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Abstract: Presentation attack artefacts can be used to subvert the operation of biometric systems by
being presented to the sensors of such systems. In this work, we propose the use of visual stimuli
with randomised trajectories to stimulate eye movements for the detection of such spoofing attacks.
The presentation of a moving visual challenge is used to ensure that some pupillary motion is
stimulated and then captured with a camera. Various types of challenge trajectories are explored on
different planar geometries representing prospective devices where the challenge could be presented
to users. To evaluate the system, photo, 2D mask and 3D mask attack artefacts were used and
pupillary movement data were captured from 80 volunteers performing genuine and spoofing
attempts. The results support the potential of the proposed features for the detection of biometric
presentation attacks.

Keywords: biometrics; face recognition; presentation attack detection; sensor-level spoofing; gaze track-
ing

1. Introduction

Despite their widespread use and acceptance in an ever-increasing range of applica-
tions, biometric person recognition systems remain vulnerable to sophisticated spoofing
attacks that can undermine the trust in them [1]. This type of spoofing is a direct attack on
the sensor and is also known as presentation attack. Such presentation attacks use artefacts
such as photos or masks that may be created from the previously captured data of genuine
users and then presented at the system sensor(s). In this way, without any or much prior
knowledge about the internal operation of the biometric system, a fake biometric sample of
a genuine user can be presented by an impostor to gain unauthorised access. To detect such
sensor-level attacks, it is necessary to automatically recognise if any artefacts are being
used and establish that a genuine user is present at the sensor providing the “live” sample.

This paper presents novel features, based on stimulated pupillary movements, for
presentation attack detection (PAD), extending our work originally reported in [2]. The
users’ gaze is directed along a random path presented via a display device. The accuracy
with which this path is followed by the users’ gaze is then used as a means of detecting
presentation attacks; the underlying assumption being that the use of an attack artefact
such as a photo or mask by an imposter makes it more difficult to follow the path of the
stimulus accurately. Different stimulus trajectories, durations, planar geometries and attack
artefacts are evaluated through data captured from 80 volunteers. The results are discussed
and compared with other approaches for presentation attack detection. While our previous
work [3] was able to deal with video attacks, the scope of this work is limited to photo and
mask attack detections only. The proposed approach does not protect against video replay
attack. The focus of this work is the reduction in the user interaction time required for the
mask and photo attack instruments while considering a more restrictive device geometry
to simulate a mobile device application.
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The paper is organised as follows. Section 2 provides an overview of the state-of-the-
art related to presentation attack detection. Section 3 describes the proposed techniques
including two different types of challenge trajectories, and the feature extraction technique.
Section 4 presents the evaluation protocol and the experimental results and finally Section 5
provides conclusions and suggestions for further work.

2. State of the Art

A wide range of different approaches have been reported by researchers for biometric
presentation attack, or alternatively “liveness” detection, which may be categorised as “pas-
sive” and “active”. Passive approaches are characterised by not requiring the cooperation
of users or even their conscious participation in the detection process. They may exploit
involuntary physical movements, such as spontaneous eye movements, or static features
that may indicate the presence and use of an artifact. By contrast, active approaches require
the engagement of the user with the detection process.

2.1. Passive Techniques

Eye blinks have been used as a means of human–computer interaction [4,5]. Being
a natural bodily function, the opening and closing of the eyelid has also been used for
the biometric presentation attack detection. Lin Sun et al. [6,7] used conditional random
fields (CRFs) for eye blink detection as a means of establishing face liveness. Temporal
information from the stages of the eye-blink process were extracted and was used to
determine liveness.

In photo attacks based on printing a photograph of a genuine user on paper as artefact,
some texture attributes may be introduced which are not present in the images when
captured directly from the genuine users’ faces. Schwartz et al. [4] used such a passive
approach for photo attack detection based on a combination of texture, colour and shape
information. Feature vectors thus formed combined the low-level feature descriptors
comprising spatial and temporal information and used partial least squares regression to
differentiate between the genuine and spoof images or videos. Experiments were carried
out to validate their method with datasets of still images and videos. They used the
NUAA dataset and the experiments showed that the methods were effective for photo
attack detection.

Similarly, in video replay attacks it has been reported that distinctive features com-
monly appear in the information acquired by the biometric sensor which can be used for
attack detection. Pinto et al. [5] analysed the noise characteristics which are generated
during such attacks. The Fourier transform was used to probe the captured videos to
extract such noise properties for presentation attack detection.

