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Abstract: Loop closure detection is of vital importance in the process of simultaneous localization
and mapping (SLAM), as it helps to reduce the cumulative error of the robot’s estimated pose and
generate a consistent global map. Many variations of this problem have been considered in the past
and the existing methods differ in the acquisition approach of query and reference views, the choice
of scene representation, and associated matching strategy. Contributions of this survey are many-fold.
It provides a thorough study of existing literature on loop closure detection algorithms for visual
and Lidar SLAM and discusses their insight along with their limitations. It presents a taxonomy of
state-of-the-art deep learning-based loop detection algorithms with detailed comparison metrics.
Also, the major challenges of conventional approaches are identified. Based on those challenges,
deep learning-based methods were reviewed where the identified challenges are tackled focusing
on the methods providing long-term autonomy in various conditions such as changing weather,
light, seasons, viewpoint, and occlusion due to the presence of mobile objects. Furthermore, open
challenges and future directions were also discussed.

Keywords: simultaneous localization and mapping; loop closure detection; deep learning; neural
networks; autonomous mobile robots

1. Introduction

Over the past few decades, simultaneous localization and mapping (SLAM) has been
one of the most actively studied problems in autonomous robotic systems. Its main function
is to enable the robot to navigate autonomously in an unknown environment by generating
the map and accurately localize itself in the map. During localization, the robot must
correctly recognize the previously visited places known as true loops. This recognition is
done by one of the components of SLAM, known as loop closure detection. A true-loop
closure detection helps the SLAM system to relocalize and enhances the mapping accuracy
by reducing the accumulated drift in the map due to robot motion [1]. However, the
existing loop closure detection systems are not yet that efficient to accurately detect the
true loops. The parameters affecting the detection of true loops are changing illumination,
environmental conditions, seasons, different viewpoints, occlusion in features due to the
presence of mobile objects, and the presence of similar objects in different places.

Earlier studies have used point features for the detection of closed loops. Point fea-
tures, such as scale invariant feature transform (SIFT) [2] and speedup robust features
(SURF) [3], etc., used for visual loop closure detection are computationally expensive
and are not suitable for real-time visual SLAM systems [4–6]. To enhance computational
efficiency, many researchers have developed the bag-of-words (BoW)-based loop closure
detection methods [7–10]. These methods store the visual information of the environment
as a visual dictionary and generate the clusters where each cluster represents a “word”.
The computational efficiency of BoW-based loop detection methods is further boosted with
the inverted-index approach used for the data retrieval of previously visited places [10].
Though the BoW approach provides a fast solution to the handcrafted features-based loop
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closure detection, it requires a large amount of memory to store the visual words [11].
Most of the BoW-based loop detection algorithms generate fixed-sized vocabulary in an
offline step and perform the loop closure detection in an online step to further reduce the
computational cost [5,10]. Such methods perform well only if the loop closure detection
is performed in the preknown environment and are not practical for unexplored environ-
ments. To address this issue, many researchers have created the BoW vocabulary in an
online step to enable the system to work in real environments [10]. However, these meth-
ods are still inefficient as the memory requirement increases with increased vocabulary
size. The recent studies using convolution neural network (CNN) features for loop closure
detection have proven to be more robust against the above-mentioned challenges [12–15].
In addition, efforts have been made to reduce the memory usage of stored features through
deep neural networks [16]. However, detecting truly closed loops is still an open problem.

