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Abstract: Applications related to smart cities require virtual cities in the experimental development
stage. To build a virtual city that are close to a real city, a large number of various types of human
models need to be created. To reduce the cost of acquiring models, this paper proposes a method
to reconstruct 3D human meshes from single images captured using a normal camera. It presents a
method for reconstructing the complete mesh of the human body from a single RGB image and a
generative adversarial network consisting of a newly designed shape–pose-based generator (based
on deep convolutional neural networks) and an enhanced multi-source discriminator. Using a
machine learning approach, the reliance on multiple sensors is reduced and 3D human meshes
can be recovered using a single camera, thereby reducing the cost of building smart cities. The
proposed method achieves an accuracy of 92.1% in body shape recovery; it can also process 34 images
per second. The method proposed in this paper approach significantly improves the performance
compared with previous state-of-the-art approaches. Given a single view image of various humans,
our results can be used to generate various 3D human models, which can facilitate 3D human
modeling work to simulate virtual cities. Since our method can also restore the poses of the humans
in the image, it is possible to create various human poses by given corresponding images with specific
human poses.

Keywords: artificial intelligence; image processing; GAN; deep learning; 3D human model; smart
cities

1. Introduction

Simulations and test platforms for smart cities require various human meshes to
achieve a realistic depiction of the virtual world. For the convenience of testing algorithms
of smart city, a virtual city as a test platform is necessary. The virtual city should be realistic
to the real city, for example, various kind of models for humans, buildings, vehicles, etc.
should be simulated. The pose of human should also be considered when analyzing
the human behavior in smart cities. For example, a human with a hand reaching out
towards the street indicates the human wants to call a taxi, in this case, the simulated
AI taxi should analysis the human pose and stop to wait for the human get into the car.
Conventional modeling methods such as using 3D modeling software consume a lot of time.
To facilitate the modeling work, more efficient methods should be invented. Generation
of human meshes and poses by processing the data captured by various sensors has been
studied [1–3]. Currently, the primary method to obtain a high-quality human mesh is
based on light detection and ranging (LiDAR) [1] or depth cameras [2], by 3D scanning the
entire human body; however, these devices are expensive, bulky, and difficult to transport.
Consequently, some studies have proposed the reconstruction of the human body mesh by
using a multi-camera system [3]; however, the construction of such systems is cumbersome.
Not only do the camera positions need to be calibrated but the cameras also need to
be synchronized. In addition, the cost of reconstructing the system is high due to the
considerable investment for the cameras themselves, which limits its application and the
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promotion of multi-camera human mesh reconstruction systems. Owing to the increasing
improvements in the imaging quality of mobile devices (such as mobile phones), significant
research efforts have been devoted toward obtaining high-quality 3D human meshes using
a single RGB image captured by a camera [4]. The objective of this study is to obtain an
accurate human body mesh from a single image using deep learning methods, in order to
facilitate the creation of a variety of human body meshes. The meshes generated via the
proposed method can be easily updated using other tools such as texture. The presented
method efficiently generates human meshes from single images; these meshes can be used
in smart city simulations after postprocessing to obtain a rich variety of human meshes for
various simulations and reduce the cost of creating smart cities. Additionally, the proposed
method in this paper can acquire the 3D pose data of the human body while acquiring the
mesh of the human model. It can be used in human behavior recognition (HBR) [5] and
planning human-oriented, pedestrian-friendly intersections in smart cities [6].

A previous study [7] proposed a novel method to reconstruct 3D human meshes. This
method generates a 3D human mesh through the conditional generation confrontation
mode, with unpaired 2D key notes and 3D scans. Given an image, the network infers 3D
mesh parameters and perspectives of the camera, such that the 3D keypoints match the
annotated 2D keypoints after projection. These parameters are then sent to a discriminator
network, which is tasked with determining whether the 3D parameters correspond to
the features of real people. This approach can generate richer and more useful mesh
representations, as compared to most current methods [8,9], for calculating 2D or 3D joint
positions. The main step in this approach is the minimization of the reprojection loss of
keypoints, which allows for the mesh to be trained with images containing only the ground
truth (GT) 2D annotations.

