.csv” file in the “nettraffic” folder in the project environment.

The data from the “radiolog-1605811324302.pcap” file were exported and saved,

through Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project en-

vironment, as shown in Figure 18. Furthermore, it is worthwhile to mention that we also

used Wireshark to filter the “radiolog-1605811324302.pcap” file based on the ICMPv6 pro-

tocol and the UDP protocol and then exported and saved the filtered results, through

Wireshark, in the “radiologICMPv6.csv” file and the “radiologUDP.csv” file, respectively,

in the “nettraffic” folder in the project environment, as shown in Figure 19. The radiolog-

ICMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the capture

traffic as shown in Section 6.

Figure 19. The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project environ-

ment.

Finally, an overview of the above mentioned process followed to extract the required

information from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiolog-

ICMPv6.csv” and “radiologUDP.csv” files is depicted in Figure 20.

Figure 20. An overview of the process followed to extract all the required network traffic infor-

mation from the “radiolog-1605811324302.pcap” file.

4.2.2. Benign Network Traffic Datasets—Results

• “radiolog.csv”: The generated benign “radiolog.csv” file consists of 116,463 records

and its first 40 records (i.e., 1–40) are depicted below in Figure 21.

Figure 19. The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project environment.

Finally, an overview of the above mentioned process followed to extract the required
information from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiolog-
ICMPv6.csv” and “radiologUDP.csv” files is depicted in Figure 20.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 32

Figure 18. The “radiolog.csv” file in the “nettraffic” folder in the project environment.

The data from the “radiolog-1605811324302.pcap” file were exported and saved,

through Wireshark, into the “radiolog.csv” file in the “nettraffic” folder in the project en-

vironment, as shown in Figure 18. Furthermore, it is worthwhile to mention that we also

used Wireshark to filter the “radiolog-1605811324302.pcap” file based on the ICMPv6 pro-

tocol and the UDP protocol and then exported and saved the filtered results, through

Wireshark, in the “radiologICMPv6.csv” file and the “radiologUDP.csv” file, respectively,

in the “nettraffic” folder in the project environment, as shown in Figure 19. The radiolog-

ICMPv6.csv” file and the “radiologUDP.csv” file facilitated the analysis of the capture

traffic as shown in Section 6.

Figure 19. The “radiologICMPv6.csv” file and the “radiologUDP.csv” file in the “nettraffic” folder in the project environ-

ment.

Finally, an overview of the above mentioned process followed to extract the required

information from the “radiolog-1605811324302.pcap” file to the “radiolog.csv”, “radiolog-

ICMPv6.csv” and “radiologUDP.csv” files is depicted in Figure 20.

Figure 20. An overview of the process followed to extract all the required network traffic infor-

mation from the “radiolog-1605811324302.pcap” file.

4.2.2. Benign Network Traffic Datasets—Results

• “radiolog.csv”: The generated benign “radiolog.csv” file consists of 116,463 records

and its first 40 records (i.e., 1–40) are depicted below in Figure 21.

Figure 20. An overview of the process followed to extract all the required network traffic information
from the “radiolog-1605811324302.pcap” file.

Sensors 2021, 21, 1528 16 of 31

4.2.2. Benign Network Traffic Datasets—Results

“radiolog.csv”: The generated benign “radiolog.csv” file consists of 116,463 records
and its first 40 records (i.e., 1–40) are depicted below in Figure 21.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 32

Figure 21. Benign “radiolog.csv”—1 to 40 records.

• “radiologICMPv6.csv”: The generated benign “radiologICMPv6.csv” file consists of

7975 records and its last 28 records (i.e., 7948–7975) are depicted below in Figure 22.

Figure 22. Benign “radiologICMPv6.csv”—7948 to 7975 records.

• “radiologUDP.csv”: The generated benign “radiologUDP.csv” file consists of 104,048

records and its last 37 records (i.e., 104,012–104,048) are depicted below in Figure 23.

Figure 21. Benign “radiolog.csv”—1 to 40 records.

“radiologICMPv6.csv”: The generated benign “radiologICMPv6.csv” file consists of
7975 records and its last 28 records (i.e., 7948–7975) are depicted below in Figure 22.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 32

Figure 21. Benign “radiolog.csv”—1 to 40 records.

• “radiologICMPv6.csv”: The generated benign “radiologICMPv6.csv” file consists of

7975 records and its last 28 records (i.e., 7948–7975) are depicted below in Figure 22.

Figure 22. Benign “radiologICMPv6.csv”—7948 to 7975 records.

• “radiologUDP.csv”: The generated benign “radiologUDP.csv” file consists of 104,048

records and its last 37 records (i.e., 104,012–104,048) are depicted below in Figure 23.

Figure 22. Benign “radiologICMPv6.csv”—7948 to 7975 records.

Sensors 2021, 21, 1528 17 of 31

“radiologUDP.csv”: The generated benign “radiologUDP.csv” file consists of 104,048
records and its last 37 records (i.e., 104,012–104,048) are depicted below in Figure 23.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 32

Figure 23. Benign “radiologUDP.csv”—104,012 to 104,048 records.

5. Generation of Malicious IoT/IIoT Datasets

In this Section, we provide a detailed description of the approach followed to gener-

ate a set of malicious datasets by implementing a UDP flooding attack scenario in the

Cooja simulator, as shown in Figure 24. Similar to the approach followed for the genera-

tion of the benign datasets in Section 4, the generated IoT/IIoT-specific information from

the simulated attack scenario was captured from the Contiki plugin “powertrace” (i.e.,

features such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network

traffic features) in order to generate the “powertrace” dataset and the network traffic da-

taset for the simulated UDP flooding attack scenario.

Figure 23. Benign “radiologUDP.csv”—104,012 to 104,048 records.

5. Generation of Malicious IoT/IIoT Datasets

In this Section, we provide a detailed description of the approach followed to generate
a set of malicious datasets by implementing a UDP flooding attack scenario in the Cooja
simulator, as shown in Figure 24. Similar to the approach followed for the generation
of the benign datasets in Section 4, the generated IoT/IIoT-specific information from the
simulated attack scenario was captured from the Contiki plugin “powertrace” (i.e., features
such as CPU consumption) and the Cooja tool “Radio messages” (i.e., network traffic
features) in order to generate the “powertrace” dataset and the network traffic dataset for
the simulated UDP flooding attack scenario.