Loop closure detection is of key importance to the SLAM system for the relocalization
of a robot in a map. Several survey articles have extensively discussed the SLAM algo-
rithms and their efforts to improve closed-loop detection. Hence, a thorough taxonomy
is required to categorize the loop closure detection algorithms. In recent research [17], an
extensive comparative analysis for feature-based visual SLAM algorithms was presented.
The existing research is grouped into four categories based on visual features, i.e., low level,
middle level, high level, and hybrid features, and highlighted their limitations. Another
review for SLAM systems is provided where the scope is only limited to the vision-based
SLAM algorithms [18]. Similarly, Sualeh et al. [19] developed a taxonomy of SLAM algo-
rithms proposed in the last decade and discussed the impact of deep learning to overcome
the challenges of SLAM. The loop closure detection was not thoroughly highlighted. A
detailed survey of deep learning-based localization and mapping is provided in [20]. Other
surveys and tutorials focusing on the individual flavors of SLAM include the probabilistic
formulation of SLAM [21], pose-graph SLAM [22], visual odometry [23], and SLAM in
dynamic environments [24]. We recommend these surveys and tutorials to our readers for
a detailed understanding of SLAM.

In this survey, state-of-the-art loop closure detection algorithms developed for visual
and Lidar SLAM in the past decade have been discussed and categorized into three major
categories of vision-based, Lidar-based, and deep learning-based loop closure detection
methods. To the best of our knowledge, this is the first survey article that provides
an extensive study primarily focused on loop closure detection algorithms for SLAM.
Moreover, open challenges are also identified.

The rest of the paper is organized as follows: In Section 2, the existing research of
vision and Lidar-based loop detection using conventional approaches is discussed along
with their limitations. Section 3 explains the state-of-the-art deep learning-based loop
closure detection methods. Section 4 summarizes the challenges of conventional loop
closure detection schemes and the existing research on deep learning-based loop detection
to overcome these challenges. Finally, Section 5 concludes the survey.

2. Taxonomy of Loop Closure Detection

One of the essential parts of SLAM is the recognition of the previously mapped places
and eliminating the incremental drift by recognizing the premapped environment. For
loop closure detection, the estimation process cannot be trusted because of inconsistency.
Thus, a dedicated algorithm is needed for the relocalization of the vehicle in a prebuilt map.
In this section, the loop closure detection techniques are grouped into two major categories:
vision-based and Lidar-based loop closure detection. Each category further groups the
existing research on the basis of data acquisition and matching methods.

2.1. Vision-Based Loop Closure Detection

As imagery provides rich visual information, most of the methods make use of camera
sensors for loop detection. Based on the matching schemes, we have grouped the vison-
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based loop detection methods as image-to-image matching [25], map-to-map matching [26],
and image-to-map matching [27] schemes, as done in [28].

2.1.1. Image-to-Image Matching

Loop closure detection methods performing the image-to-image matching using the
correspondence between the visual features are grouped in this category. These methods
do not require the metric information of the features; instead, they apply topological
information.

Bag-of-words [29] model has been widely used for loop closure detection. It first
generates a vocabulary consisting of visual words where each word is a combination of
some features extracted from a large training dataset. These features are clustered using the
K-means clustering algorithm [30], as it is effective for unsupervised learning [31]. While
searching for a similar match for the current image, the BoW method converts the image
into a set of descriptors and for each descriptor. It searches for the closest cluster center
to generate a BoW vector which is used for image matching with previously seen images.
The vocabulary generation process is done as a preprocessing step either offline or online.

Methods with Offline Vocabulary

This category includes the loop detecting techniques using the bag-of-words approach
where image features are discretized in the descriptor space and a unique vocabulary word
is assigned to the group of similar visual or binary features. This vocabulary is generated
in a hierarchical structure which enhances the matching performance.

In [8], a probabilistic framework is presented, FABMAP, for appearance-based place
recognition and loop closing. FABMAP does not only detect the previously visited places
on the map but also identifies the new places and augments the map. The algorithm
applies the Chow–Liu tree [32] for building a generative model of visual BoW vocabulary
with 11,000 words. These visual words consist of groups of visual features extracted from
the images using a SURF detector/descriptor [33]. The system has been evaluated in an
outdoor environment dataset. The complexity of FABMAP is linear to the number of places
on the map. Although FABMAP achieved high performance, it was suitable for a few
kilometers of trajectory. Also, the system performance degraded in the environments other
than the training data. As FABMAP is using SURF features, it requires 400 milliseconds for
only the feature extraction process.