However, the performance in 3D human reconstruction in the wild is still not satis-
factory, as only the features of single pictures are extracted and regressed to the 3D mesh
parameters. Moreover, only a dataset with 2D bone annotation is used, which also affects
the accuracy of details in the 3D human reconstruction.

Accordingly, this study proposes a generative adversarial network (GAN) to generate
a 3D human mesh considering both shape and pose accuracy, by using a shape–pose-based
generator and a multi-source discriminator trained over multiple types of datasets.

As deep convolutional neural networks (DCNNs) are powerful, significant progress
has been achieved in the estimation of 3D human posture using monocular images. To
improve the accuracy of shape reconstruction, this study adopts a newly designed shape–
pose-based generator (based on the DCNN) and an enhanced multi-source discriminator.
The generator consists of three parts: an encoding 2D pose module, an encoding shape
module, and a fitting 3D parametric module. The multi-source discriminator promotes
adversarial learning, and it considers four key factors: (1) the description of image–pose
correspondence; (2) the description of image–shape correspondence; (3) the constraints
on human joints; and (4) articulation constraint of the human body. This technology can
achieve state-of-the-art performance in terms of both quality and quantity.

The main contributions of this study are summarized as follows:

• An adversarial learning method is proposed for extracting 3D meshes from 2D images.
• A novel multi-source discriminator is designed to enhance the generalization ability

of the generator.
• The accuracy of the shape is improved when reconstructing human models.

The remainder of this paper is organized as follows: Section 2 summarizes several
previous studies and the work done therein. Section 3 describes the proposed method
in detail, and Section 4 presents the results and analysis of the conducted experiments.
Finally, Section 5 presents the concluding remarks.
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2. Related Work

3D reconstruction has been widely studied and applied in various fields. This section
introduces existing state-of-the-art approaches for human 3D reconstruction and compares
these approaches.

A volumetric regression network (VRN) has been used for 3D face reconstruction [10].
Aaron S. et al. improved the VRN for human 3D reconstruction and proved that the
enhanced VRN could reconstruct the 3D human mesh by means of training the network
with a suitable dataset. In addition, it could generate a 3D human mesh with more complex
poses using a given set of high-quality training data with just a single image as the input.
However, it was trained using a generated dataset. Hence, the performance declined when
it was applied to a real dataset.

Dense correspondences were proposed to describe the relationship between an RGB
image and the human body surface in the approach by Rıza et al. [11]. The location of each
pixel was determined on a map, and 2D correction was applied. In another study, feature
pyramid and region-based convolutional neural networks were used to generate human
3D meshes from a 2D RGB image. A teacher net was used to assist in training, which was
by means of a fully convolutional neural network.

A biomechanically inspired recurrent neural network (Bio-LSTM) is a recursive neural
network developed based on biomechanics [6]. It can predict the pose of 3D joints and the
position of a person in a global coordinate system. The network could also simultaneously
predict the posture and global positions of multiple persons and was effective up to a
distance of 45 m (between the human and the camera). The output of the network was a
3D mesh of the entire body expressed using the parameters of the skinned multi-person
linear (SMPL) model. Moreover, a new objective function was proposed to ensure aspects
such as the periodicity of human walking and the mirror symmetry of the human body.
However, this approach focused only on the standing and walking poses and could not
distinguish between males and females.

Compared to previous approaches for 3D human reconstruction, human mesh recov-
ery (HMR) based on the position of 2D or 3D joints could generate a richer and more useful
mesh of the human body [7]. This approach minimized reprojection losses at key points,
which enabled the network to be trained using images with only the GT 2D annotations.
In addition, a trained discriminator was added, such that it could assess whether the
generated 3D human model was similar to reality on the basis of the 3D human mesh
database. However, the 2D annotation was not sufficient to accurately generate the 3D
human model.

In a different study, semantic segmentation was proven to be an effective approach
for human 3D reconstruction [12]. Hossain et al. proposed an approach to generate a 3D
human model with two steps. First, the 2D pose was estimated from 2D RGB images using
an advanced 2D pose estimator, after which the 2D pose was mapped onto the 3D space.
Subsequently, a time-series of the 2D positions of joints was used to estimate the 3D human
pose time-based sequence to avoid the jitter caused by independent errors in each frame.
However, only one type of feature was used to train the network. Nonetheless, it can be
extended to other features to improve the approach significantly.

