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Abstract: Buildings account for a majority of the primary energy consumption of the human society,
therefore, analyses of building energy consumption monitoring data are of significance to the discov-
ery of anomalous energy usage patterns, saving of building utility expenditures, and contribution
to the greater environmental protection effort. This paper presents a unified framework for the
automatic extraction and integration of building energy consumption data from heterogeneous
building management systems, along with building static data from building information models to
serve analysis applications. This paper also proposes a diagnosis framework based on density-based
clustering and artificial neural network regression using the integrated data to identify anomalous
energy usages. The framework and the methods have been implemented and validated from data
collected from a multitude of large-scale public buildings across China.

Keywords: building energy consumption; data integration; energy usage diagnosis; artificial
neural network

1. Introduction

Buildings consume 40% of global primary energy and contribute to in excess of 30%
of total CO2 emissions [1], yet building energy usage efficiency is currently distant from
the optimum, as it is estimated that as much as 16% of total energy consumption during
building operation could be conserved through proper management [2]. Costa et al. [1] put
the potential of systematic building management in reducing energy consumption between
5% and 30%. The pursuit of improving building energy usage efficiency has motivated
the advent of installing sensors and other smart metering devices for the collection of
building energy consumption monitoring data, the evaluation and analyses of which have
proved crucial in detecting anomalous energy usage patterns and ameliorating energy
usage strategies. However, despite the proliferation of sensing devices making monitoring
building energy consumption behavior easier, heterogeneity across different BEMSes
(Building Energy Management System) has been a consistent obstacle to the acquisition
of data with satisfactory quantity and quality. This lack of systematic data extraction
and integration methods from heterogeneous sources also left research on the integrated
analyses of static building properties and dynamic monitoring data vacant.

Massive and quality data are a prerequisite for effective and efficient building energy
consumption management [3]. Obviously, two categories of data are relevant in managing
building energy usage, with one being dynamic energy consumption monitoring data,
while the other being building static data. The primary sources of dynamic energy con-
sumption data, which are time-series readings over a fixed time interval, are the sensors
and smart meters physically installed within buildings, usually managed by BEMSes [2].
However, no unified data standard exists for BEMSes, and data schemes of BEMSes from
different manufacturers are usually distinct and incompatible. It currently remains a
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conundrum to integrate energy consumption monitoring data from heterogeneous data
sources [4,5]. Building static data, on the other hand, are attributes and parameters of
buildings that are time-invariant, and Building Information Modelling (BIM) is a uni-
versal technology for its digitization, which provides a faithful digital description of the
building, geometric and semantic data included. The difficulty in the integration of data
from heterogeneous sources confined analyses of building energy consumption data to
single buildings, and consequently rendered static data futile because of its invariability.
Numerous analyses and diagnoses of energy usage have been performed on the scale of
single buildings, and static data were not involved [6,7]. Logically, the static properties
of buildings, such as building area, exterior design, insulation, etc. are relevant to energy
usage decisions of buildings. Therefore, integration of energy consumption data over a
multitude of buildings introduce static building properties as new independent variables,
and reveal the potential to unveiling new patterns in energy usage not previously per-
ceived. Currently, the interaction between dynamic and static data in building energy
consumption analyses is limited, and the relationship between the building parameters
and energy performance has not been fully explored [8].

Academia has devoted much effort to solving this problem recently, as some re-
searchers have proposed the utilization of semantic web technology to enhance the inter-
action between BIM models and physical data [9–11]. These methods, however, use data
from existing systems, while it is more desirable to devise a framework for the integration
of isolated data islands, namely between BIM models and energy consumption monitoring
data, and among heterogeneous monitoring data. Researches in building energy consump-
tion diagnosis and anomaly detection, on the other hand, have been abundant, yet these
researches fail to incorporate static building information, and the relevant patterns thereof.

In this research, a unified framework for the extraction and integration of BIM models
and building energy consumption monitoring data has been proposed. A hierarchical data
model for building energy consumption monitoring data has been established in the frame-
work, and an integration method for raw monitoring data has been proposed by deducing
conversion logic from static topological information, allowing for the standardization, and
thus integration, among otherwise isolated data. On this basis, energy usage anomaly
diagnosis methods have been devised using integrated static and dynamic data, which
employs density-based clustering and artificial neural network regression.

The remaining part of this paper is organized as follows. Section 2 provides a review
of related researches in the literature. Section 3 introduces the framework for the automatic
extraction and integration of static BIM models, and dynamic energy consumption moni-
toring data. Section 4 describes the proposed methods to diagnose energy usage anomalies
with the integrated data. Section 5 contains a case study on a manifold of large-scale build-
ings across China to validate the proposed framework and methods, as well as discussions
on the results. Finally, Section 6 provides a brief summary, the conclusions, and projections
of future works.

2. Literature Review

This paper presents the design of a unified framework for the extraction and integra-
tion of static building information, and dynamic building energy consumption monitoring
data, as well as statistical learning methods based on the framework to diagnose energy
usage anomalies. This section provides a review of researches related to the topic in
literature.