To enhance the applicability of the FABMAP in large-scale environments, FABMAP
2.0 [34] was proposed for the 70 km and 1000 km trajectories dataset. It has also applied
the inverted index with the BoW model for place recognition, generating a vocabulary
of 100,000 words which improves the overall performance of the system in terms of loop
detection and resource consumption. It has become the gold standard for loop detection,
but the robustness decreases if the similar structure appears in the images for a long
time [35].

Vocabulary generated using visual features such as SIFT and SURF provides high
performance because of invariance to light, scale, and rotation. However, these features
required a longer computation time [35–38]. This problem was addressed by the usage
of binary features such as BRIEF [39], BRISK [40], and ORB [41]. As their information
is compact so they are fast to compute and compare thus allowing much faster place
matching. For the first time, binary features have been used in [9,42], Fast detector and
BRIEF descriptor, for building a vocabulary of binary words. The system can perform
the loop detection and verification at one order of magnitude less than the other similar
techniques. As the BRIEF is not invariant to significant scale and rotation, these methods
are good for loop detection with planar camera motion.

The BoW-based loop closure detection methods depend on the appearance features
and their existence in the dictionary, ignoring the geometric information and relative
position in the space, thereby resulting in false loops due to similar features appearing in
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different places [43]. Also, in the presence of dynamic objects, the similarity in the loop
scene is reduced, thus causing the system to lose stability.

Methods with Online Vocabulary

The above-mentioned schemes build the vocabulary in offline steps. The systems
trained on the prebuild vocabulary show high performance on the same dataset, but the
performance degrades if the traversed places are inconsistent with the trained dataset. This
problem is addressed by the generation of the vocabulary in an online step.

Offline vocabulary is not suitable for the dynamic robot environment. In [44] a loop
closure detection method for a dynamic indoor and outdoor environment is developed by
incrementally generating and updating the vocabulary, in an online step, through feature
tracking among consecutive frames. The loop candidates are identified by a likelihood
function that is based on inverse frequency of corresponding image features. After the
likelihood evaluation, the vocabulary is updated based on new features extracted from the
current image. Through extensive experiments, it is shown that the incremental vocabulary
generation achieves a higher number of true positives in comparison to [37].

The BoW provides fast and easy loop detection. However, the performance of such sys-
tems is highly dependent on the appearance of a place. Thus, they suffer from a perceptual
aliasing problem, i.e., occurrence of similar features in different places or drastic change
in appearance of a place due to variation in environmental conditions. Kejriwal et al. [45]
generated a bag-of-word-pairs dictionary using quantized SURF features by incorporating
the spatial co-occurrence information of the image features to improve the recall rate and
reported better performance than [44].

To deal with the occlusion due to the presence of dynamic objects, SIFT features
have been used to enhance the loop detection accuracy for monocular SLAM [46]. The
appearance changes in the dynamic environment due to moving objects have been detected
through features projection from keyframes to current image and comparison among
them. Tracking is performed through matching features. As a result, image comparisons
and dynamic change in the environment are detected through gradual change in image
portions. As SIFT features are computationally expensive, the system ensures the real-
time performance through GPU acceleration and multithread programming. Similarly,
in [47], SURF and BRIEF features have been extracted to perform the word training for
loop detection in long-term autonomous driving. To improve the detection accuracy of
BoW-based closed-loop detection in a dynamic environment, Xu et al. [48] performed the
discrimination among feature points that belong to the static and dynamic objects. The
algorithm first detects and removes the feature points belonging to the dynamic objects
and then generates the BoW vocabulary using the static features.