Overall, to estimate the human pose and shape from images, recent studies have
proposed learning based on thousands of scans of real human body models, typically
parameterized using individual body poses and shapes [1,13,14]. Specifically, convolutional
neural networks (CNNs) can predict the parameters of the SMPL 3D body model from
images [13] and then reproject the model to the image to evaluate the loss function in the
2D space. Thus, 2D pose annotations can be used to train such architectures.

GAN, originally proposed in [15], has been employed to generate images of the
human body in arbitrary poses [16]; a new approach based on the SMPL parameters for
generating human models was proposed [7]. Moreover, models for modeling continuous
face animations were presented; the GAN method was also used to edit and generate a
face that could talk [17–19].
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Table 1 lists the features of different frameworks. By comparison, our framework
advances the frameworks [6,9] by being capable recovering meshes of humans and running
in real time. Our framework is more similar to that in [7]. The outputs are compared in
section of Experimental Analysis.

Table 1. Features of Different Methods.

Approach
Features Mesh

Generation
Pose

Estimation
Multi-Person Pose

Estimation
Real-Time
Estimation

In-the-Wild
Image Support

3d Human Pose Estimation by
GAN [9] No Yes No Not Mentioned Yes

HMR [7] Yes Yes No Yes Yes

Bio-LSTM [6] Not
Mentioned Yes Yes Not Mentioned Not Mentioned

Proposed Method Yes Yes No Yes Yes

3. Human Mesh Reconstruction Using a Single Image
3.1. Overview of Proposed Method

This paper proposes an approach to reconstruct a human mesh using a single image;
the human mesh is used to measure the body shape automatically by means of deep
learning methods. Figure 1 illustrates the human body mesh reconstruction process based
on the proposed deep learning approach for human body shape estimations. To improve
the accuracy of posture estimation along with the accuracy of human body shape estimation,
this study adopts the newly designed shape–pose-based generator (based on a DCNN)
and an enhanced multi-source discriminator. Figure 1 presents the entire process of the
proposed approach.
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Figure 1. Overview of Proposed Method.

The proposed method utilizes the GAN structure. In the first step, based on the
input image information, a 3D human model is generated using the shape–pose-based
generator. The generator was designed based on a stacked hourglass network [20] that can
effectively extract image information to predict the key points and shapes of the human
body. Next, the 3D human model and images are fed into the multi-source discriminator
simultaneously. The pose–shape-based generator generates the results by learning the GT



Sensors 2021, 21, 1350 5 of 17

3D annotations, such that the discriminator cannot distinguish between the real 3D mesh
and the predicted mesh.

The 3D mesh generator, G, is trained to generate samples Ssample
(

In, M
(

P3D
n , Sn

))
,

where In is the input image and M
(

P3D
n , Sn

)
is the mesh parameter, including P3D

n , the pose
information, and Sn, the shape information, in a manner that confuses the discriminator,
D, which, in turn, attempts to distinguish them from real samples ŝsample

(
In, M̂

(
P̂3D

n , Ŝn
))

,
where M̂

(
P̂3D

n , Ŝn
)

is the real mesh parameter. In the method proposed in this paper,
the generator attempts to trick the discriminator by predicting the exact 3D posture and
shape. The discriminator distinguishes the real 3D pose and shape from the predicted
pose and shape. As the predicted mesh can be generated from images captured in a
laboratory environment (with 3D annotations) as well as unannotated images in the wild,
the human structure learned from the 3D dataset can be adapted to in-the-wild images
through adversarial learning.

3.2. Shape–Pose-Based Generator

Figure 2 illustrates the shape–pose-based generator process in detail. Let (In)
N
n=1

denote the input image, where N denotes the image indexes.
(

P2D
n
)N

n=1 denotes the result
of encoding the 2D pose module, where P2D ∈ R3K is modeled using the keypoints’
position with K = 15 keypoints.