The network topology of the simulated UDP flooding attack scenario in the Cooja
simulator environment consists of 4 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4
and 5), the violet (malicious) UDP-client mote (i.e., mote 6) and the green (benign) UDP-
sever mote (i.e., mote 1), as depicted in Figure 24. The simulation duration was set to
60 min and the motes’ outputs were printed out in the respective window (e.g., Mote
output) while simulations run, as shown in Figure 25. Moreover, the 4 yellow (benign)
UDP-client motes were configured to send text messages every 10 s, approximately, to
the UDP-sever mote that was configured to provide a corresponding response. On the
other hand, the violet (malicious) UDP-client mote (i.e., mote 6) was compromised with
malicious code in order to send UDP packets within a very short period of time (i.e., every
200 ms). Finally, it is noteworthy to say that similar to the benign network scenario, the
UDP protocol was used at the Transport Layer, the IPv6 at the network layer, and the type
of motes was the Tmote Sky in the UDP flooding attack scenario.

Sensors 2021, 21, 1528 18 of 31

Sensors 2020, 20, x FOR PEER REVIEW 18 of 32

Figure 24. Malicious datasets generation by utilizing the Cooja simulator.

The network topology of the simulated UDP flooding attack scenario in the Cooja

simulator environment consists of 4 yellow (benign) UDP-client motes (i.e., motes 2, 3, 4,

and 5), the violet (malicious) UDP-client mote (i.e., mote 6) and the green (benign) UDP-

sever mote (i.e., mote 1), as depicted in Figure 24. The simulation duration was set to 60

mins and the motes’ outputs were printed out in the respective window (e.g., Mote out-

put) while simulations run, as shown in Figure 25. Moreover, the 4 yellow (benign) UDP-

client motes were configured to send text messages every 10 seconds, approximately, to

the UDP-sever mote that was configured to provide a corresponding response. On the

other hand, the violet (malicious) UDP-client mote (i.e., mote 6) was compromised with

malicious code in order to send UDP packets within a very short period of time (i.e., every

200ms). Finally, it is noteworthy to say that similar to the benign network scenario, the

UDP protocol was used at the Transport Layer, the IPv6 at the network layer, and the type

of motes was the Tmote Sky in the UDP flooding attack scenario.

Figure 24. Malicious datasets generation by utilizing the Cooja simulator.Sensors 2020, 20, x FOR PEER REVIEW 19 of 32

Figure 25. Cooja Simulator—motes’ outputs.

5.1. Malicious “powertrace” Dataset Generation

5.1.1. Malicious “powertrace” Dataset Generation

The approach followed for the “powertrace” dataset generation from the UDP flood-

ing attack scenario was similar to the approach followed for the “powertrace” dataset

generation from the benign IIoT network scenario in Section 4.1.1. In addition, the

“powertrace” plugin was similarly enabled for collecting “powertrace” related features,

summarised in Table 1, from the motes of the attack scenario every two seconds. In Figure

26, the depicted mote output window displays the captured “powertrace” information

every two seconds and also the messages sent and received by each mote during the sim-

ulation time (60 mins).

Figure 26. Cooja Simulator—Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information

and prints were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file,

described in Section 4.1.1, created a) a new root folder named as “2020-12-09-14-59-59”,

and b) the “log” folder, inside the “2020-12-09-14-59-59” folder, where the

“COOJA.testlog” file was copied from the “…/cooja/build” folder located in the Cooja

Simulator. Then, the “IoT_Simul.sh” file following the same process, as described in Sec-

tion 4.1.1, extracted the required “powertrace” information from the “COOJA.testlog” file

and saved it in the “pwrtrace.csv” file in the “dataset” folder that was created by the batch

file inside the “2020-12-09-14-59-59” folder, as shown below in the left part of Figure 27.

In the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh” file gener-

ated two more files (i.e., the “recv.csv” file and the “send.csv”), following the same process

as in Section 4.1.1. The “recv.csv” file and the “send.csv” file include the “received” and

“sent” messages printed by the motes, respectively.

Figure 25. Cooja Simulator—motes’ outputs.

Sensors 2021, 21, 1528 19 of 31

5.1. Malicious “Powertrace” Dataset Generation
5.1.1. Malicious “Powertrace” Dataset Generation

The approach followed for the “powertrace” dataset generation from the UDP flooding
attack scenario was similar to the approach followed for the “powertrace” dataset genera-
tion from the benign IIoT network scenario in Section 4.1.1. In addition, the “powertrace”
plugin was similarly enabled for collecting “powertrace” related features, summarised in
Table 1, from the motes of the attack scenario every two seconds. In Figure 26, the depicted
mote output window displays the captured “powertrace” information every two seconds
and also the messages sent and received by each mote during the simulation time (60 min).

Sensors 2020, 20, x FOR PEER REVIEW 19 of 32

Figure 25. Cooja Simulator—motes’ outputs.

5.1. Malicious “powertrace” Dataset Generation

5.1.1. Malicious “powertrace” Dataset Generation

The approach followed for the “powertrace” dataset generation from the UDP flood-

ing attack scenario was similar to the approach followed for the “powertrace” dataset

generation from the benign IIoT network scenario in Section 4.1.1. In addition, the

“powertrace” plugin was similarly enabled for collecting “powertrace” related features,

summarised in Table 1, from the motes of the attack scenario every two seconds. In Figure

26, the depicted mote output window displays the captured “powertrace” information

every two seconds and also the messages sent and received by each mote during the sim-

ulation time (60 mins).

Figure 26. Cooja Simulator—Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information

and prints were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file,

described in Section 4.1.1, created a) a new root folder named as “2020-12-09-14-59-59”,

and b) the “log” folder, inside the “2020-12-09-14-59-59” folder, where the

“COOJA.testlog” file was copied from the “…/cooja/build” folder located in the Cooja

Simulator. Then, the “IoT_Simul.sh” file following the same process, as described in Sec-

tion 4.1.1, extracted the required “powertrace” information from the “COOJA.testlog” file

and saved it in the “pwrtrace.csv” file in the “dataset” folder that was created by the batch

file inside the “2020-12-09-14-59-59” folder, as shown below in the left part of Figure 27.

In the “dataset” folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh” file gener-

ated two more files (i.e., the “recv.csv” file and the “send.csv”), following the same process

as in Section 4.1.1. The “recv.csv” file and the “send.csv” file include the “received” and

“sent” messages printed by the motes, respectively.

Figure 26. Cooja Simulator—Mote output window.