Nguyen et al. [8] also introduced a parametric approach for face PAD using a statistical
model of image noise for the skin regions of the face. Images from the photo attack artefacts
(either printed or projected images) reveal specific textural information caused by the
presentation process which make these different from images captured from genuine
presentations. Noise model parameters were derived only from genuine presentations.
Their proposed system outperformed the selected benchmarking reference systems when
the attack types were unknown.

Using LBP-based micro texture analysis, Maatta et al. [9] recommended an approach
centred on reflective characteristics of different objects. The differences between genuine
and printed photos reveal that genuine and printed photos reflect light differently. Face
prints may consist of jitter and banding which can be detected with texture and local
feature analysis. In their work, facial images were divided into several local regions and
three descriptors were extracted from each block. The LBP operator was applied on the
normalised face image.

The three-dimensional nature of genuine facial presentations at the biometric sensors
is another source of information for detecting photo and video attacks. The 3D facial
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structure was used by Lagorio et al. [10] for presentation attack. Their proposed approach
could be deployed in either 2D or 3D face recognition systems to detect spoofing attacks.

2.2. Active Techniques

The category of active techniques for the presentation attack detection includes sys-
tems based on a challenge–response interaction with the user. In such systems, the user is
asked to perform specific tasks to establish their presence and intentional engagement with
the biometric process. Examples of such tasks include speaking specific words or phrases
or moving parts of the body.

Mouth movements along with eye movements were used by Singh et al. [11] for
presentation attack detection. The random generation of challenge sequences was used to
prevent the success of sophisticated presentation attacks.

The use of controlled illumination can also help in detecting presentation attacks.
Smith et al. [12] proposed an approach to counter replay attacks on smart devices using
different screen colours to illuminate the user’s face. The corresponding reflections from
the face due to these random colours were then analysed to determine if an attack artefact
was present.

Frischholz et al. [13] explored a challenge–response approach where the users were
given instructions to randomly look in certain directions. The system estimated the head
pose of the user and compared it to the instructions given by the system. These estimations
were used to classify the genuine and presentation attacks.

The direction of gaze can be a rich source of information for presentation attack
detection. Ali et al. [14] was the first to explore novel gaze-based approaches to detect
presentation attacks. Ali et al. [2,14–19] have subsequently presented a number of novel
gaze-based approaches to presentation attack detection. A visual target with randomly
assigned trajectories were shown on the display screen for the user to follow with eye
(and head) movements. Extracted features from the captured images mainly evaluated the
consistency of the eye movements to estimate the liveness of the source. They also explore
the impact of tinted glasses on such gaze-based spoofing detection.

Cai et al. [20] also reported a gaze-based system where the user is required to look
at points placed on a display screen. For each user a gaze estimation model was trained.
The difference between the predicted and the measured points provided the information
needed for detecting presentation attacks.

There have also been several survey papers [21–23] published recently which can
provide a more comprehensive coverage of the state of the art of presentation attack
detection research for face biometric systems.

Several datasets [24–33] have been used to test, evaluate, and compare face–PAD
methods. However, the scenarios addressed in the available public databases are mostly
photo and video attacks. With the development of 3D printing technologies, 3D masks
are becoming a more effective way for presentation attacks. Most 3D PAD datasets are
based on wearable hard-resin or silicone masks. Wax figure face databases were reported
in [34,35] for super-realistic 3D presentation attack research. For the work presented in this
paper, a database has been locally collected as none of the public databases include the type
of challenge–response, artefacts and device formats, which are investigated in this paper.

This paper extends the work in [2] by exploring different types of randomised chal-
lenge trajectories. It investigates the impact of challenge type and duration on the accuracy
of attack detection for different device form factors. This particular feature was based on
the relative movement of the pupil within the eye socket. Details of the implementation
are described in the following Section.

3. Proposed Technique

Figure 1 shows a block diagram describing the main components of the proposed
system. A graphical stimulus on a visual display explicitly directs the eye movements
of the user and the camera (sensor) which captures a series of facial images during this
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process. For the experiments reported in the following section, the visual stimulus was
a cross shape moving along a set of randomly generated paths at uniform speed. The
system extracts facial landmarks from the captured frames. These landmarks, such as eye
corners, are then used to compute various features, which are then used to detect whether
a presentation attack, using an attack artefact, has been attempted.
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Figure 1. The block diagram of the proposed presentation attack detection (PAD) system. [RPD = Relative Pupillary Dis-
placement].