(
S3D

n
)N

n=1 denotes the result of encoding the shape module,
where S ∈ R10 is obtained via parameterization of the first ten coefficients of the principle
component analysis (PCA) shape space.

(
P3D

n
)N

n=1 denotes the result of fitting the 3D
parametric module, where P3D ∈ R3K is modeled using the keypoints’ position with
K = 15 keypoints.
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The generator consists of the 2D pose encoding module, the shape encoding module,
the 3D parametric fitting module, and the SMPL module, as shown in Figure 2. First,
(In)

N
n=1 is input into the encoding 2D pose module and the encoding shape module and

the parameters of 2D pose
(

P2D
n
)N

n=1 and shape (Sn)
N
n=1 are obtained, respectively. Subse-

quently, the obtained parameters
(

P2D
n
)N

n=1 are fed to the fitting 3D parametric module to
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obtain the 3D parameters
(

P3D
n
)N

n=1. Finally, the obtained 3D parameters
(

P3D
n
)N

n=1 and
(Sn)

N
n=1 are fed into the SMPL module to generate the 3D human mesh.
The SMPL module is a network for generating bone-driven mesh. Bone-driven mesh

can accurately represent the various shapes of the body’s natural state, which deforms
with posture. If parameters from a large number of datasets are learned, the reconstruction
errors can be minimized to create a mesh as close to reality as possible. With this network,
the mesh can be quickly rendered and easily deployed. Moreover, the mesh would also be
compatible with existing rendering engines.

3.3. Multi-Source Discriminator

The poses predicted by the generator from both the 3D pose dataset and the in-the-wild
images are treated as “fake” examples for training the discriminator. During the adversarial
learning phase, the pose–shape-based generator generates results by learning the GT 3D
annotations such that the discriminator cannot distinguish between the real 3D mesh and
the predicted mesh. Consequently, for in-the-wild images without annotation, the method
proposed herein also performs the corresponding prediction; hence, the prediction results
are similar to the distribution of images with real 3D annotations. Although unannotated in-
the-wild images are difficult to use directly for training the generator, their corresponding
results can be used as “fake” examples for training discriminators in order to help tune the
generator. The discriminator determines whether the estimated result is similar to the GT.
the quality of the discriminator impacts the quality of the generator; hence, a multi-source
network architecture is designed here. Figure 3 illustrates the multi-source discriminator
process in detail.
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In the discriminator (shown in Figure 3), there are four information sources: (1) the
original image (In)

N
n=1; (2) the position of the keypoints

(
P3D

n
)N

n=1; (3) the body shape infor-
mation (Sn)

N
n=1; and (4) the pairwise relative locations and distances (G(∆x, ∆y, ∆z)(∆x =

xi − xj, ∆y = yi − yj, ∆z = zi − zj, where (xi, yi, zi) and
(

xj, yj, zj
)

denote the 3D position
of the body keypoints i and j, respectively).

The information source considers three key factors: (1) description of image–posture
correspondence; (2) description of the corresponding image–shape relationship; and (3)
human body articulation constraints.

To model the image-mesh correspondence, this study uses the original image (In)
N
n=1

as the first source of information, which provides rich visual and contextual information to
reduce ambiguity, as shown in Figure 3a. To learn the relationship between the body and
joints, this study considers the 3D positions of the joint nodes as the second information
source

(
P3D

n
)N

n=1 (Figure 3b), which can be regarded to be representative of the original
joint position, from which the network can extract rich and complex geometric relation-
ships within the human body structure. For learning the relationship between the body
and shape, this study considers the shape information to be the third information source
(Sn)

N
n=1 (Figure 3c), which includes ten parameters such as the height, weight, thinness,

and head and body ratio of the human body. The network can then extract rich and com-
plex relationships of the human body and shape from this information. For learning the
constraints between the joints of the body, this study considers the geometric descriptor as
the fourth source of information G(∆x, ∆y, ∆z) (Figure 3d), which is motivated by tradi-
tional methods based on image structure. It explicitly encodes pairs of relative positions
and distances between body parts and reduces the complexity of learning domain prior
knowledge, such as relative limb length, joint angle limitations, and symmetry of body
parts.