When the timeout occurred, the simulation stopped, and all the captured information
and prints were stored in the “COOJA.testlog” file. Afterwards, the “IoT_Simul.sh” file,
described in Section 4.1.1, created (a) a new root folder named as “2020-12-09-14-59-59”,
and (b) the “log” folder, inside the “2020-12-09-14-59-59” folder, where the “COOJA.testlog”
file was copied from the “ . . . /cooja/build” folder located in the Cooja Simulator. Then,
the “IoT_Simul.sh” file following the same process, as described in Section 4.1.1, extracted
the required “powertrace” information from the “COOJA.testlog” file and saved it in the
“pwrtrace.csv” file in the “dataset” folder that was created by the batch file inside the
“2020-12-09-14-59-59” folder, as shown below in the left part of Figure 27. In the “dataset”
folder, apart from the “pwrtrace.csv” file, the “IoT_Simul.sh” file generated two more files
(i.e., the “recv.csv” file and the “send.csv”), following the same process as in Section 4.1.1.
The “recv.csv” file and the “send.csv” file include the “received” and “sent” messages
printed by the motes, respectively.Sensors 2020, 20, x FOR PEER REVIEW 20 of 32

Figure 27. Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section

4.1.1, the “IoT_Simul.sh” file extracted the information related to each mote from the

“pwrtrace.csv” file and generated one csv file for each mote with the corresponding infor-

mation from the “pwrtrace.csv” file. The generated six csv files (i.e., mote1.csv, mote2.csv,

mote3.csv, mote4.csv, mote5.csv, and mote6.csv) were stored in the “motedata” folder,

created also by the “IoT_Simul.sh” file, as shown in the left part of Figure 27.

5.1.2. Malicious “powertrace” Datasets—Results

• Malicious “pwrtrace.csv”: The generated malicious “pwrtrace.csv” file consists of

10,794 records and its first 38 records (i.e., 1–38) and its last 38 records (10,757–10,794) are

depicted in Figure 28 and Figure 29, respectively.

Figure 28. Malicious “pwrtrace.csv”—1 to 38 records.

Figure 27. Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in
Section 4.1.1, the “IoT_Simul.sh” file extracted the information related to each mote from
the “pwrtrace.csv” file and generated one csv file for each mote with the correspond-
ing information from the “pwrtrace.csv” file. The generated six csv files (i.e., mote1.csv,
mote2.csv, mote3.csv, mote4.csv, mote5.csv, and mote6.csv) were stored in the “motedata”
folder, created also by the “IoT_Simul.sh” file, as shown in the left part of Figure 27.

Sensors 2021, 21, 1528 20 of 31

5.1.2. Malicious “powertrace” Datasets—Results

Malicious “pwrtrace.csv”: The generated malicious “pwrtrace.csv” file consists of
10,794 records and its first 38 records (i.e., 1–38) and its last 38 records (10,757–10,794) are
depicted in Figures 28 and 29, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 32

Figure 27. Location of the generated “pwrtrace.csv”, “recv.csv”, and “send.csv” files by the “IoT_Simul.sh” bash file.

Finally, similar to the benign “powertrace” dataset generation approach in Section

4.1.1, the “IoT_Simul.sh” file extracted the information related to each mote from the

“pwrtrace.csv” file and generated one csv file for each mote with the corresponding infor-

mation from the “pwrtrace.csv” file. The generated six csv files (i.e., mote1.csv, mote2.csv,

mote3.csv, mote4.csv, mote5.csv, and mote6.csv) were stored in the “motedata” folder,

created also by the “IoT_Simul.sh” file, as shown in the left part of Figure 27.

5.1.2. Malicious “powertrace” Datasets—Results

• Malicious “pwrtrace.csv”: The generated malicious “pwrtrace.csv” file consists of

10,794 records and its first 38 records (i.e., 1–38) and its last 38 records (10,757–10,794) are

depicted in Figure 28 and Figure 29, respectively.

Figure 28. Malicious “pwrtrace.csv”—1 to 38 records. Figure 28. Malicious “pwrtrace.csv”—1 to 38 records.Sensors 2020, 20, x FOR PEER REVIEW 21 of 32

Figure 29. Malicious “pwrtrace.csv”—10,757 to 10,794 records.

• Malicious “recv.csv”: The generated malicious “recv.csv” file consists of 21,573 rec-

ords and its first 27 records (i.e., 1–27) are depicted below in Figure 30.

Figure 30. Malicious “recv.csv”—1 to 27 records.

Figure 29. Malicious “pwrtrace.csv”—10,757 to 10,794 records.

Sensors 2021, 21, 1528 21 of 31

Malicious “recv.csv”: The generated malicious “recv.csv” file consists of 21,573 records
and its first 27 records (i.e., 1–27) are depicted below in Figure 30.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 32

Figure 29. Malicious “pwrtrace.csv”—10,757 to 10,794 records.

• Malicious “recv.csv”: The generated malicious “recv.csv” file consists of 21,573 rec-

ords and its first 27 records (i.e., 1–27) are depicted below in Figure 30.

Figure 30. Malicious “recv.csv”—1 to 27 records.

Figure 30. Malicious “recv.csv”—1 to 27 records.

5.2. Malicious Network Traffic Dataset Generation
5.2.1. Malicious Network Traffic Dataset Generation

The approach followed for the network traffic dataset generation from the UDP
flooding attack scenario was similar to the approach followed for the network traffic
dataset generation from the benign IIoT network scenario in Section 4.2.1. The “Radio
messages” tool, provided by the Cooja simulator, was similarly used for collecting data
related to the corresponding network traffic features (e.g., source/destination IPv6 address,
packet size, and communication protocol) from the network of the attack scenario. During
the simulation, the network traffic information was being shown in the top part of the
“Radio messages” output window as depicted in the top part of Figure 31.

When the simulation stopped, the generated pcap file was saved as “radiolog-
1607519517066.pcap” within the “ . . . /cooja/build” folder. Afterwards, the “IoT_Simul.sh”
file, described in Section 4.2.1, created (a) a new root folder named as “2020-12-09-14-59-59”,
and (b) the “nettraffic” folder, inside the “2020-12-09-14-59-59” folder, where the “radiolog-
1607519517066.pcap” file was copied from the “ . . . /cooja/build” folder located in the
Cooja Simulator. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and
the copy of the “radiolog-1607519517066.pcap” file in the “nettraffic” folder are shown in
Figure 32.

Sensors 2021, 21, 1528 22 of 31

Sensors 2020, 20, x FOR PEER REVIEW 22 of 32

5.2. Malicious Network Traffic Dataset Generation

5.2.1. Malicious Network Traffic Dataset Generation

The approach followed for the network traffic dataset generation from the UDP

flooding attack scenario was similar to the approach followed for the network traffic da-

taset generation from the benign IIoT network scenario in Section 4.2.1. The “Radio mes-

sages” tool, provided by the Cooja simulator, was similarly used for collecting data related

to the corresponding network traffic features (e.g., source/destination IPv6 address,

packet size, and communication protocol) from the network of the attack scenario. During

the simulation, the network traffic information was being shown in the top part of the

“Radio messages” output window as depicted in the top part of Figure 31.