2.1. Extraction and Integration of Energy Consumption Monitoring Data and Static Building Data

The primary sources of dynamic building energy consumption monitoring data are
sensors and smart meters installed inside buildings. These devices usually collect data on
a fixed time interval that are either direct utility consumption readings, such as power or
water usage, or data that reflect the operational status of the building, including indoor
environmental parameters such as room temperature, humidity, light intensity, etc. and
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operational parameters of Mechanical, Electrical, and Plumbing (MEP) equipment, e.g., the
cooling water temperature of the air conditioning system, etc. These sensors and meters
are usually managed by BEMSes, which monitor the energy usage status of buildings
throughout the operation and maintenance phase in buildings’ lifecycles, and are some-
times embedded with simple strategies to adjust energy usage through actuators based
on sensor and meter input [12]. However, no universal standards exist to guarantee the
interoperability and standardized data exchanging among BEMSes, creating difficulty
in integrating building energy consumption monitoring data from BEMSes of different
manufactures [13]. An existing framework for the interoperability among smart grids is
the National Institute for Standards and Technology (NIST) framework, which includes
protocols and standards for information management for the interoperability of smart grid
systems and devices [14], yet such standards have not been developed on building and
sub-building levels [15,16]. Multiple data models and schemes have been proposed and
implemented by BEMS manufacturers and researchers on building and sub-building levels,
despite the lack of interoperation standards [16–18]. This research established a hierarchical
model for the representation of building energy consumption monitoring data that covers
multiple granularities based on summarizing existing models.

BIM models are carriers of static building information and digital representations of
the physical and functional characteristics of buildings and attached facilities [19]. The
universally accepted neutral standard for BIM is the Industry Foundation Classes (IFC)
standard, allowing for the integration and representation of information from various
disciplines and stages in the lifecycle of buildings [20]. Yalcinkaya and Singh [21] have
identified the simulation and assessment of building energy performance as one of BIM’s
possible applications. The integration of BIM with energy consumption monitoring data
enables interoperability, visualization, automation, and integration with other systems [22].
Relevant researches are still in the nascent stage, but have seen an exponential growth in
recent years [23]. Since building energy consumption monitoring data, and time-series
sensor readings in general, are well-structured relational data conducive for Structured
Query Language (SQL) queries, the most popular method for their integration with BIM
is to either export or transform BIM data into relational databases through Application
Programming Interfaces (APIs) [24–27] or using new schemas [28–30]. Some Researchers
have developed specific query languages for BIM [31,32], or used the semantic web or
ontology approach for the integration [8,33–35].

In summary, lack of interoperability among BEMSes is a prominent problem in build-
ing energy consumption management on the scale of building groups or manifolds, with
comprehensive data models for building energy consumption data covering multiple
granularities also scarce. The involution of BIM models in energy management were also
mainly for visualization purposes, and the building contextual information has not been
sufficiently utilized. This paper presents a framework for the extraction and integration of
building energy consumption monitoring data and BIM data by establishing a hierarchical
building energy consumption data model, and proposing the corresponding data construc-
tion method from raw readings of sensors by conversion logic deduction from BIM models.
Thus, existing BEMSes could be incorporated into the framework by satisfying relevant
requirements on sensors and BIM models.

2.2. Diagnostics and Anomaly Detection of Building Energy Consumption

Anomaly detection refers to the process of detecting abnormal events not conforming
to expected patterns [36]. Anomalies are usually contextual, i.e., the same energy consump-
tion value might be considered anomalous under certain circumstances but not under
others. The primary mission of building energy diagnostics is to identify anomalous energy
usage patterns. Anomaly detection and diagnostics in building energy consumption is a
prominent topic and has been widely researched. Numerous researches have employed
historical building energy consumption data to identify anomalies. Chou and Telaga [6]
proposed a two-stage real-time anomaly detection system by comparing measures con-
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sumption against predictions. Janetzko et al. [37] proposed an unsupervised anomaly
detection system that used time-weighted historical power consumption data to perform
predictions. Wrinch et al. [38] identified anomalies by analyzing energy consumption data
in a weekly moving sliding window. Hill et al. [39] proposed a modeling approach diagnos-
ing anomalies using forward predictions, without considering contexts. Bellala et al. [40]
proposed an unsupervised clustering-based algorithm to identify anomalies among low-
dimensional embedded power consumption data. Zorita et al. [41] proposed a multivariate
technique involving climatic data and building construction characteristics to model en-
ergy consumption. Fan et al. [42] proposed a framework for excavating novel patterns for
building diagnostics using association rules.