3.4. Loss Functions

Let I = (In, Pn, Sn)
N
n=1 denote the MPI-INF-3DHP and SURREAL dataset, wherein N

denotes the sample indexes. Specifically, N = {N2D, N3D}, where N2D and N3D are the
sample indexes for the 2D and 3D datasets. Each sample (I, P, S) consists of the image I,
GT body pose locations P, and GT shape S, where P =

{(
xi, yi)}K

j=1 for the 2D dataset and

P =
{(

xi, yi, zi)}K
j=1 for the 3D pose dataset. Here, K denotes the total number of body

joints, and j denotes the index of body joints.

3.4.1. Generator Loss

The loss in 3D pose [7] is given by:

L3D =
K

∑
j=1

(
∑

nεN
‖xj

n − x̂j
n‖2

2 + ∑
nεN
‖yj

n − ŷj
n‖2

2 + ∑
nεN
‖zj

n − ẑj
n‖2

2

)
(1)

where (x, y, z) represents the position of the predicted keypoints, and (x̂, ŷ, ẑ) represents
the position of the GT keypoints. Here, j denotes the index of body joints.

The loss in 2D pose [7] is given by:

L2D =
K

∑
j=1

(
∑

nεN
‖xj

n − x̂j
n‖2

2 + ∑
nεN
‖yj

n − x̂j
n‖2

2

)
(2)

where (x, y) represents the position of the predicted keypoints, and (x̂, ŷ) represents the
position of the GT keypoints. Here, j denotes the index of body joints.
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The loss in shape [9] is given by:

Lshape =
K

∑
j=1

(
∑

n∈N
‖sj

n − ŝj
n‖2

2

)
(3)

where (s) represents the predicted shape, and (ŝ) represents the shape of the GT. Here, j
denotes the number of body joints. n denotes the sample indexes for the datasets, and N
denotes the total sample number for the datasets.

3.4.2. Adversarial Learning

After pretraining the shape–pose-based generator, the generator and discriminator
are optimized. The loss of the discriminator [9] is given by:

FDloss = ∑
n∈N3D

ζcls(D(In, E(x̂n, ŷn, ẑn, ŝn)), 1) + ∑
n∈N

ζcls(D(In, E(G(In))), 0) (4)

where E(x̂n, ŷn, ẑn, ŝn) encodes the pose and shape, (x̂, ŷ, ẑ) represents the position of the
GT keypoints, and (ŝ) represents the shape of the GT. D(In, E(x̂n, ŷn, ẑn, ŝn)) ∈ [0, 1] is the
classification score of the discriminator for the input image In and encoding information
E(x̂n, ŷn, ẑn, ŝn). G(In) is the 3D information predictor, and the corresponding 3D informa-
tion can be predicted according to the input image. ζcls is the cross-entropy loss, which is
defined as:

ζcls(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ)) (5)

4. Experimental Analysis

This study conducted experiments to demonstrate 3D human mesh reconstruction
learning from multiple annotated databases and a good 3D human reconstruction perfor-
mance from in-the-wild images.

The GAN is usually trained from scratch by alternately optimizing the generator
and discriminator [15,21]. However, for this task, the proposed method enables faster
training of the network and better performance using the pre-trained generator (i.e., the
pose–shape-based generator).

4.1. Experimental Environment and Datasets

The experiments were carried out using a desktop computer running the Ubuntu
16.04.5 operating system and using four Titan 1080Ti GPUs. The CUDA toolkit version 9.2
and cuDNN version 7 were employed, and Python 2.7 and TensorFlow were configured on
the system. Training was conducted using six datasets, as described in Table 2.

Table 2. Introduction to Dataset.

Dataset Name Contents Skeletal Annotation Dimension

Leeds Sports Pose (LSP) [22] &
Leeds Sports Pose Extended (LSPE) [23]

10,000 images are included in these two
datasets, collected from Flickr using multiple

tags such as “parkour”, “gymnastics”, and
“athletics”. The poses included are challenging

to estimate.