Figure 31. Network traffic information from the attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog-

1607519517066.pcap” within the “…/cooja/build” folder. Afterwards, the “IoT_Simul.sh”

file, described in Section 4.2.1, created a) a new root folder named as “2020-12-09-14-59-

59”, and b) the “nettraffic” folder, inside the “2020-12-09-14-59-59” folder, where the “ra-

diolog-1607519517066.pcap” file was copied from the “…/cooja/build” folder located in

the Cooja Simulator. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59”

and the copy of the “radiolog-1607519517066.pcap” file in the “nettraffic” folder are

shown in Figure 32.

Figure 32. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the copy of the “radiolog-

1607519517066.pcap” file.

Then, following the same process, as described in Section 4.2.1, we used Wireshark

to extract the stored network traffic information from the “radiolog-1607519517066.pcap”

file to the “radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 33.

Figure 33. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files.

Figure 31. Network traffic information from the attack scenario in the “Radio messages” output window.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 32

5.2. Malicious Network Traffic Dataset Generation

5.2.1. Malicious Network Traffic Dataset Generation

The approach followed for the network traffic dataset generation from the UDP

flooding attack scenario was similar to the approach followed for the network traffic da-

taset generation from the benign IIoT network scenario in Section 4.2.1. The “Radio mes-

sages” tool, provided by the Cooja simulator, was similarly used for collecting data related

to the corresponding network traffic features (e.g., source/destination IPv6 address,

packet size, and communication protocol) from the network of the attack scenario. During

the simulation, the network traffic information was being shown in the top part of the

“Radio messages” output window as depicted in the top part of Figure 31.

Figure 31. Network traffic information from the attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog-

1607519517066.pcap” within the “…/cooja/build” folder. Afterwards, the “IoT_Simul.sh”

file, described in Section 4.2.1, created a) a new root folder named as “2020-12-09-14-59-

59”, and b) the “nettraffic” folder, inside the “2020-12-09-14-59-59” folder, where the “ra-

diolog-1607519517066.pcap” file was copied from the “…/cooja/build” folder located in

the Cooja Simulator. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59”

and the copy of the “radiolog-1607519517066.pcap” file in the “nettraffic” folder are

shown in Figure 32.

Figure 32. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the copy of the “radiolog-

1607519517066.pcap” file.

Then, following the same process, as described in Section 4.2.1, we used Wireshark

to extract the stored network traffic information from the “radiolog-1607519517066.pcap”

file to the “radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 33.

Figure 33. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files.

Figure 32. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the copy of the “radiolog-
1607519517066.pcap” file.

Then, following the same process, as described in Section 4.2.1, we used Wireshark to
extract the stored network traffic information from the “radiolog-1607519517066.pcap” file
to the “radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 33.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 32

5.2. Malicious Network Traffic Dataset Generation

5.2.1. Malicious Network Traffic Dataset Generation

The approach followed for the network traffic dataset generation from the UDP

flooding attack scenario was similar to the approach followed for the network traffic da-

taset generation from the benign IIoT network scenario in Section 4.2.1. The “Radio mes-

sages” tool, provided by the Cooja simulator, was similarly used for collecting data related

to the corresponding network traffic features (e.g., source/destination IPv6 address,

packet size, and communication protocol) from the network of the attack scenario. During

the simulation, the network traffic information was being shown in the top part of the

“Radio messages” output window as depicted in the top part of Figure 31.

Figure 31. Network traffic information from the attack scenario in the “Radio messages” output window.

When the simulation stopped, the generated pcap file was saved as “radiolog-

1607519517066.pcap” within the “…/cooja/build” folder. Afterwards, the “IoT_Simul.sh”

file, described in Section 4.2.1, created a) a new root folder named as “2020-12-09-14-59-

59”, and b) the “nettraffic” folder, inside the “2020-12-09-14-59-59” folder, where the “ra-

diolog-1607519517066.pcap” file was copied from the “…/cooja/build” folder located in

the Cooja Simulator. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59”

and the copy of the “radiolog-1607519517066.pcap” file in the “nettraffic” folder are

shown in Figure 32.

Figure 32. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and the copy of the “radiolog-

1607519517066.pcap” file.

Then, following the same process, as described in Section 4.2.1, we used Wireshark

to extract the stored network traffic information from the “radiolog-1607519517066.pcap”
file to the “radiolog.csv” file stored in the “nettraffic” folder as shown in Figure 33.

Figure 33. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files. Figure 33. The “nettraffic” folder inside the root folder “2020-12-09-14-59-59” and its included files.

In the “nettraffic” folder, apart from the “radiolog.csv” file, we also used Wireshark, follow-
ing the same process as in Section 4.2.1, to generate two more files (i.e., the “radiologICMPv6.csv”
file and the “radiologUDP.csv” file) from the “radiolog-1607519517066.pcap” file.

5.2.2. Malicious Network Traffic Datasets—Results

“radiolog.csv”: The generated malicious “radiolog.csv” file consists of 702,332 records
and its first 25 records (i.e., 1–25) are depicted below in Figure 34.

Sensors 2021, 21, 1528 23 of 31

Sensors 2020, 20, x FOR PEER REVIEW 23 of 32

In the “nettraffic” folder, apart from the “radiolog.csv” file, we also used Wireshark,

following the same process as in Section 4.2.1, to generate two more files (i.e., the “radio-

logICMPv6.csv” file and the “radiologUDP.csv” file) from the “radiolog-

1607519517066.pcap” file.

5.2.2. Malicious Network Traffic Datasets—Results

• “radiolog.csv”: The generated malicious “radiolog.csv” file consists of 702,332 rec-

ords and its first 25 records (i.e., 1–25) are depicted below in Figure 34.

Figure 34. Malicious “radiolog.csv”—1 to 25 records.

• “radiologICMPv6.csv”: The generated malicious “radiologICMPv6.csv” file consists

of 9908 records and its first 25 records (i.e., 1–25) are depicted below in Figure 35.

Figure 35. Malicious “radiologICMPv6.csv”—1 to 25 records.

• “radiologUDP.csv”: The generated malicious “radiologUDP.csv” file consists of

670,671 records and its first 25 records (i.e., 1–25) are depicted below in Figure 36.

Figure 34. Malicious “radiolog.csv”—1 to 25 records.

“radiologICMPv6.csv”: The generated malicious “radiologICMPv6.csv” file consists
of 9908 records and its first 25 records (i.e., 1–25) are depicted below in Figure 35.

Sensors 2020, 20, x FOR PEER REVIEW 23 of 32

In the “nettraffic” folder, apart from the “radiolog.csv” file, we also used Wireshark,

following the same process as in Section 4.2.1, to generate two more files (i.e., the “radio-

logICMPv6.csv” file and the “radiologUDP.csv” file) from the “radiolog-

1607519517066.pcap” file.