2.1.2. Map-to-Map Matching

Methods performing map-to-map feature matching detect the loops by using the visual
features and relative distance between features common to two submaps. In [26], loop
closure detection is performed in monocular SLAM by using the geometric compatibility
branch and bound (GCBB) algorithm which matches the submaps based on the similarity
in visual features common in both submaps and their relative geometry. However, the
system is not suitable for sparse maps [28]. The major limitation of such methods is that
the maps are either too sparse to be distinctive or too complex such that they cannot be
completely explored for high performance in real-time. For such methods, the exploration
space can be reduced by using the position information of the map features as done in [49].

2.1.3. Image-to-Map Matching

This group includes the loop detection methods which use the correspondences
between the visual features of the current camera image and the feature map. While
in image-to-map matching, the aim is to determine the camera pose relative to the point
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features in the map and matching is based on appearance features along with their structure
information.

In [25], a feature-tracking and loop closing method is proposed for monocular SLAM
using appearance and structure information. At each time step, 16D SIFT features have been
extracted from the current image representing the appearance information and matching
with the map features using BoW model. The BoW appearance model helps to identify the
part of the map that is similar to the current image by comparing image features with the
map features and generating the loop closure candidates. The map is stored as a graph
where each node stores the structure of landmarks. The structure for loop candidates
is matched through landmark appearance models. The current pose relative to the map
features is further determined by MLESAC [50] and the three-point pose algorithm [51].

William et al. [52] proposed a method for camera-pose estimation relative to the map
for relocalization and loop closing through an image-to-map matching scheme. The feature
map is built using the visual and metric information of landmarks. The appearance informa-
tion of map features is learned using a randomized tree classifier [53], and correspondences
between the current image and map are generated by landmark recognition. Once the
landmarks are recognized in an image, the camera pose is determined using estimated
metric information. For this purpose, a global metric map is divided into submaps. The
relative positions of these submaps are determined by the mutual landmarks. The global
map is represented by a graph where each node is a submap and edges between the nodes
represent the transformation between submaps. Tracking is performed between the current
and the previous submap, thus merging the maps. In the case of true overlap, the relative
transformation between submaps is determined by the poses from their trajectories and an
edge is added between the two consecutive submaps, thus representing a detected loop.
Though it performs well in relocalization and loop closing, the randomized list classifier is
memory inefficient.

Xiang et al. [54] proposed direct sparse odometry with loop closure detection (LDSO)
as an extension of direct sparse odometry (DSO) [55] for monocular visual SLAM. The
DSO ensures the robustness of the system in a featureless environment. To retain the
repeatability of the feature points, LDSO extracts ORB features from keyframes. The loop
closure candidates are selected using the BoW approach as used in [9]. Later, the RANSAC
PnP [56] is applied for the verification of loop candidates. Raul et al. [57] addressed the
relocalization and loop closure problem in keyframe-based SLAM by using the ORB feature.
The proposed solution applies the image-to-map feature matching scheme and is robust
to scale changes from 0.5 to 2.5 and 50 degrees of viewpoint changes. The loop can be
detected and corrected at a 39 milliseconds frame rate in the database of 10,000 images.
Due to scale and viewpoint invariance, the proposed method achieves a higher recall rate
in comparison to [8,9,34].

2.2. Lidar-Based Loop Closure Detection

Vision-based loop closure detection for a long-term autonomous system is a chal-
lenging task due to large viewpoint and appearance changes. When such systems revisit
a place, they are subject to extreme variations in seasons, weather, illumination, and a
viewpoint along with the dynamic objects. These environmental changes make robust
place recognition extremely difficult. These limitations can be handled by the LiDAR, up
to some extent, as Lidar measurements are less prone to light and environmental changes
in comparison to vision sensors, providing a 360-degree field of view. Unlike vision-based
loop detection, research for Lidar-based solutions is rare. One of the reasons could be
the high cost of LiDAR sensors which prevents the wider use. Another reason is that
the LiDAR point clouds only contain the geometry information while images contain
rich information; thus the place recognition is a challenging problem when using point
clouds. The existing research on Lidar-based loop detection can be generally grouped into
histograms and segmentation-based methods.
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2.2.1. Histograms