2D

MS COCO [24]

COCO is a large image dataset designed for
object detection, segmentation, person

keypoint detection, stuff segmentation, and
caption generation. This dataset contains

photos of 91 object types that can be
easily recognized.

3D
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Table 2. Cont.

Dataset Name Contents Skeletal Annotation Dimension

MPI-INF-3DHP [25]

This dataset was generated in a green-screen
studio with 14 cameras used for recording. It

has segmentation masks available for
background, chair, and upper and lower

body clothing.

3D

MoSh [26]

The mocap lab in the basement of Wean has 12
Vicon infrared MX-40 cameras, which can

record 4-MP resolution images at 120 Hz. For
generating this dataset, the cameras were

placed in the center of the room and covered
an approximate rectangular area of 3 m × 8 m.
Only motions conducted within this rectangle

can be captured.

3D

SURREAL [27]

This is a new large-scale dataset containing
synthetically generated but realistic images of
people rendered from 3D sequences of human

motion capture data.

3D

Human3.6M [28]
a standard

3D pose benchmark captured in a
lab environment

3D

The experiments were conducted using 2D annotated datasets and 3D datasets. For
the 2D annotated datasets, LSP and LSPE provided a total of 11,000 images, among which
10,000 images were used for training and the rest were used for validation. MS COCO
provided 124,000 images, from which 83,000 were used for training and 41,000 for testing.

MPI-INF-3DHP was used as the 3D dataset. This dataset was generated in a controlled
environment and provided with 3D annotations. It contained 150,000 training images.
MoSh data was also used to train the SMPL. Human3.6M has a total of seven subjects, this
paper is trained on five subjects (S1, S5, S6, S7, S8) and tested on two subjects (S9, S11).

All images were scaled, and the aspect ratio was preserved such that the diagonal of
the tight bounding box was approximately 150 px. The images were randomly translated,
scaled, and flipped.

4.2. Experimental Setting

The human body is a highly complex system comprising several limbs and joints.
Estimating the 3D joint positions realistically is a daunting task even for humans. In this
study, a model-based approach was adopted to construct a mannequin and introduce
prior information to enforce constraints. Figure 4 shows a human skeleton model with
15 joints, which was used to conduct the experiments. The 15 joints can be represented by
a tree-structured representation with the pelvis as the root node. Sho refers to Shoulder,
Elb refers to Elbow, Ank refers to Ankle, R signifies Right, and L signifies Left.

The experimental parameters are shown in Table 3. The input image size was
256 × 256 pixels, and the output was a 3D mesh model. For the encoding 2D pose module,
the heatmap representing the 2D pose (P2D

n )
N
n=1 was used. The resolution of all input

images was adjusted to 256× 256 pixels. The network predicted one channel for each body
joint (the total number of joints in the human body was k = 15).

For the encoding shape module, the resolution of all input images was also adjusted
to 256× 256 pixels. The network output was 128× 4× 4. This study vectorizes the output
of this network and adds three fully connected layers ( f c1(2048, 1024), f c2(1024, 512), and
f c1(521, 10)) to produce the parameters (Sn)

N
n=1.
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Table 3. Experimental Parameters.

Parameter Name Parameters and Dimensions/Size

Input image size 256 × 256
Output 3D mesh

Joints Number 15
Mini-batch Size 64

Learning Rates (Generator) 1 × 10−5

Learning Rates (Discriminator) 1 × 10−4

Epochs 55

4.3. Experimental Results

The various challenges presented by the human posture and shape estimation tasks
required several assessment indicators. Consequently, even for methods that used the same
dataset, a fair comparison between the methods in question was not possible because the
processes of training and evaluation were different.