5.2.2. Malicious Network Traffic Datasets—Results

• “radiolog.csv”: The generated malicious “radiolog.csv” file consists of 702,332 rec-

ords and its first 25 records (i.e., 1–25) are depicted below in Figure 34.

Figure 34. Malicious “radiolog.csv”—1 to 25 records.

• “radiologICMPv6.csv”: The generated malicious “radiologICMPv6.csv” file consists

of 9908 records and its first 25 records (i.e., 1–25) are depicted below in Figure 35.

Figure 35. Malicious “radiologICMPv6.csv”—1 to 25 records.

• “radiologUDP.csv”: The generated malicious “radiologUDP.csv” file consists of

670,671 records and its first 25 records (i.e., 1–25) are depicted below in Figure 36.

Figure 35. Malicious “radiologICMPv6.csv”—1 to 25 records.

Sensors 2021, 21, 1528 24 of 31

“radiologUDP.csv”: The generated malicious “radiologUDP.csv” file consists of
670,671 records and its first 25 records (i.e., 1–25) are depicted below in Figure 36.Sensors 2020, 20, x FOR PEER REVIEW 24 of 32

Figure 36. Malicious “radiologUDP.csv”—1 to 25 records.

6. Discussion on the Generated Datasets

The generated benign and malicious “pwrtrace” datasets, presented in Sections 4.1.2

and 5.1.2, respectively, include information about raw features (e.g., all_cpu, all_lpm,

all_transmit, all_listen) which can be used to derive new features more informative, in

terms of the behaviour of each mote, and non-redundant. These new features are intended

to constitute valuable features for training and evaluating AIDS for IoT/IIoT networks.

Towards this direction, the total energy consumption of a mote in an IoT/IIoT network

can be considered as a valuable feature for detection of a UDP flooding attack and its

source as the compromised mote carrying out the attack is characterised by high total

energy consumption, as demonstrated below.

Based on [29], and [30], the total energy consumption of each mote, at the reading

(i.e., record) i, is given by the sum of a) the energy consumption in the CPU state; b) the

energy consumption in the LPM state; c) the energy consumption in the Tx state; and the

average power consumption Listen state, at the reading (i.e., record) i, as shown in the

equation below:

Etotali
(mj) = Ecputotali

+ Elpmtotali
+ Etxtotali

+ Erxtotali
=

= (Icpu × Vcpu × Tcpui
) + (Ilpm × Vlpm × Tlpmi

) + (Itx × Vtx × Ttxi
) + (Irx × Vrx × Trxi

)
(1)

where

Icpu: the nominal current in the CPU state;

Ilpm: the nominal current in the LPM state;

Itx: the nominal current in the TX state;

Irx: the nominal current in the RX state;

Vcpu: the nominal voltage in the CPU state;

Figure 36. Malicious “radiologUDP.csv”—1 to 25 records.

6. Discussion on the Generated Datasets

The generated benign and malicious “pwrtrace” datasets, presented in
Sections 4.1.2 and 5.1.2, respectively, include information about raw features (e.g., all_cpu,
all_lpm, all_transmit, all_listen) which can be used to derive new features more informa-
tive, in terms of the behaviour of each mote, and non-redundant. These new features are
intended to constitute valuable features for training and evaluating AIDS for IoT/IIoT
networks. Towards this direction, the total energy consumption of a mote in an IoT/IIoT
network can be considered as a valuable feature for detection of a UDP flooding attack and
its source as the compromised mote carrying out the attack is characterised by high total
energy consumption, as demonstrated below.

Based on [29,30], the total energy consumption of each mote, at the reading (i.e.,
record) i, is given by the sum of (a) the energy consumption in the CPU state; (b) the
energy consumption in the LPM state; (c) the energy consumption in the Tx state; and the
average power consumption Listen state, at the reading (i.e., record) i, as shown in the
equation below:

Etotali(mj) = Ecputotali
+ Elpmtotali

+ Etxtotali
+ Erxtotali

=

=
(
Icpu × Vcpu × Tcpui

)
+

(
Ilpm × Vlpm × Tlpmi

)
+ (Itx × Vtx × Ttxi) + (Irx × Vrx × Trxi)

(1)

where

Icpu: the nominal current in the CPU state;
Ilpm: the nominal current in the LPM state;
Itx: the nominal current in the TX state;
Irx: the nominal current in the RX state;
Vcpu: the nominal voltage in the CPU state;

Sensors 2021, 21, 1528 25 of 31

Vlpm: the nominal voltage in the LPM state;
Vtx: the nominal voltage in the TX state;
Vrx: the nominal voltage in the RX state;

Tcpui =
cpui (# ticks)

RTIMER_ARCH_SECOND = cpui (# ticks)
32,768

Tlpmi
= lpmi (# ticks)

RTIMER_ARCH_SECOND = lpmi (# ticks)
32,768

Ttxi =
txi (# ticks)

RTIMER_ARCH_SECOND = txi(# ticks)
32,768

Trxi =
rx i(# ticks)

RTIMER_ARCH_SECOND = rxi (# ticks)
32,768

Based on Equation (1) and Table 2 that provides the typical operating conditions for a
Tmote Sky mote, the total energy consumption, at the reading (i.e., record) i, is given by
Equation (2):

Etotali(mj) = 1.8 × 3 ×
(

cpui (# ticks)
32,768

)
+ 0.0545 × 3 ×

(
lpmi (# ticks)

32,768

)
+19.5 × 3 ×

(
txi(# ticks)

32,768

)
+ 21.8 × 3 ×

(
rxi (# ticks)

32,768

) (2)

Table 2. Typical Operating Conditions for Tmote Sky motes.

MIN NOM (Typical) MAX UNIT

Supply voltage 2.1 3.0 3.6 V

Supply voltage during flash memory programming 2.7 3.0 3.6 V

Operating free air temperature −40 85 ºC

Current Consumption: MCU on, Radio RX 21.8 23 mA

Current Consumption: MCU on, Radio TX 19.5 21 mA

Current Consumption: MCU on, Radio off 1800 2400 µA

Current Consumption: MCU idle, Radio off 54.5 1200 µA

Current Consumption: MCU standby 5.1 21.0 µA

Based on Equation (2) and the following features, from the generated benign “power-
trace” dataset, for each mote: (a) all_cpu; (b) all_lpm; (c) all_transmit; and (d) all_listen, the
total energy consumption by each mote, during the simulation time (i.e., 60 min = 3600 s)
is shown below in Figure 37.

On the other hand, based on Equation (2) and the same features (i.e., all_cpu, all_lpm,
all_transmit; and all_listen) for each mote, from the generated malicious “powertrace”
dataset, the total energy consumption by each mote, during the simulation time (i.e.,
60 min = 3600 s) is shown below.