3.1. Challenge Trajectories

In this work, two different challenge trajectories were used to direct the eye movements
of the users: Lines and Curves as illustrated in Figure 2. The start and end points are
randomly chosen for each presentation. The representation in Figure 2 illustrates a trace of
the stimulus at the end of the presentation. During the presentation, only the stimulus as a
small moving shape (‘x’) was visible to the user to elicit their natural head–eye movements.
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Figure 2. Samples of the random trajectory used as a challenge during the data collection: (a) Lines; and (b) Curves (the
labels’ “start” and “end” are added for the clarity of illustration only).

The Lines challenge trajectory is composed of a set of connected straight lines along
which the graphical stimulus moves at a constant speed. Each attack detection session may
contain a number of line segments with an average of 1 s per line.

The Curves challenge has a very similar design to the Lines challenge, except that the
stimulus moves along randomised curved paths. The curved paths are generated by fitting
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a spline function on a number of randomly generated control points. The Curves challenge
thus provides an alternative stimulus to encourage the smooth pursuit of gaze.

In a practical application, it is anticipated that only a short presentation of the stimulus
(of the order of a few seconds) may be sufficient to detect presentation attacks. However,
the data collected from volunteers were of much longer duration for the purpose of evalua-
tions. These data were then partitioned into shorter segments and used in experiments to
establish the trade-off between the duration and attack detection accuracy. This longer data
capture duration may also provide useful data for assessing the impact of fatigue on the
effectiveness of the system as well as any learning effects by attackers that may improve
their threat potential.

3.2. Facial Landmark Detection, Feature Extraction and Classification

The Chehra Version 3.0 [36] software was used to process the facial images in order to
extract up to 59 facial landmarks. Features were extracted in the proposed scheme using
the coordinates of the landmarks around the eye regions as described below.

Figure 3 shows the periocular landmarks extracted from each eye. The distances of
these points from the corresponding pupil centres form the basis of the proposed feature.
The key motivations behind such features were that they capture eye movements which
are less impacted by head movement/pose and when normalised, are not affected by scale,
tilt, etc.
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Let R be a set of these landmarks from a series of ‘N’ facial images acquired during a
user interaction:

R = {r1, r2, · · · , rn, · · · , rN}, rn = {(uni , vni )}, (1)

where (uni , vni ) is the ith landmark location of the nth image frame, and ‘m’ periocular
landmarks along with the pupil centres were extracted here (i = [1,m]).

For each image frame, a set of ‘m’ normalised Euclidean distances were calculated
between the centre of the pupil and the landmarks on the corresponding eye socket as:

Dn = {dn1 , dn2 , dn3 , dn4 , . . . , dnm}. (2)

All Dn values were normalised by Dnnor where Dnnor is the Euclidean distance between
the left and right corner of the relevant eye sockets in the image.

D =



D1
D2
...

Dn
...

DN


=



d11 d12 d13 d1m

d21 d22 d23 d2m
...

...
... · · ·

...
dn1 dn2 dn3 dnm

...
...

...
...

dN1 dN2 dN3 dNm


(3)
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The nature of the pupillary motion during the challenge–response exercise can now be
modelled from the distribution of these normalised distance values and in this particular
study, were represented by the standard statistical attributes such as

Dvar = var(D)
Dmax = max(D)
Dmin = min(D)

(4)

A collection of these then forms the proposed feature vector for presentation attack de-
tection:

F = [Dvar, Dmax, Dmin]. (5)

In this implementation, separate feature vectors are extracted from each eye and used
for attack detection independently. These corresponding outcomes are then combined
using the product fusion rule for the final decision.

Let there be C classifiers each independently processing the different features extracted
from different facial landmarks. Each classifier generates class-wise scores (e.g., a posteriori
probabilities for each of the Ω classes) whether the attempt is genuine or one of the
spoof attacks:

scorei(ω) = classi f ieri(F), 1 ≤ i ≤ C, 1 ≤ ω ≤ Ω (6)

In this implementation, we had two classifiers (C = 2) analysing the feature vectors
from each eye. The number of classes is also two (‘genuine’ or ‘attack’ presentation).