4.3.1. Feature Extraction in Generator

Figure 5 shows the results of the feature extraction in the generator, this part being the
intermediate result of the proposed method, where Figure 5a is the input image, Figure 5b
is the output of the 2D pose encoding module (which is the 2D pose data of the figure
in the input image), Figure 5c is the output of the shape encoding module (which is the
shape data of the figure in the input image), and Figure 5d is the 2D pose data of the figure
(based on the 3D pose data obtained from the 2D image). The image in the first row of
Figure 5 was sourced from the Internet, and the data in the second row were from the MS
COCO [24] dataset. It can be seen here that the proposed method extracts the 2D and 3D
poses and shapes of the features in the input images significantly well, providing good
data for the next processing step.
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4.3.2. Human Mesh Generation

Figure 6a shows the input image (from the field image, not included in the database),
and Figure 6b is the result of the 3D body model generated by the proposed method using
the input image. It can be seen here that the proposed method extracts the 3D pose and
shape of the figure in the input image, and the generated model accurately reproduces the
body pose and shape of the figure.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 5. Results of Feature Extraction in Generator. 

4.3.2. Human Mesh Generation  
Figure 6a shows the input image (from the field image, not included in the database), 

and Figure 6b is the result of the 3D body model generated by the proposed method using 
the input image. It can be seen here that the proposed method extracts the 3D pose and 
shape of the figure in the input image, and the generated model accurately reproduces the 
body pose and shape of the figure. 

 
Figure 6. Result of Human Mesh Generation with the Proposed Method using a Single Image. 

Figure 7a is the input image (from the SURREAL database), Figure 7b is the result 
obtained using the proposed method, and Figure 7c is the result obtained using the HMR 
method [7]. From Figure 7, we can clearly see that the proposed method more accurately 
reproduced the shape of the figure. 

Figure 6. Result of Human Mesh Generation with the Proposed Method using a Single Image.

Figure 7a is the input image (from the SURREAL database), Figure 7b is the result
obtained using the proposed method, and Figure 7c is the result obtained using the HMR
method [7]. From Figure 7, we can clearly see that the proposed method more accurately
reproduced the shape of the figure.
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Figure 7. Comparison Result using SURREAL Dataset.

Figure 8 shows images taken from a video (the participant stood in front of the camera
and performed random actions to test the real-time performance of the proposed method).
The left section of the figure shows the 3D human body model generated by the proposed
method and the right section shows the input image. In order to render quickly and
produce results in real time, we used points instead of a mesh. Here, it can be seen that
the proposed method was able to accurately and quickly extract the 3D poses and shapes
of the feature and generate models and results in real time. Because there are no ground
truth meshes for this practical test, we visualize the results in different frames to show that
method proposed in this paper can restore the meshes accurately in real time, even when
the participant performs various actions.
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Figure 8. Real-time Human Model Generation from a Video using the Proposed Method.

4.4. Component Evaluation

We evaluated the proposed method using pose and segmentation evaluation methods.
The various challenges in the human posture and shape estimation tasks required several
assessment indicators. As the database could be divided into 2D and 3D databases, the
evaluation criteria should also be divided into 2D and 3D categories. This study chose
to employ current, mainstream methods to evaluate the 3D joint errors. Most common
evaluations report the mean per joint position error (MPJPE). The per joint position error
is the Euclidean distance between the GT and the prediction for a joint; the MPJPE is the
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mean of the per joint position error for all k joints (in this study, k = 15). Calculations were
performed after aligning the root joints (typically the pelvis) of the estimated and the GT
3D pose.

4.4.1. Pose Evaluation

This study used currently popular evaluation criteria for the posture evaluation,
considering the dataset, namely the 3D error [29]. The 3D error is the mean squared
distance in 3D (measured in millimeters) between the set of virtual markers corresponding
to the joint centers and the limb ends, as described in Equation (6):

F3Derror(x, x̂) =
1
M

M

∑
i=1
‖mi(x)−mi(x̂)‖ (6)

where x represents the ground truth pose, x̂ refers to the estimated pose, M is the number
of virtual markers, and mi(x) represents the 3D position of the ith marker. This evaluation
method is also called the MPJPE [28].

The results of pose estimations are shown in Table 4 (MPJPE loss is shown in millime-
ters). This study evaluated the 3D joint errors on Human3.6M, which was captured in a
laboratory environment using the standard 3D pose benchmark. To compare the results
fairly, we trained our model on the same dataset [28] utilized by other methods. The results
obtained using the proposed method were comparable to those of state-of-the-art methods.

Table 4. Comparison of Pose Estimation Results.