Almost all techniques of statistical learning, both supervised and unsupervised, have
been employed in building energy consumption diagnostics, as well as ensemble learning
methods, employing multiple learning algorithms simultaneously [43,44]. Numerous
researches have also been carried out on building energy consumption prediction, which
could also be utilized for diagnostic purposes with minimal modifications [44]. In terms of
granularity, the literature spans the range from components to whole buildings [7]. Yet,
to the best of the authors’ knowledge, building energy consumption diagnostics across
multiple buildings have never been performed in building diagnostics, and therefore the
static information has not been properly addressed as part of the context of anomalies. On
the basis of the data extraction and integration framework proposed, this research proposes
building energy consumption diagnostics methods across multiple buildings, with static
building information as an integral part of the context. Both unsupervised clustering and
supervised Artificial Neural Network (ANN) regression methods have been proposed to
address different scenarios.

3. Framework for the Automatic Extraction and Integration of Building Energy
Consumption Monitoring Data and BIM Models

This paper proposes a unified framework for the automatic extraction and integration
of building energy consumption monitoring data, as well as BIM models, as illustrated in
Figure 1.
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The model is constituted of four layers. The data sources layer contains sources for
data in the framework, including sensors and smart meters for dynamic data, and extended
BIM models for static data. The data extraction layer retrieves relevant data from the
sources. For dynamic data, raw readings of the sensors and smart meters are extracted,
which are stream monitoring data sampled by the sensors and meters at regular intervals.
Existing BEMSes are also possible sources for dynamic data, through an Extensible Markup
Language (XML) protocol proposed in this research. For static data, metadata for the
sensors, as well as the building topology need to be extracted. conversion rules from raw
readings to integrated data are deduced by topological Boolean operations in the Data
integration layer, which performs the integration on the retrieved raw data following the
deduced rules to convert raw sensing data into integrated data conforming to the data
model. Finally, the data storage layer stores the integrated in both relational and NoSQL
databases, and serves data to succeeding analyzing applications. Sections 3.1–3.3 explain
the details of the framework design.

3.1. Hierarchical Building Energy Consumption Data Model and Data Storage

The cornerstone of building energy consumption data analytics tasks, and all data
analytics tasks in general, is to ascertain the data model, i.e., the inclusion and exclusion
criteria of data, and their organization and description thereof. In this research, a generic
hierarchical data model is proposed, whose hierarchy is illustrated in Figure 2, to achieve
maximum compatibility across buildings, and cover the different granularities within.
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Figure 2. Illustration of the hierarchy of the building energy consumption data model.

The data model is organized as a four-tier tree hierarchy, each containing a number of
utility consumption items corresponding to different granularities. The top tier contains
three items corresponding the whole building granularity, i.e., the overall power, water,
and gas consumption of the entire building. The top-middle tier contains the overall
consumption of heating and cooling energy of the building, whose granularity is classified
intermediate as the heating and cooling system implementation differ across buildings. For
example, buildings in northern China usually have access to centralized heating in winter,
where heating energy consumption is metered independently from power consumption,
while buildings in southern china usually use air conditioning for heating purposes in
winter, in which case heating energy consumption is essentially part of the overall electric
power consumption. Organizing the heating and cooling energy of buildings into an
intermediate level ensures compatibility with buildings of different heating and cooling
system implementations. The bottom-middle tier corresponds to energy consumption
records of building subsystems, including lighting, air conditioning, elevators, fans, etc.
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Lastly, the bottom tier contains records of the finest granularity—energy consumption
of specific facilities. Each item contains 4 attributes, as shown in Table 1, that together
uniquely identifies and describes a specific record.

Table 1. List of attributes of energy items in the data model.

Name Type Connotation

itemcode string Uniquely identifies the building and energy item
time string Time identifier formatted ‘YYYYMMDDHHmmss’
value float Value of the record
unit Unit Designates the unit of the record

In the implementation of the framework, each energy item of each building would
be assigned a code that uniquely identifies their combination, which is what the itemcode
attribute stores. The time and value attributes are trivially designed to store the time and
value of the energy consumption monitoring record. Finally, the unit attribute is of a simple
type system specifically designed to represent the units of the records, as shown in Figure 3.
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The type system is composed of three entities forming a single inheritance line. The
base entity, unit, is an interface entity representing the type system containing a dimension
array under the SI system (International System of Units, SI abbreviated from French
Système International), and is inherited by the SIUnit entity, representing units that are
decimal exponents under the SI system, such as joule, ton, cubic meter, etc. The SIUnit entity
is in turn inherited by the ConversionUnit entity, representing units that are not convertible
by decimal exponents under the SI system, such as kilowatt-hour, the most commonly
used metric for power consumption. The inheritance chain ensures the Unit attribute,
whose apparent type is the Unit base entity, could be bound to the correct underlying entity
through the dynamic binding mechanism of Object-Oriented Programming (OOP). Table 2
demonstrates the connotations of the attributes in Figure 3, as well as an exemplification
for the entity representing kilowatt-hour.

Table 2. Connotation of attributes in the unit system with example.

Entity Name Type Connotation Exemplary Value

Unit
Dimensions array [7] Dimensional array under the SI system (1, 2, −2, 0, 0, 0, 0)

UnitType enum Physical quantity measured UnitType::Energy

SIUnit
Name enum Name of the unit UnitName::Joule
Prefix int Exponent of 10 under the SI system 0

ConversionUnit
Name enum Name of the unit UnitName::Kilowatthour

Conversion float Conversion coefficient of the base unit 3600.