Histogram extracts the feature values of points and encodes them as descriptors
using global features [58–60] or selected keypoints [61–64]. One of the approaches used
by these methods is the normal distribution transform (NDT) histogram [65], [66] which
provides the compact representation of point cloud maps into a set of normal distributions.
In [67], an NDT histogram is used to extract the structural information from Lidar scans
by spatially dividing the scans into overlapping cells. NDT is computed for each cell
and instances of certain classes of NDT in range intervals constitute the histograms. The
authors have compared the histograms using the Euclidean distance metric [68]. It is shown
that structural information provided by the histograms of NDT descriptors improves the
accuracy of the loop detection algorithm. A similar approach is used in [69] for loop closure
detection where scan matching is performed using the histograms of NDT descriptors.

NDT histogram-based methods are computationally expensive. To overcome the
computational overhead, many researchers have put efforts into developing fast loop
detection methods. In [58], the performance of the loop detection method presented in [67]
has been improved and the computational cost is reduced by using the similarity measure
histograms extracted from Lidar scans that are independent of NDT. Lin et al. [70] devel-
oped a fast loop closure detection system for Lidar odometry and mapping. It performs
similarity matching among keyframes through 2D histograms. Another approach used
for reducing the matching time is proposed in [62], where place recognition is performed
by using 3D point cloud keypoints and 3D Gestalt descriptors [71,72]. The descriptors
of current scan keypoints are matched with the point cloud map and a matching score
is computed for each keypoints using nearest neighbor voting scheme. The true loop is
determined by the obtained highest voting score after geometric verification.

The histogram-based methods can handle the two major issues: rotation invariance for
large viewpoint changes and noise handling for spatial descriptors, as spatial descriptors
are affected by the relative distance of an object from Lidar [61,73,74]. The major limitation
of histogram-based methods is that they cannot preserve the information of the internal
structure of a scene, thus making it less distinctive and causing false loop detections.

2.2.2. Segmentation

The loop detection methods using a point-cloud-segmentation approach are based
on shapes or objects recognition [75–80]. In such methods, segmentation is performed
as a preprocessing step because a priori knowledge about location of objects, that are to
be segmented during robot navigation, is needed. The segment maps provide a better
representation of a scene where static objects may become dynamic and are more related to
the ways human’s environment perception. One of the advantages of such techniques is
the ability to compress the point cloud map into a set of distinctive features which largely
reduced the matching time and likelihood of obtaining false matches. Douillard et al. [81]
provide a detailed discussion on several segmentation methods for Lidar point clouds
including ground segmentation, cluster-all, base-of, base-of with ground method for dense
data segmentation, and Gaussian process incremental sample consensus, mesh-based
segmentation for sparse data. SegMatch [82] uses the cluster-all method for point cloud
segmentation and extracts two types of features including eigenvalue-based and shape
histograms. The features are segmented as trees, vehicles, buildings, etc., and matching
is done by using a random forest algorithm [83]. It is observed that SegMatch requires
real-time odometry for loop detection and does not perform well when using only the Lidar
sensor. Also, the maps generated by SegMatch are less accurate. A similar segmentation
approach is used in [84] to enhance the robustness of loop closure detection by reducing the
noise and resolution effect. The point cloud descriptor encodes the topological information
of segmented objects. However, the performance degrades if the segmentation information
is not sufficient. In recent research [85], an optimized Lidar odometry and mapping
algorithm is proposed in integration with SegMatch-based loop detection [82] to enhance
the robustness and optimization of the global pose. The false matches are removed using
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ground plane constraints based on RANSAC [86]. Tomono et al. [87] applied a coarse-to-
fine approach for loop detection among feature segments to reduce the processing time
where lines, planes, and balls are used for coarse estimation instead of feature points.

Based on the literature reviewed in this section, the benefits and limitations of each
method are summarized in Table 1.