As shown in Figure 38, mote6, which is the compromised client that carried out the
UDP flooding attack, consumed much more energy than any other legitimate client and
the legitimate server in the UDP flooding attack scenario. Moreover, mote6 in the UDP
flooding attack consumed much more energy than the energy it consumed in the benign
scenario as demonstrated in Figure 37.

Furthermore, the generated benign and malicious network traffic datasets, presented
in Sections 4.2.2 and 5.2.2, respectively, include information about raw features, such as
source/destination address, protocol, which can be used to derive new features more
informative, in terms of the behaviour of the network traffic, and non-redundant. These
new features are also intended to constitute valuable features for training and evaluating
AIDS for IoT/IIoT networks. From the network traffic point of view, the total RPL (Routing
Protocol for Low-Power and Lossy Networks) messages overhead of the IoT/IIoT network
can be considered as a feature for detection of a UDP flooding attack as an IoT/IIoT network

Sensors 2021, 21, 1528 26 of 31

under a UDP flooding attack is characterised by low total RPL messages overhead because
of the huge amount of the UDP messages flooding the network, as shown below.

1

Figure 37. Total energy consumption by each mote in the benign scenario.

1

Figure 38. Total energy consumption by each mote in the UDP flooding attack scenario.

Table 3 was extracted from the benign network traffic dataset (i.e., benign “radi-
olog.csv”) and shows, in the last column, the percentage of the RPL messages overhead
per mote which is calculated as follows: the number of RPL messages per mote over the
total number of exchanged messages within the network during the simulation time (i.e.,

Sensors 2021, 21, 1528 27 of 31

116,463 messages). The last row of Table 3 contains the total number of RPL messages
(7975), UDP messages (104,048), and other protocol messages (4440) exchanged within the
network, and the total RPL messages overhead (%).

Table 3. RPL messages overhead of the IoT/IIoT network in the benign scenario.

RPL Messages Overhead
Number of RPL

Messages
Number of

UDP Messages
Number of

Other Messages
RPL Overhead

(%)
Mote 1 290 43,804 N/A 0.25
Mote 2 1982 11,621 N/A 1.70
Mote 3 1621 11,883 N/A 1.39
Mote 4 1604 11,827 N/A 1.38
Mote 5 1308 12,556 N/A 1.12
Mote 6 1170 12,357 N/A 1.00
Total 7975 104,048 4440 6.85

Based on the information included in Table 3, the calculated RPL messages overhead
per mote and the total RPL messages overhead are depicted in Figure 39.

Sensors 2020, 20, x FOR PEER REVIEW 28 of 32

Mote 4 1,604 11,827 N/A 1.38

Mote 5 1,308 12,556 N/A 1.12

Mote 6 1,170 12,357 N/A 1.00

Total 7,975 104,048 4440 6.85

Based on the information included in Table 3, the calculated RPL messages overhead

per mote and the total RPL messages overhead are depicted in Figure 39.

Figure 39. RPL messages overhead per mote and total RPL messages overhead in the benign sce-

nario.

On the other hand, Table 4 was extracted from the malicious network traffic dataset

(i.e., malicious “radiolog.csv”) reflecting the UDP flooding attack scenario. Similar to Ta-

ble 3, Table 4 shows, in the last column, the percentage of the RPL messages overhead per

mote which is calculated as follows: the number of RPL messages per mote over the total

number of exchanged messages within the network during the simulation time (i.e.,

702,332 messages). The last row of Table 4 contains the total number of RPL messages

(9908), UDP messages (670,671), and other protocol messages (21,753) exchanged within

the network, and the total RPL messages overhead (%).

Table 4. RPL messages overhead of the IoT/IIoT network in the benign scenario

RPL Messages overhead

 Number of RPL

Messages

Number of

UDP Messages

Number of

Other Messages

RPL Over-

head (%)

Mote 1 203 254,796 N/A 0.03

Mote 2 2,228 28,953 N/A 0.32

Mote 3 2,768 30,238 N/A 0.39

Mote 4 1,976 27,260 N/A 0.28

Mote 5 2,084 31,247 N/A 0.30

Mote 6 6,490 298,177 N/A 0.09

Total 9,908 670,671 21,753 1.41

Figure 39. RPL messages overhead per mote and total RPL messages overhead in the benign scenario.

On the other hand, Table 4 was extracted from the malicious network traffic dataset
(i.e., malicious “radiolog.csv”) reflecting the UDP flooding attack scenario. Similar to
Table 3, Table 4 shows, in the last column, the percentage of the RPL messages overhead
per mote which is calculated as follows: the number of RPL messages per mote over the
total number of exchanged messages within the network during the simulation time (i.e.,
702,332 messages). The last row of Table 4 contains the total number of RPL messages
(9908), UDP messages (670,671), and other protocol messages (21,753) exchanged within
the network, and the total RPL messages overhead (%).

Sensors 2021, 21, 1528 28 of 31

Table 4. RPL messages overhead of the IoT/IIoT network in the benign scenario.

RPL Messages Overhead
Number of RPL

Messages
Number of

UDP Messages
Number of

Other Messages
RPL Overhead

(%)
Mote 1 203 254,796 N/A 0.03
Mote 2 2228 28,953 N/A 0.32
Mote 3 2768 30,238 N/A 0.39
Mote 4 1976 27,260 N/A 0.28
Mote 5 2084 31,247 N/A 0.30
Mote 6 6490 298,177 N/A 0.09
Total 9908 670,671 21,753 1.41

Based on the information included in Table 4, the calculated RPL messages overhead
per mote and the total RPL messages overhead are depicted in Figure 40.

Sensors 2020, 20, x FOR PEER REVIEW 29 of 32

Based on the information included in Table 4, the calculated RPL messages overhead

per mote and the total RPL messages overhead are depicted in Figure 40.

Figure 40. RPL messages overhead per mote and total RPL messages overhead in the malicious

scenario.

As shown in Figure 39 and Figure 40, the total RPL messages overhead (1.41%) in the

malicious scenario is much less than the total RPL messages overhead in the benign sce-

nario (6.85%) because of the huge amount of the UDP messages flooding the network in

the malicious scenario.

7. Conclusions

Due to the urgent need for up-to-date, representative and well-structured IoT/IIoT-

specific datasets which are publicly available and constitute benchmark datasets for train-

ing and evaluating ML models used in AIDSs for IoT/IIoT networks, we target the gener-

ation of new labelled IoT/IIoT datasets that will be publicly available to the research com-

munity and include i) events reflecting multiple benign and attack scenarios from current

IoT/IIoT network environments, ii) sensor measurement data, iii) network-related infor-

mation (e.g., packet-level information and flow-level information) from the IoT/IIoT net-

work, and iv) information related to the behaviour of the IoT/IIoT devices deployed

within the IoT/IIoT network. In this context, this paper we presented an initial set of da-

tasets with these significant characteristics for effective training and testing of ML models

used in AIDSs for protecting IoT/IIoT networks. In particular, the provided set of datasets

consists of a) benign IoT/IIoT datasets (i.e., around 11,000 records of the benign “power-

trace” dataset and around 116,000 records of the benign network traffic dataset), and b)

malicious IoT/IIoT datasets (i.e., around 11,000 records of the malicious “powertrace” da-

taset and around 700,000 records of the malicious network traffic dataset).