The ‘product rule’ fusion [37] combines these individuals scores (assuming mutual
independence) and the decision is assigned to the class giving the highest score as shown be-
low:

Overall_score(ω) = ∏i scorei(ω), 1 ≤ i ≤ C (7)

Decision = arg maxω (Overall_score), 1 ≤ ω ≤ Ω (8)

4. Experimental Evaluation

Three types of attack artefacts were used here in order to evaluate the proposed
techniques. The attack scenarios assume an impostor attempting to subvert the biometric
system by displaying a high-resolution image of a genuine user on a tablet screen (photo
attack), or a high-quality printed colour photo with holes in place of the pupils held in
front of the impostor’s face as a mask (2D mask attack) or presenting a three-dimensional
mask constructed using the genuine user’s data (3D mask attack) [17].

Eighty adult male and female participants from a range of ethnic backgrounds were
recruited to evaluate the proposed system while acting as both genuine users and impostors.
The number of participants was similar to that used in other published work in the
presentation attack detection and should be sufficient to illustrate the potential of the
proposed approach. Figure 4 illustrates the hardware setup for data acquisition as well as
snapshots of user attempts (both genuine and impostor attacks). Figure 4a is an example of
a genuine attempt, Figure 4b shows projected photo attack, and Figure 4c,d show 2D mask
and 3D mask attacks, respectively.

Two different device geometries were simulated on a desktop display for system
evaluation. Active screen areas of dimensions 6.45 × 11.30 cm2 and 15.87 × 21.18 cm2 were
used, which corresponds to typical handheld mobile phone and tablet devices, respectively.
These formats were envisaged the most likely ones that may be used while accessing
services through mobile devices. Acquired data were partitioned at the 60:40 ratio for
training and test purposes while the k-NN schemes were used for PAD classification.
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Figure 4. Data collection process: (a) genuine attempt; (b) photo attack; (c) 2D mask attack; (d) 3D
mask attack; and (e) the setup used for data acquisition.

The Receiver Operating Characteristic (ROC) curves for photo, 2D mask and 3D
mask attacks for the tablet format with the Lines challenge for attempt durations of 5 s are
given in Figure 5a. Here, True Positive Rate (TPR) relates to decisions where genuine user
attempts are correctly identified whereas False Positive Rates (FPR) are presentation attacks
not detected by the system. While the 2D and 3D mask attacks are relatively easy to detect
using the Lines challenge trajectory type, photo attack detections were significantly more
difficult. This can be due to the fact that images captured from the photo attacks are smaller
in size and of lower quality, making gaze feature extraction more susceptible to noise.
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Figure 5. ROC curves for the photo, 2D mask and 3D mask. Stimulus trajectory: Lines. Form factors:
(a) tablet format; and (b) phone format.

The ROC curves for the three attack scenarios in the phone format are given in
Figure 5b. The photo attack again appears to be relatively harder to detect compared to the
2D and 3D mask attacks which are easy to detect. 3D attacks are attacks which are slightly
harder to detect compared to 2D mask attacks.

Table 1 provides a summary of the performance figures for the photo, 2D mask and
3D mask attacks both in Tablet and Phone formats at various FPR settings. The system
performance values are reasonably high at 10% FPR. However, as the FPR values are
lowered, the performance, especially of the photo attack detection, drop significantly at
lower FPRs. Especially for the phone format, at 1% FPR, the TPR values dropped to as
low as 16%. Nevertheless, in cases of 2D and 3D mask attacks, the reduction in system
performance was much smaller compared to the photo in both tablet and mobile format.
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Table 1. TPR at various FPR settings (trajectory: Lines; duration: 5 s).

Format Attack Type
TPR (in %)

@FPR = 0.01 @FPR = 0.02 @FPR = 0.03 @FPR = 0.05 @FPR = 0.10

Tablet

Photo 69.5 76.4 80.2 85.6 91.0

2D Mask 93.2 96.8 97.4 97.8 98.2

3D Mask 90.4 93.6 95.6 97.6 98.7

Phone

Photo 16.1 27.0 35.0 47.0 66.0

2D Mask 98.5 99.0 99.3 99.6 99.7

3D Mask 93.2 96.2 97.4 98.2 99.1

Table 2 provides a comparison of the performance of the three PAD cases in both Tablet
and Phone formats for various challenge time durations. In most cases, the performance
remains almost unchanged for 3, 5 and 10 s challenge durations. This suggests that short
duration challenges may be acceptable, thus enhancing the usability of the proposed
approach. Performance in photo attack detection (esp. for the phone format) has increased
with longer durations, indicating that for some difficult cases, relatively longer challenges
can improve the robustness of the system.

Table 2. TPR at FPR = 0.10 for various challenge durations (in sec.) (trajectory: Lines).