In this way, the proposed data model is complete and capable of representing energy
consumption data across multiple buildings and granularities. The design of the data
model, in general, is straightforward. As has been noted previously, multiple data models
for the representation of building energy data have been proposed and implemented
before, yet this data model has the advantage of the capacity for multi-building and multi-
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granularity representation, and therefore more suitable for data integration purposes. The
design of the data model is in part based on the ontological building energy consumption
data representation by Zhang et al. [45] Implementations of the framework could store
the data in either relational databases or NoSQL databases depending on application
scenarios. In general, relational databases are more intuitive and preferable in lightweight
applications. NoSQL databases have scalability advantages and thus are more suitable for
big data applications. There are also available methods for the storage of BIM data in both
relational and NoSQL databases. This research implemented a NoSQL database for the
integrated energy consumption data and BIM models, using the techniques devised by
Lin et al. [46].

3.2. Extraction Methods of Energy Consumption Monitoring Data and BIM Models

The unified data model provided a criterion for data inclusion for further analysis,
and a standardized way to organize and describe them. However, in the data sources side
resides substantial heterogeneity, as numerous classification schemes and data models
have been implemented by the existing BEMSes. In contrast, there exists the IFC standard
as a universally accepted neutral standard for BIM models. To extract valid data for the
generation of standardized data conforming to the data model, this research identifies and
proposes compulsory static data requirements. Extraction techniques are then discussed,
including an XML protocol devised for exporting data from existing BEMSes.

Standardized classification of sensors and smart meters is a prerequisite for the ex-
traction of valid dynamic data, such that the same physical quantity is encoded identically
across buildings. Table 3 lists the primary physical quantities measured by sensors recog-
nized in this research, with each assigned a code. In this way, sensors and meters in each
building could be parameterized uniformly. Note that Table 3 is not exhaustive.

Table 3. List of primary physical quantities in the classification scheme.

Code Physical Quantity Measured

U voltage
UA, UB, UC voltage of phase A, B, and C

I electric current
IA, IB, IC electric current of phase A, B, and C

WPP positive active electric energy
APP, ATF pressure, and discharge of compressed air
LIT, LRT initial and return temperature of cooling water

PM10, PM2.5 concentration of PM10 and PM2.5 particles
TMP, HUM temperature, and humidity

PH pumping lift

On this basis, sensor and meter metadata in BIM models could be standardized.
Besides the classification code of the physical quantity measured by the sensor, another
attribute the entities for sensors and meters are obliged to possess is the facility or subspace
whose energy consumption is being measured. Together with other necessary information,
such as the name, identifier, and data transmission protocol, sensors could be embedded
in BIM models through the extensibility mechanism of IFC. Such extended BIM models
constitute the data requirements for buildings to be incorporated into the framework. With
the proliferation of BIM technology applications, this requirement would be satiable by
more and more buildings in the future. Large quantities of tools and APIs readily exist
for extracting BIM and IFC data, which could be used to extract the sensor metadata and
building topologies, to be used in the data integration layer.

Data extraction for the dynamic part would be more straightforward, as sensor and
meter readings could be collected through their respective data transmission protocol.
Common IoT protocols include ZigBee, MQTT, Bluetooth, and Wi-Fi etc., which all have
readily available data extraction tools. To utilize data in existing BEMSes, this research also
proposed an XML interface for exporting BEMS data, as shown graphically in Figure 4.



Sensors 2021, 21, 1395 8 of 19

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

generation of standardized data conforming to the data model, this research identifies and 

proposes compulsory static data requirements. Extraction techniques are then discussed, 

including an XML protocol devised for exporting data from existing BEMSes. 

Standardized classification of sensors and smart meters is a prerequisite for the ex-

traction of valid dynamic data, such that the same physical quantity is encoded identically 

across buildings. Table 3 lists the primary physical quantities measured by sensors recog-

nized in this research, with each assigned a code. In this way, sensors and meters in each 

building could be parameterized uniformly. Note that Table 3 is not exhaustive. 

Table 3. List of primary physical quantities in the classification scheme. 

Code Physical Quantity Measured 

U voltage 

UA, UB, UC voltage of phase A, B, and C 

I electric current 

IA, IB, IC electric current of phase A, B, and C 

WPP positive active electric energy 

APP, ATF pressure, and discharge of compressed air 

LIT, LRT initial and return temperature of cooling water 

PM10, PM25 concentration of PM10 and PM2.5 particles 

TMP, HUM temperature, and humidity 

PH pumping lift 

On this basis, sensor and meter metadata in BIM models could be standardized. Be-

sides the classification code of the physical quantity measured by the sensor, another at-

tribute the entities for sensors and meters are obliged to possess is the facility or subspace 

whose energy consumption is being measured. Together with other necessary infor-

mation, such as the name, identifier, and data transmission protocol, sensors could be em-

bedded in BIM models through the extensibility mechanism of IFC. Such extended BIM 

models constitute the data requirements for buildings to be incorporated into the frame-

work. With the proliferation of BIM technology applications, this requirement would be 

satiable by more and more buildings in the future. Large quantities of tools and APIs 

readily exist for extracting BIM and IFC data, which could be used to extract the sensor 

metadata and building topologies, to be used in the data integration layer. 