In addition, in this paper, we presented in detail the approach that we adopted to

generate the initial set of benign IoT/IIoT and malicious IoT/IIoT datasets by utilising the

Cooja simulator that was the simulation environment where the corresponding benign

and attack scenarios were implemented. It is worthwhile to highlight that for the first time

and to the best of our knowledge, that the Cooja simulator, which is the companion net-

work simulator of Contiki OS (one of the most popular OSs for resource constrained IoT

devices), was used in a systematic way in order to generate IoT/IIoT datasets. In particular,

we provided a comprehensive description of the whole approach we followed in order to

Figure 40. RPL messages overhead per mote and total RPL messages overhead in the malicious scenario.

As shown in Figures 39 and 40, the total RPL messages overhead (1.41%) in the
malicious scenario is much less than the total RPL messages overhead in the benign
scenario (6.85%) because of the huge amount of the UDP messages flooding the network in
the malicious scenario.

7. Conclusions

Due to the urgent need for up-to-date, representative and well-structured IoT/IIoT-
specific datasets which are publicly available and constitute benchmark datasets for training
and evaluating ML models used in AIDSs for IoT/IIoT networks, we target the generation
of new labelled IoT/IIoT datasets that will be publicly available to the research community
and include (i) events reflecting multiple benign and attack scenarios from current IoT/IIoT
network environments, (ii) sensor measurement data, (iii) network-related information
(e.g., packet-level information and flow-level information) from the IoT/IIoT network,
and (iv) information related to the behaviour of the IoT/IIoT devices deployed within the
IoT/IIoT network. In this context, this paper we presented an initial set of datasets with
these significant characteristics for effective training and testing of ML models used in
AIDSs for protecting IoT/IIoT networks. In particular, the provided set of datasets consists
of (a) benign IoT/IIoT datasets (i.e., around 11,000 records of the benign “powertrace”
dataset and around 116,000 records of the benign network traffic dataset), and (b) malicious

Sensors 2021, 21, 1528 29 of 31

IoT/IIoT datasets (i.e., around 11,000 records of the malicious “powertrace” dataset and
around 700,000 records of the malicious network traffic dataset).

In addition, in this paper, we presented in detail the approach that we adopted to
generate the initial set of benign IoT/IIoT and malicious IoT/IIoT datasets by utilising the
Cooja simulator that was the simulation environment where the corresponding benign
and attack scenarios were implemented. It is worthwhile to highlight that for the first
time and to the best of our knowledge, that the Cooja simulator, which is the companion
network simulator of Contiki OS (one of the most popular OSs for resource constrained IoT
devices), was used in a systematic way in order to generate IoT/IIoT datasets. In particular,
we provided a comprehensive description of the whole approach we followed in order to
acquire the generated datasets within csv files from the captured raw information residing
in the Cooja simulator environment. Then, the generated datasets in csv format are ready
to feed ML algorithms for training and testing purposes.

Our goal is that the new labelled IoT/IIoT datasets generated by utilizing the Cooja
simulator should not to be considered as a replacement of datasets captured from real
IoT/IIoT networks or real IoT/IIoT testbeds, but instead to be considered as complementary
datasets that will contribute to fill the gap in the lack of publicly available up-to-date,
representative and well-structured IoT/IIoT-specific datasets that constitute benchmark
datasets for training and evaluating ML models used in AIDSs for IoT/IIoT networks.

As future work, we plan to continue working on the implementation of more benign
IoT/IIoT network scenarios and various types of IoT/IIoT network attack scenarios, with
more motes, in Cooja simulator in order to generate richer benign and malicious datasets for
more effective training and testing of ML algorithms used in AIDSs for protecting IoT/IIoT
networks such as the one described in [31]. Our intention is to make the generated rich
datasets publicly available to the research community. In addition, we will also make
publicly available the Cooja-based framework that will have been developed in order to
generate the rich datasets. This will allow researchers to reproduce datasets as well as
generate new datasets for their own scenarios without having to “reinvent the wheel”.
Furthermore, we intend to analyse the generated datasets to select the most appropriate
features for accurate and efficient detection of different types of attacks within an IoT/IIoT
network. Finally, we plan to apply a number of common ML algorithms (e.g., support
vector machines (SVMs), Naïve Bayes, k-nearest neighbour, logistics regression, etc.) to
evaluate their performance on the new generated datasets when these algorithms are used
for anomaly detection in AIDSs.

Author Contributions: Conceptualization and methodology, G.M., J.C.R., and I.E.; software, J.C.R.
and I.E.; validation, J.C.R. and G.M.; investigation, I.E., J.C.R., and G.M.; resources, I.E., J.C.R., and
M.P.; writing—original draft preparation, I.E., M.P., and G.Z.; writing—review and editing, I.E., G.M.,
and J.R.; visualization, J.C.R. and I.E.; supervision, G.M. and J.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The research work leading to this publication has received funding through the
Moore4Medical project under grant agreement H2020-ECSEL-2019-IA-876190 within ECSEL JU in
collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and
Fundação para a Ciência e Tecnologia (ECSEL/0006/2019).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Informatics 2014, 10, 2233–2243. [CrossRef]
2. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.

Comput. Appl. 2017, 84, 25–37. [CrossRef]

http://doi.org/10.1109/TII.2014.2300753
http://doi.org/10.1016/j.jnca.2017.02.009

Sensors 2021, 21, 1528 30 of 31

3. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and
Directions. IEEE Trans. Ind. Informatics 2018, 14, 4724–4734. [CrossRef]

4. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and
IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150. [CrossRef]

5. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on
Learning Techniques. IEEE Commun. Surv. Tutorials 2019, 21, 2671–2701. [CrossRef]

6. KDD Cup 1999 Data. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 19 September
2020).

7. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the IEEE
Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, ON, Canada, 8–10 July
2009; pp. 1–6.

8. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference, MilCIS 2015, Canberra,
ACT, Australia, 10–12 November 2015; pp. 1–6.

9. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the ICISSP2018, Funchal, Madeira, Portugal, 22–24 January 2018; pp. 108–116.