Format Attack Type
TPR (in %)

3 5 10

Tablet

Photo 88.3 91.0 88.4

2D Mask 98.4 98.2 98.4

3D Mask 97.9 98.7 97.9

Phone

Photo 58.0 66.0 76.0

2D Mask 99.3 99.7 99.8

3D Mask 97.1 99.1 99.1

The next set of results explore the impact of a challenge scenario comprising smooth
pursuits only and report on a set of experiments with data which were captured while
using the Curves challenge. The purpose of these experiments was to check the effect of
the challenge trajectory design on the performance of the system. It is envisaged that the
abrupt directional changes present in the Lines stimuli may have had detrimental effect
(such as trigger large head movements) and the new Curves challenge will inspire a smooth
pursuit of gaze. Once again, all three attack artefact types, photo, 2D and 3D masks were
used and the tablet and phone challenge geometries were investigated.

Figure 6 presents the ROC plots for the Curves challenge trajectory for the three attack
artefact types. The proposed method again performed very effectively in distinguishing 2D
mask attacks from genuine presentation. The performance for the 3D mask attacks, while
not as good as that for 2D mask detection, was reasonably close. However, significantly
low performance was observed for the photo attack detection for both of the form factors.
Table 3 provides a summary of the results for various FPR settings with the Curves challenge
trajectory. When compared with the Lines challenge figures in Table 2, the TPR values for
the Curves stimulus were relatively lower for most of the attack scenarios except that the
photo attack detection rate for the phone format improved. This indicates that there exists
some complementarity between these two challenge trajectories and a hybrid one may
prove optimal.
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Figure 6. ROC curves for the photo, 2D mask and 3D mask. Stimulus trajectory: Curves. Form factors:
(a) tablet format; and (b) phone format.

Table 3. TPR at various FPR settings (trajectory: Curves, duration: 5 s).

Format Attack Type
TPR (in %)

@FPR = 0.01 @FPR = 0.02 @FPR = 0.03 @FPR = 0.05 @FPR = 0.10

Tablet

Photo 24.0 33.9 41.5 51.5 68.0

2D Mask 80.0 87.8 90.5 93.6 97.6

3D Mask 53.0 64.8 72.1 81.0 90.0

Phone

Photo 42.1 55.8 62.5 71.0 83.0

2D Mask 94.0 97.0 98.0 98.9 99.5

3D Mask 72.5 82.0 87.0 91.9 96.2

The performance of the proposed PAD system using the Curves challenge trajectory
at 10% FPR is summarised in Table 4 for various challenge durations. Unlike the Lines
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challenge, TPR values improved with the increased challenge duration. In particular,
the performance for photo attacks, while lower than that for the other attack types, did
noticeably improve with increased challenge duration. The relatively low performance for
Photo attacks may be due to the relatively small size of the photos used in the simulated
attack, making feature extraction less precise. Even for a 5 s challenge duration, the RPD-
based system was able to achieve a TPR accuracy of 90% or more for the two types of
mask attack.

Table 4. TPR at FPR = 0.10 for various challenge duration (in sec.) (trajectory: Curve).

Format Attack Type
TPR (in %)

3 5 10

Tablet

Photo 69.5 68.0 74.4

2D Mask 96.8 97.6 99.6

3D Mask 87.2 90.0 95.2

Phone

Photo 59.4 83.0 86.0

2D Mask 96.2 99.5 99.4

3D Mask 91.3 96.2 98.9

In the following set of experiments, we explored the feasibility of a composite scheme
simulating a hybrid scenario where the user was presented with both visual challenges
in succession and the final decision was based on the fusion of the outcome of the two
components. Figure 7 shows the results for this composite challenge for the two device
formats and three attack types. Each of the challenges were presented to the user for 3 s
and were analysed independently before being fused using the product rule. The ROC
curves in Figure 7 also include the 3 s- and 5 s-long pure Lines and pure Curves challenge
outcomes for comparison. Logarithmic axes were used to highlight the differences at
low FPR settings. It is very obvious that the composite scheme clearly outperformed the
individual challenge types by a significant margin, especially for the 2D mask and 3D
mask attack types. The response to the photo-attacks was somewhat mixed. For the tablet
format, the detection rates were clearly higher than those for the pure Lines and pure Curves
challenges. However, for the phone format, the detection rates were similar to that for the
Curves challenge albeit a little lower.