Table 1. Summary of the benefits and limitations of camera and Lidar-based loop closure detection methods.

Method Benefits Limitations

Vision-based

Image-to-Image

Offline
Vocabulary

• Does not require the metric
information of the features

• Dependent on the appearance
features and their existence in
dictionary

• Good for loop detection with
planar camera motion

• Not suitable for dynamic robot
environment

• Memory consumption is proportional
to vocabulary size

• Performance reduces if tested on
different dataset.

Online
Vocabulary

• Allows to learn features in real time
• Memory consumption is proportional

to vocabulary size
• Does not use geometric information

Map-to-Map
• Detects true loops when common

features exist in two submaps

• Not suitable for sparse maps.
• Cannot achieve high performance for

complex dense maps.

Image-to-Map

• High performance when tuned for
100% precision

• Allows online map feature training
for real environment

• Memory inefficient

Lidar-based

Histograms

• Provides rotation invariance for
large viewpoint changes

• Noise handling for spatial
descriptors

• Cannot preserve distinctive
information of internal structure of a
scene

Segmentation
• Compresses large point cloud

maps into set of distinctive features
• Reduced matching time

• Requires prior knowledge of object
locations

3. Role of Deep Learning in Loop Closure Detection

In the past few years, deep learning has been introduced in visual and Lidar SLAM
systems to overcome the challenges of truly-closed-loop detection [13–16,19,88–90]. The
deep learning-based loop detection methods are known to be more robust to changing
environmental conditions, seasonal changes, and occlusion due to the presence of dynamic
objects [91]. This subsection presents the state-of-the-art deep learning-based loop clo-
sure detection methods using camera and Lidar sensors. The main characteristics of the
algorithms are tabulated in Table 2. The table represents the reference of the algorithms
followed by the year of publication, the sensors used for environment perception, the type
of features used for environment representation, the neural network used by the algorithm,
the type of environment for which the algorithm is developed, the loop closure challenges
addressed by the algorithm, i.e., variation in weather, seasons, light, and viewpoint, com-
putational efficiency, dynamic interference in the environment due to moving objects and
the semantics used for environment classification.

3.1. Vision-Based Loop Closing

In deep learning-based visual loop closure detection algorithms, research efforts have
been made to overcome the limitations of handcrafted feature-based methods. In a recent
research [89], a multiscale deep-feature fusion-based solution is presented where abstract
features are extracted from AlexNet [92] pre-trained on ImageNet [93] and fused with
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different receptive fields to generate fixed-length image representations that are invariant to
illumination changes. A similar approach is used in [94] where features are extracted from
fast and lightweight CNN to improve the loop detection accuracy and computation speed.

Many researchers have used semantics-based objects and scene classification for loop
detection through deep learning [95,96]. Semantic segmentation classifies each image pixel
according to the available object categories. All pixels, in an image, with same object
class label are grouped together and represented with same color. Maps with semantic
information enable the robots to have a high-level understanding of the environment.

Another approach used by the researchers for loop detection is autoencoders. The au-
toencoder compresses the input frame and regenerates it to the original image at the output
end of the system [88,97]. Merril et al. [98] proposed an autoencoder-based unsupervised
deep neural network for visual loop detection. The illumination invariance is achieved
by generating HoG descriptor [99] from the autoencoder at output instead of the original
image. The network is trained on the Places dataset [100] containing images from different
places, primarily build for scene recognition. During the robot navigation, there may exist
similar objects in different places which can greatly affect the performance of the algorithm
when it is executed for a sequence of images of a path. The major limitation of this approach
is that the autoencoder cannot show which keyframe in the database matches with the
current image; instead, it can only detect if the current place is already visited or not.
Gao et al. [88] have used the deep features from the intermediate layer of stacked denoising
autoencoder (SDA) [101] and performed the comparison of the current image with previous
keyframes. This method is also time-consuming as the current image is compared to all the
previous images. Also, the perceptual aliasing problem is not addressed, which may result
in false loops and incorrect map estimations.