Data extraction for the dynamic part would be more straightforward, as sensor and 

meter readings could be collected through their respective data transmission protocol. Com-

mon IoT protocols include ZigBee, MQTT, Bluetooth, and Wi-Fi etc., which all have readily 

available data extraction tools. To utilize data in existing BEMSes, this research also pro-

posed an XML interface for exporting BEMS data, as shown graphically in Figure 4. 

 

Figure 4. Graphical representation of the Extensible Markup Language (XML) protocol. Figure 4. Graphical representation of the Extensible Markup Language (XML) protocol.

The XML interface, as shown in Figure 4, has the data node within the root node,
which contains the chunk of the data, including a timestamp indicating the time when the
data are sampled, and a list of buildings whose data are further recorded in the device
children nodes. The id property of the device node provides a handle to the meter entity in
BIM models, thus a method to query the space or equipment to which the sensor or meter
is bounded through the static data models. Thus, the interface carries all the necessary
information to indicate the value and energy item of a raw monitoring record.

It has been one of the rising concerns in recent years that identifying information of
citizens has been surreptitiously solicited and abused with the advent of data collection
practices, thus violating privacy rights. In this research, the designs of the data model and
the data collection procedures from the sensors included lists of physical quantities to be
collected, among which only energy and resource consumption information of buildings
and MEP systems are included. This information, though possibly could be used for
building occupancy deduction, contains no indications for the identities of occupants.

3.3. Integration Method for Energy Consumption Monitoring Data and BIM Models

The last remaining task in the framework is to convert and integrate raw readings
extracted from the sensors and smart meters or BEMSes to data conforming to the universal
data model described in Section 3.1. Since the sensors and meters might have different
reading intervals, all the raw readings would first be aligned to sharp hours with a 1-h
interval through linear interpolation. The key to the integration resides in the metadata
requirements described in Section 3.2, as this research proposes a method to deduct conver-
sion relationships between raw data and the data model from using the static data. The
method is illustrated below in Figure 5.
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The goal of the method is to deduce a formula for the generation of each energy item
in the data model, e.g., the generation formula of the overall electric power consumption of
a specific building. Therefore, the spatial entity corresponding to the item is first identified
in the topology tree of the building, which was extracted from the BIM model. For example,
the spatial entity corresponding to the overall power consumption of the building is
the topological entity representing the entirety of the building. Then, spatial entities of
all sensors in the building that monitor the relevant physical quantity are identified in
the topological tree. In the case of electric power consumption, all meters and sensors
monitoring positive active electric energy are involved. The final step is to generate a
Boolean operation formula that takes sensor spatial entities and yields the target entity,
using valid Boolean operations (i.e., union, intersection, and difference), which could be
trivially converted to a formula of the readings of the sensors. Thus, formulae for the
conversion are deducted, and hence the framework completes.

4. Diagnostics Methods with Integrated Dynamic and Static Data for Energy Usage
Anomalies

An abundance of information is deposited in building energy consumption data, and
extraction of such knowledge through appropriate analysis methods prove invaluable to
optimizing building energy consumption management decisions. The identification of
anomalies in building energy usage, or building diagnostics, is one of the most important
and most researched applications building energy consumption data analytics. Since
anomalies are the data points that do not conform to an expected pattern or behavior,
anomaly detection tasks are essentially the learning of the underlying patterns of building
energy consumption.

Unsupervised learning refers to the learning methods on data with unknown ground
truth. Among unsupervised learning methods, clustering has been most frequently em-
ployed for anomaly detection tasks, with most researchers performing k-means clustering
on building historical energy consumption data. K-means clustering requires as input the
number of clusters to group the input data into, and groups data points into clusters of
hyperspheres in the metric space. However, the number of clusters is hard to estimate
beforehand, and the data points produced by the same energy usage pattern are not always
hyper-spherical in the metric space. Therefore, an unsupervised learning approach using
density-based clustering is proposed in this research, to eliminate explicit anomalies in the
monitoring data.

Unlike unsupervised learning, supervised learning methods are trained on labeled
data, and ANN is one of the most powerful and popular models for supervised learning.
ANN is capable of regressing non-linear and high-order patterns among the input and out-
put, is most often used to make predictions in building energy consumption data analytics.
Authentic data are then compared against forward predictions for diagnostics, where data
points whose deviation from the prediction exceeds a threshold are considered anoma-
lous. Building static data, or building context, logically, are relevant to building energy
consumption, yet have never been the subject of regressions against energy consumption
data in the researches, since previous researches have all been performed on the level of
single buildings or lower, where static data are invariant. On the basis of the framework
described in Section 3, this paper proposes an ANN model regressing over input data
from a multitude of buildings, with building static data treated as input parameters. This
ANN model is used to identify implicit anomalies that are beyond the scope of clustering
methods.