10. Suthaharan, S.; Alzahrani, M.; Rajasegarar, S.; Leckie, C.; Palaniswami, M. Labelled data collection for anomaly detection in
wireless sensor networks. In Proceedings of the 2010 6th International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, ISSNIP 2010, Brisbane, QLD, Australia, 7–10 December 2010; pp. 269–274.

11. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT Devices in
Smart Environments Using Network Traffic Characteristics. IEEE Trans. Mob. Comput. 2019, 18, 1745–1759. [CrossRef]

12. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset. Futur. Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

13. Hamza, A.; Gharakheili, H.H.; Benson, T.A.; Sivaraman, V. Detecting Volumetric Attacks on IoT Devices via SDN-Based
Monitoring of MUD Activity. In Proceedings of the SOSR 2019—Proceedings of the 2019 ACM Symposium on SDN Research,
San Jose, CA, USA, 3–4 April 2019; Association for Computing Machinery, Inc: New York, NY, USA, 2019; pp. 36–48.

14. Österlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-level sensor network simulation with COOJA. In Proceedings of
the Proceedings—Conference on Local Computer Networks, LCN, Tampa, FL, USA, 14–16 November 2006; pp. 641–648.

15. ITU-T. Recommendation ITU-T Y.2060 “Overview of the Internet of Things”. 2012. Available online: https://www.itu.int/ITU-
T/recommendations/rec.aspx?rec=y.2060 (accessed on 15 December 2020).

16. Qi, Q.; Tao, F. A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing.
IEEE Access 2019, 7, 86769–86777. [CrossRef]

17. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]

18. Ferrag, M.A.; Maglaras, L.; Argyriou, A.; Kosmanos, D.; Janicke, H. Security for 4G and 5G cellular networks: A survey of existing
authentication and privacy-preserving schemes. J. Netw. Comput. Appl. 2018, 101, 55–82. [CrossRef]

19. Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv.
Tutorials 2019, 21, 1636–1675. [CrossRef]

20. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,
and Solution Architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]

21. Newsome, J.; Shi, E.; Song, D.; Perrig, A. The Sybil attack in sensor networks: Analysis & defenses - IEEE Conference Publication.
In Proceedings of the Third International Symposium on Information Processing in Sensor Networks, Berkeley, CA, USA, 27
April 2004.

22. El-hajj, M.; Fadlallah, A.; Chamoun, M.; Serhrouchni, A. A Survey of Internet of Things (IoT) Authentication Schemes. Sensors
2019, 19, 1141. [CrossRef] [PubMed]

23. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating critical security issues of the IoT world: Present and future challenges.
IEEE Internet Things J. 2018, 5, 2483–2495. [CrossRef]

24. Moustafa, N.; Turnbull, B.; Choo, K.K.R. An ensemble intrusion detection technique based on proposed statistical flow features
for protecting network traffic of internet of things. IEEE Internet Things J. 2019, 6, 4815–4830. [CrossRef]

25. Clarence, C.; David, F. Machine Learning and Security [Book]; O’Reilly Media, Inc.: Newton, MA, USA, 2018.
26. Hodo, E.; Bellekens, X.; Hamilton, A.; Dubouilh, P.L.; Iorkyase, E.; Tachtatzis, C.; Atkinson, R. Threat analysis of IoT networks

using artificial neural network intrusion detection system. In Proceedings of the 2016 International Symposium on Networks,
Computers and Communications, ISNCC 2016, Yasmine Hammamet, Tunisia, 11–13 May 2016.

27. Moteiv Corporation Tmote Sky—Ultra Low Power IEEE 802.15.4 Compliant Wireless Sensor Module. 2006. Available online:
http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf (accessed on 5 December 2020).

28. Wireshark Go Deep. Available online: https://www.wireshark.org/ (accessed on 28 November 2020).
29. Amirinasab Nasab, M.; Shamshirband, S.; Chronopoulos, A.; Mosavi, A.; Nabipour, N. Energy-Efficient Method for Wireless

Sensor Networks Low-Power Radio Operation in Internet of Things. Electronics 2020, 9, 320. [CrossRef]

http://doi.org/10.1109/TII.2018.2852491
http://doi.org/10.1109/ACCESS.2020.3022862
http://doi.org/10.1109/COMST.2019.2896380
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://doi.org/10.1109/TMC.2018.2866249
http://doi.org/10.1016/j.future.2019.05.041
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060
http://doi.org/10.1109/ACCESS.2019.2923610
http://doi.org/10.1109/JIOT.2017.2683200
http://doi.org/10.1016/j.jnca.2017.10.017
http://doi.org/10.1109/COMST.2018.2874978
http://doi.org/10.1109/ACCESS.2019.2924045
http://doi.org/10.3390/s19051141
http://www.ncbi.nlm.nih.gov/pubmed/30845760
http://doi.org/10.1109/JIOT.2017.2767291
http://doi.org/10.1109/JIOT.2018.2871719
http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
https://www.wireshark.org/
http://doi.org/10.3390/electronics9020320

Sensors 2021, 21, 1528 31 of 31

30. Bandekar, A.; Javaid, A.Y. Cyber-attack Mitigation and Impact Analysis for Low-power IoT Devices. In Proceedings of the 2017
IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017,
Honolulu, HI, USA, 31 July–4 August 2018; pp. 1631–1636.

31. Amir Alavi, S.; Rahimian, A.; Mehran, K.; Alaleddin Mehr Ardestani, J. An IoT-Based Data Collection Platform for Situational
Awareness-Centric Microgrids. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Quebec City,
QC, Canada, 13–16 May 2018; Volume 2018.

	Introduction
	Threat Analysis of the IoT/IIoT Network (Perception Domain)
	Sinkhole Attacks
	Node Capture Attacks
	Malicious Code Injection Attacks
	False Data Injection Attacks
	Replay Attacks
	Eavesdropping
	Sleep Deprivation Attacks or Denial of Sleep Attacks
	Sybil Attacks
	Denial of Service (DoS) Attacks

	Anomaly-Based Intrusion Detection Systems for IoT/IIoT Networks
	Generation of Benign IoT/IIoT Datasets
	Benign “Powertrace” Dataset Generation
	Benign “Powertrace” Dataset Generation
	Benign “Powertrace” Datasets—Results

	Benign Network Traffic Dataset Generation
	Benign Network Traffic Dataset Generation
	Benign Network Traffic Datasets—Results

	Generation of Malicious IoT/IIoT Datasets
	Malicious “Powertrace” Dataset Generation
	Malicious “Powertrace” Dataset Generation
	Malicious “powertrace” Datasets—Results

	Malicious Network Traffic Dataset Generation
	Malicious Network Traffic Dataset Generation
	Malicious Network Traffic Datasets—Results

	Discussion on the Generated Datasets
	Conclusions
	References