Method MPJPE

Proposed Method 79.37
VNect [19] 80.5
HMR [7] 87.97

Tome et al. [15] 88.39
HMR Unpaired [7] 106.84

Deep Kinematic Pose [21] 107.26

4.4.2. Segmentation Evaluation

For shape evaluation, we evaluated the acquired six body part segmentation results to
obtain meaningful performance scores. We evaluated our method using the F1-Score [30],
which is the harmonic mean of precision and recall. The advantage of the F1-Score is that it
takes both false positives (due to precision) and false negatives (due to recall) into account,
as shown in Equation (7) [30]:

F1 =
2

1
precision + 1

recall
=

2× (precision× recall)
precision + recall

(7)

Table 5 depicts the foreground and part segmentation (6 parts + bg) on the LSP. To
compare the results fairly, we trained our model on the same dataset [22,23] utilized by
other methods. In the table, FB seg denotes foreground segmentation, which refers to
the overall segmentation accuracy for a human. Part Seg refers to partial segmentation,
which consists of six body parts: front, torso, left and right knees, and left and right
arms. It provides a reasonable approximation of the overall consistency of a fit, although
this representation is coarse. It takes into account the shape of the body and not just
the keypoints. The segmentation accuracies of different studies were shown using the
projection of the 3D shape estimate on the image. Higher average accuracies and F1-scores
signify better results. It can be seen that the results obtained via the proposed method were
comparable to those of state-of-the-art methods. Previous research [7,30] has shown that
the prediction of human posture through deep learning is valid and credible. Although
previous studies have achieved more accurate posture estimations, this study improves
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both the accuracy of posture estimation and the accuracy of the body shape. In order to
facilitate the comparison of experimental data, the evaluation method is kept consistent
with other methods. The obtained results are shown in Table 5. Notably, the segmentation
of the SMPL mesh part definition is not quite the same as that of the annotation that restricts
the highest possible precision to less than 100%.

Table 5. Comparison of Shape Estimation Results.

Method
FB Seg Part Seg

Run Time
Acc F1 Acc F1

Decision Forests [30] 86.60 0.80 82.32 0.51 0.15 s
HMR [7] 91.67 0.87 87.12 0.60 0.05 s

HMR Unpaired [7] 91.30 0.86 87.00 0.59 0.04 s
Proposed Method 92.10 0.88 88.37 0.67 0.03 s

5. Conclusions and Future Work

This paper proposes a human body mesh reconstruction method that can generate a
3D human body mesh from a single image. Compared to other methods, this method uses
an in-the-wild image dataset annotated with 2D keypoints and semantic segmentation to
reduce the size of 3D annotated datasets. The pose and shape in the RGB image data are
extracted via two network meshes. The pose and shape parameters are then fed to the
fitting 3D parametric mesh to obtain the 3D parameters. Further, a discriminator is used to
identify whether the mesh conforms to reality. Unlike other methods that focus only on
predicting 3D human pose [7,15,21], the method proposed herein more accurately recovers
the 3D pose and shape of the human body from a single image, while requiring a shorter
prediction time. The experimental results prove that the restored 3D pose in this study
achieves an error of just 79.37 mm, which is comparable to those of current state-of-the-art
methods. The proposed method also achieves a higher accuracy of 92.1% and a shorter
predicting time, with 34 frames being processed per second. Moreover, through a reduction
in the use of 3D databases, the proposed method significantly increases the amount of data
that can be used for training, facilitating easier training of the network and eliminating the
problem of insufficient 3D training datasets. Moreover, several 3D databases were used,
enabling the data to be more realistic and reliable. With the ability to recover the pose
and shape of a human body accurately, the method can be utilized to generate various 3D
human meshes with only single view images, which facilitates 3D modeling applications.
The 3D meshes can be utilized in smart cities to simulate pedestrians and customers to
reduce the modeling cost. However, the method proposed herein cannot recover the clothes
of the figure in real time and can only add texture to the 3D model through other tools. In
the future, the quantity of training data will be expanded, the experiment will be optimized,
and the performances of the generator and discriminator will be enhanced. In addition, a
method to automatically add clothes to the restored meshes will also be proposed.
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