4.1. Density-Based Clustering Method for Explicit Anomaly Detection

Explicit anomalies are anomalies caused by errors in the facilities or sensing devices,
are usually apparent to building managers. For example, negative reading of electric energy
consumption would be classified as explicit. Clustering methods are more advantageous
in identifying explicit anomalies than supervised learning methods as they are devoid of
the problem of overfitting. This research proposes a density-based clustering algorithm
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to identify explicit anomalies in building energy consumption data, which includes the
following 4 steps. The flowchart of the algorithm is as shown in Figure 6.
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(1) Input Generation

Since the goal of this algorithm is to identify and eliminate explicit anomalies, it
suffices to perform the analyses within buildings instead of across buildings. This method
performs clustering over two-dimensional data, with cross-sectional historical data of the
same energy item from the same time of day of the same building as one dimension, and
temperature as the other, since it is the most significant meteorological factor affecting
energy usage. Temperature records are available from local meteorological agencies.

(2) Data Standardization

Density-based clustering algorithms require as input a distance metric among data
points, as well as a threshold for points to be considered neighbors. To diffuse the difference
in the unit measurements of the two dimensions, data standardization is performed on the
input, to convert both dimensions into standard normal distributions.

(3) Parameterization and Clustering

It suffices to use Euclidean distance as the distance measurement since it is conserva-
tive. Another parameter to designate is the minimum number of points for a neighborhood
to be considered cluster, denoted as m or minPts, usually one more than the number of
clusters. The final and most vital parameter is the distance threshold for two points to be
considered neighbors, known as the epsilon. In this research, the epsilon is determined
using the knee locator. To identify the knee locator, first the distance to the mth closest point
for each point has to be found and stored in an array. Then, the array is sorted indexed in
ascending order. Finally, the point with the maximum curvature is found, and the distance
thereof is taken as the epsilon. The last step in this part is to perform Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [47] clustering with the determined
parameters. DBSCAN algorithm considers points closer than epsilon to be neighbors, and
neighborhoods with at least m points to be a valid cluster. Points not belonging to any
neighborhood would be considered explicit anomalies.

4.2. Artificial Neural Network Regression for Implicit Anomaly Detection

Implicit anomalies refer to anomalies that are the result of changing energy usage
patterns, which are usually not visually extruding. ANN is a powerful statistical learning
method that potentially learns non-linear and high-order patterns in the input data, yet
with known weaknesses in the tendency of overfitting. With explicit anomalies eliminated
by the clustering algorithm described in Section 4.1, it follows that ANN could be utilized
to diagnose implicit energy usage anomalies. The idea of anomaly detection with ANN is to
train the network to make forward predictions, and use the predicted value as a benchmark
for anomaly determination. To fully exploit the relevance between static building context
and energy usage, this research proposes an ANN regression algorithm with building static
properties as input. The network design is as shown in Figure 7.
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Figure 7. Structure of the artificial neural network.

The network model in this algorithm is a conventional multi-layered backpropagation
neural network. It has three layers: an input layer, a hidden layer, and an output layer. The
input layer includes a number of neurons representing a series of input parameters, divided
into four groups. The first group represents the static building information, and comprises
here of three parameters: building area, building orientation, and building function. The
building area is valued as the total building area measured in square meters, and building
orientation is denoted by the number of degrees it takes to rotate from due north to the
direction the façade of the building is facing clockwise. The building function is represented
using a dummy variable corresponding to an enumeration of building functionality. The
second group contains meteorological data, and here includes the temperature in Celsius
degrees and relative humidity in percentage points. Then, a number of historical energy
consumption data immediately preceding the time to be estimated are organized in the
third group, known as the historical data. Finally, the day of week, numbered 1–7, and
hour of day, numbered 0–23, constitute the fourth group, the temporal data. The output
layer has a single neuron for the dependent variable, i.e., the energy consumption to be
estimated. The hidden layer has a number of neurons depending serving as relays between
the input and output. Weights in the connections are generated at random from a gaussian
distribution at initiation, and adjusted based on the error feedback once the training starts
using Levenberg–Marquart backpropagation algorithm.

Since explicit anomalies have been eliminated previously by the clustering algorithm,
overfitting should be expected at a minimum level. The logistic sigmoid function is used
as the activation function in each neuron.
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5. Case Studies and Discussions
5.1. Framework Implementation

To validate the extraction and integration methods, the universal data model, the
framework has been implemented as part of an energy consumption management system
construction effort. A total of 234 large public buildings from 11 cities across China
have been incorporated into the framework after satisfying the metadata requirements,
and a NoSQL database based on Hadoop has been deployed on the cloud end to store
collected data. The sensors and meters in these buildings have been surveyed and tabulated
following the data requirements described in Section 3, as well as built into corresponding
BIM models through the extension mechanism of IFC. Figure 8 shows 11 cities pinned on
the map where the 234 buildings are located.
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Figure 8. Geographic distribution of buildings included in the system.