Table 5 summarises these performance figures for the photo, 2D mask and 3D mask
attacks both in the tablet and phone formats at various FPR settings. It is evident that the
TPR values from the composite challenge scenario are noticeably higher than those from the
Lines or Curves challenges only, except for the photo attack detections in the phone format.
When compared with the best TPR values obtained (either from the Lines or Curves), 3–5%
improvements can be achieved for the Tablets and 0.5–1.3% for the phone devices at low
FPR settings (≤0.03). Even when compared with 10 s pure challenges, in most cases, the
6 s composite challenge performed better.

Only in the photo attack cases on the phone devices, degraded performances (by
5–6%) were noticed. This is most likely due to the low photo attack detection success of the
Lines challenge in the phone format. Perhaps a careful adjustment in the contribution of
Line and Curve elements in the composite scenario will be able to overcome this anomaly;
however, this optimisation has not been explored in this study.
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Figure 7. ROC curves for the photo, 2D mask and 3D mask. Stimulus trajectory: composite. Form factors: tablet format
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Table 5. TPR at various FPR settings (trajectory: composite, duration: 3 + 3 s).

Format Attack Type
TPR (in %)

@FPR = 0.01 @FPR = 0.02 @FPR = 0.03 @FPR = 0.05 @FPR = 0.10

Tablet

Photo 68.2 77.1 82.1 88.0 94.0

2D Mask 96.7 98.2 98.5 98.8 99.0

3D Mask 95.5 97.2 98.1 98.7 99.4

Phone

Photo 34.0 47.0 55.0 64.8 78.0

2D Mask 99.3 99.6 99.7 99.8 99.9

3D Mask 94.4 96.7 97.7 98.7 99.4

In a real-life scenario, an impostor may use any of the face artefacts (photo or 2D/3D
masks) in their presentation attack. To simulate this, in the following experiment, we
combined all the three types of attacks under a single category and assessed the detection
success of the proposed system. Figure 8 shows ROC plots for the three challenge scenarios
(Lines, Curves, or composite). The aim here was to detect whether any of the attack artefacts
were used or not and no attempt was made to determine the type of artefact. Due to the
increased diversity of attack, the TPR values (see Table 6) are lower than those values when
the specific attack type was known. However, especially for the Composite challenge type,
more than 80% of the attacks were detected at FPR settings of ≥0.02.
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Table 6. TPR at various FPR settings for mixed attack (trajectory: composite, duration: 6 s).

Format
TPR (in %)

@FPR = 0.01 @FPR = 0.02 @FPR = 0.03 @FPR = 0.05 @FPR = 0.10

Tablet 73.5 83.0 87.8 91.5 96.0

Phone 64.1 78.0 84.0 90.5 95.7
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Table 7 presents a comparison of performances of PAD techniques reported in the
literature with the proposed technique. For this comparison, the results for the proposed
system for all three attack types were combined to obtain an overall estimate of the False
Negative Rate (FNR) at different FPR settings. As different databases and evaluation
protocols were used in the evaluations reported in the literature, it is difficult to make a
direct comparison between these results. However, as a general indication of the potential
of the proposed eye-movement features for presentation attack detection, the comparison
was very promising.

Table 7. FPR and FNR for various methods.

Method FPR FNR

Kollreider et al. [38] 1.5% 19.0%

Tan et al. cf. [39] 9.3% 17.6%

Peixoto et al. [39] 6.7% 7.0%

Proposed Method
(Tablet format, composite challenge)

3% 12.2%

5% 8.5%

10% 4.0%

Proposed Method
(Phone format, composite challenge)

3% 16.0%

5% 9.5%

10% 4.3%

5. Conclusions

The work presented in this paper uses eye/pupil movements stimulated by prede-
termined randomised challenge trajectories to detect biometric presentation attacks. The
experimental results support the effectiveness of the proposed features, even when the
challenge is presented to users using limited geometries of mobile devices in detecting
2D and 3D mask attacks. The relatively low accuracy in detecting photo attacks may be
due to the errors in landmark detection accuracy for low-quality images captured from
the photo projection devices used in the experiments. If so, this may be improved by
using superior cameras along with robust landmark detection algorithms appropriate for
low-resolution images.

The challenge presentation sessions were approximately of 1 min duration but only
short segments of up to 10 s were used for feature extraction and system evaluations. The
additional data may provide useful information regarding the impact of habituation and
fatigue on the effectiveness of the system as well as any learning opportunities for attackers
that may improve their threat potential. These aspects would be subject of future studies.
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