To date, the framework has been running for almost two years, covering a total
building area of more than 12 million square meters. The sensors and smart meters collect
information mostly every 5 min, and the raw data are integrated to be conforming to
the data model with a time interval of 1 h. To date, more than 100 million integrated
records have been accumulated in the storage, serving as valuable resources for not only
diagnostics but numerous data analytics applications. Figure 9 shows the BIM model,
outside photo, as well as monitoring data of one of the buildings, the Dalian University
of Technology Innovation Park building. The monitoring data, plotted in the right half
of the figure, are integrated records summarized daily in September 2020. The top right
graph shows overall building power consumption, and the bottom right graph shows
lighting (green), cooling (pink), and heating (brown) energy consumption in the building
respectively. The unit of the vertical axis in both graphs is kilowatt-hour.
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5.2. Testing of the Clustering Algorithm for Explicit Anomaly Detection

The density-based clustering algorithm has been validated using data from the
Xinzhuang Comprehensive Building, a large-scale public building located in Xuhui district,
Shanghai, China. The building measures 22 m in height, with seven floors aboveground,
and one floor underground, totaling an area of 9992 square meters. Figure 10 is a photo of
the building.
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Figure 10. Information of Xinzhuang comprehensive building.

The input data for the algorithm are two-dimensional data comprised of outdoor dry-
bulb temperature readings retrieved from local meteorological agencies, and the overall air
conditioning subsystem power consumption of the building. Data at 15:00 each weekday
from February to October 2020 are used. The data are then standardized so that both
dimensions are converted to follow standard normal distributions. Euclidean distance is
used as the distance metric for the standardized data points, while the minimum number
of points for a neighborhood to be considered a cluster, m, is chosen to be 3, one more than
the dimensionality. The epsilon is located using the knee locater, as described in Section 4,
followed by DBSCAN clustering. Figure 11 shows the graph for knee locating, as well as
the clustering result.

Figure 11a demonstrates the graph for knee locating, where the sorted array of 3rd
closest distances is plotted against ordinals. The knee is defined as the point on the curve
with the greatest curvature, or equivalently, the smallest radius of curvature. Figure 11b
demonstrates the clustering result, where colored points represent clusters, and black
points represent detected anomalies. The two detected anomalies are indeed visually
explicit, and have been successfully identified. It could also be noted that the two clusters
are of arbitrary shape instead of spherical, which implies k-means clustering would not
work as ideally if applied.
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5.3. Testing of the Artificial Neural Network Regression Algorithm for Implicit Anomaly Detection

To validate the implicit anomaly detection method using artificial neural network
regression with integrated static data, data from 10 large-scale public buildings in Shanghai
are used to supply variability for static building information. There are shopping malls,
office buildings, hotels, and hospitals among the 10 buildings, whose building function
attributes are assigned the dummy values of 1–4 respectively. The overall power consump-
tion data of the 10 buildings from November 2019 to October 2020 are used, with an interval
of 1 h after integration (i.e., 24 records per building per day). Contemporary meteorological
data are retrieved from local meteorological agencies, including dry-bulb temperature,
and relative humidity. Temporal data that represents the day of week and hour of day
are also generated. Six distinct Sliding window sizes between 4 and 24 have been used,
and the number of hidden neurons varied between 10 and 100. The dataset was randomly
divided into a training set and a testing set by a ratio of 9:1, and the training continues
until improvement of loss is less than a preset tolerance of 0.0004. The prediction result
is evaluated using Rooted Mean Squared Error (RMSE). Since the algorithm diagnoses
anomalies through forwarding predictions, it follows that more accurate predictions on
authentic data indicate better diagnostic performances. The influence of the number of
hidden neurons and the length of the sliding window is shown in Figure 12.
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Figure 12. Influence of hidden neuron number and sliding window length on prediction results.

Each line in Figure 12 represents the relationship between the RMSE of the prediction
result on the testing set and the number of neurons in the hidden layer. It could be seen
that the RMSE decreases steadily with the increase of neurons in the hidden layer before
reaching 80, and remains mostly stagnant or slightly deteriorates thereafter, while a wider
sliding window generally leads to better prediction results before reaching 18, especially
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under the circumstances where more hidden neurons are present. It could also be seen
that the impact of sliding window width on the result is more significant and visible than
the hidden neuron number. Therefore, in the following tests, 80 neurons are used in the
hidden layer, and the width of the sliding window of historical power consumption data
immediately preceding the time predicted is set to be 18.

To test the validity of introducing static data in the input, a comparison experiment
was performed. Two models were trained independently, with identical model parameter
settings as described in the paragraph above. The same data are used as in the previous
experiment, and the same train–test split was applied to the input of both models. The
only distinction between the models is that one model has to build static data in the input,
while the other does not. Figure 13 demonstrates the prediction results of the two models
on the same testing set.
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input.

In Figure 13, the predicted power consumption values are plotted against the mea-
sured values, or the ground truth. Figure 13a shows the prediction result of the model with
static data in the input, while Figure 13b shows the result of the other model. It could be
noted that the prediction results of the two models are generally acceptable, as the points
in the graphs are generally distributed along the diagonal line. The model with static data
input outperforms the other with a moderate margin, as the RMSE of the prediction result
is around 1 less than that of the other. Moreover, the coefficient of determination, or R2, of
the regression on the left is greater than that on the right, indicating that additional energy
consumption variations are explained by the static data.

5.4. Discussions

For the validation of the framework, the extraction and integration methods, and
the diagnostics algorithms proposed in this research, an implementation of the system
was presented in the case study, with more than 200 buildings accessed for data. The
diagnostics algorithms have also been experimented, using data extracted and integrated
into the framework. The achievement has supported the effectiveness and feasibility
of the data extraction and integration methods. The experiment result of the explicit
anomaly detection algorithm using density-based clustering also proved successful, as the
visually explicit anomalies have been correctly identified and eliminated. Also, since the
clusters in the result are of arbitrary shape, the performance of k-means clustering under
the same circumstance could be put into question. Finally, the experiment result of the
implicit anomaly detection method using ANN regression proved that the introduction
of static data is of value, and improves the prediction result by a moderate margin. This,
retrospectively, proves the value of the unified data extraction and integration framework,
which made regression on the scale of building multitude possible.
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This research, inevitably, is not devoid of vulnerabilities. The authors have identified
the following problems that need further improvements.

(1) The feasibility of the extraction and integration methods depends on the quality of
static metadata. Though BIM has been increasingly universal in the Architecture, En-
gineering, and Construction (AEC) industry, its application in building Operation and
Maintenance (O&M) management is far from ubiquitous. Even under circumstances
where the BIM model is present, the inclusion of the stipulated metadata in the model
is not guaranteed, and costs extra time and labor to complement.

(2) Although the anomalies identified in the clustering experiment are visually explicit,
there lacks a proper quantitative measurement for the clustering result. Intra-cluster
similarity, in this case, is not well-defined, and an appropriate indicator remains to be
worked out.

(3) The performance of the ANN could potentially be improved by normalizing input
data, especially static building data, to accelerate convergence and prevent local
optima stagnations. However, the normalization of input could be canceled out by
linear transformations of weights in the process of training, thus theoretically input
normalization does not affect training output. Due to the simplicity of the network
employed in this research, the authors have also not found statistically significant
improvements to the prediction accuracy by the introduction of input normalization.
It is nonetheless noteworthy that in more complex networks, this could be overturned.

(4) The results of the ANN regression experiment, although demonstrated the effective-
ness of the introduction of static data in the diagnostics, also manifested its magnitude
of improvement is only moderate. The improvement in the prediction results cannot
be guaranteed to justify the extra cost of implementing the framework. However,
some more relevant static data were not available to the authors for the experiment,
such as exterior transparency, insulation thickness or the coefficient of heat transfer of
the walls, it is possible that further introduction of these variables would continuously
enhance the prediction results. Moreover, from an absolute perspective, the error
reported in this research is higher than in similar works than applied neural networks
in time-series predictions. Despite the differences in data quality, network design
and complexity, and input selection, this also signals the potential to further enhance
prediction performances [48–51].

6. Conclusions and Future Works

Much research has been conducted on building energy consumption data, and sensing
data in general, extraction and integration, and many practical BEMSes are implemented
and installed in buildings. However, interoperability among heterogeneous BEMSes
remains a problem, and a universal data exchange method for integrating energy consump-
tion monitoring data from different buildings remains absent. Numerous studies have also
been done on the diagnostics of building energy usage, with researches employing ANN
particularly abundant. Yet, the problem of overfitting in supervised learning has not been
overcome due to data noises, and building static data have never been considered for the
lack of integrated dynamic and static data.

In this research, a framework for the automatic extraction and integration of building
energy consumption monitoring data is proposed, containing a unified hierarchical data
model for the description of building energy items covering different granularities, and
corresponding data extraction techniques involving an XML protocol for exchanging
data with BEMSes, and data integration techniques by conversion formulae deduction
from topological data and metadata. On this basis, a density-based clustering algorithm
along with the parameterization method was proposed to identify and eliminate explicit
anomalies, to improve data quality for the succeeding regression. Then, an ANN regression
method with building static data in the input is proposed to identify implicitly anomalous
energy usage patterns. The methods and algorithms have been validated and tested in
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experiments, proving the value of the framework, and the effectiveness of the diagnostics
methods.

For future research, the utilization of ensemble learning in the diagnostics combined
with static input is a possible direction for further studying. Appropriate indicators for
the clustering algorithm and further incorporation of more relevant static attributes are
also worthy topics. Hardware implementations of the network would also be within
consideration, should the performance of the methods improve further.
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