3.2. Lidar-Based Loop Closing

To improve the matching time and detection accuracy of histogram-based loop detec-
tion methods, Zaganidis et al. [102] generated an NDT histogram-based local descriptor
using semantic information obtained from PointNet++ [103]. Here, [104] implemented
PointNetVLAD [105] which integrates PointNet [106] and NetVLAD [107] to generate a
global descriptor from 3D point cloud. Similarly, LocNet [108] applies a semi-handcrafted
deep network to generate a global representation of scan maps for place matching and
loop detection.

In deep learning-augmented segment-based loop detection methods, the SegMap [109]
produces segments of the scene incrementally as the robot navigates and passes those
segments to a deep neural network to generate a signature per segment. A loop is detected
by matching the segment signatures. SegMap aims to extract meaningful features for global
retrieval while the semantic class types were limited to vehicles, buildings, and others. The
performance of SegMap is further improved in [110].

Though segmentation-based loop detection methods are successful to enhance the
performance in terms of processing time, they are highly dependent on segmentation
information available in the environment. One of the solutions can be the formulation
of a more generic and robust descriptor using segmentation information from multiview
Lidar scans.
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Table 2. State-of-the-art deep learning-based loop closure detection methods for visual and Lidar SLAM.

Ref. Year Sensor Components Deep Learning
Algorithm Env

Challenges
Seman-tics

Weather Seasons Light Viewpoint Effi-ciency Dynamic
Env

[89] 2019 C CNN feature AlexNet
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The loop closure is an open problem due to variation in illumination conditions [124], 
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4. Challenges of Loop Closure Detection and Role of Deep Learning

Based on the existing literature and their limitations presented in Section 3, the major
challenges of loop closure detection methods are identified. This section lists the major
challenges and role of deep learning in SLAM systems to overcome those challenges.

4.1. Perceptual Aliasing

In an environment, the objects may have some visual, geometric, and topological
features based on appearance, structure, and relative position of objects as depicted in
Figure 1. Similar features may appear in different places such as in many buildings that
have the same structure, color, and topological features, in corridors in a building with
the same structure, or in doors that have the same geometry. This occurrence of similar
features at different locations causes the loop detection algorithm to generate false loop
correspondences and is termed as a “perceptual aliasing” problem. Perceptual aliasing
is one of the main reasons for the failure of appearance-based loop detection methods.
Many BoW-based methods generate false correspondences as they only consider similar
visual features for true-loop detection [88]. This problem is well addressed in recent work
by combining multiview information of a place, instead of single view, through deep
neural networks [121]. Also, the temporal information is embedded in the descriptors by
concatenating the descriptors of consecutive frames. Through experiments, it is shown that
image descriptors generated from the sequence of images are more robust and distinctive
in comparison to the descriptors generated from single image.
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4.2. Variation in Environmental Conditions

The loop closure is an open problem due to variation in illumination conditions [124],
seasons [125], and viewpoints [126]. Figure 2 depicts the variation in seasons from summer
to winter, light changes from day to night, and viewpoint variation due to lateral and
angular changes.
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For robot navigation in environments with viewpoint variations, the conventional ap-
proaches succeed up to some extent to achieve high performance in loop closure detection.
In the case of light, weather, and seasonal variations, the features cannot be detected i.e.,
features detected during daytime are not detectable at night due to light effects. Seasonal
changes affect the appearance of the environment drastically, e.g., leaves disappear in
autumn, the ground is covered with snow in winter, etc. Similarly, weather conditions such
as rain, clouds, and sunlight change the appearance of the environment. It is complicated
to overcome these challenges using conventional methods as they are sensitive to such
environmental conditions [88].

To overcome the challenges of changing environmental conditions, many researchers
have proposed CNN-based loop detection methods that are robust to the variance of
illumination and other conditions [16,88,98,122]. In [98], an unsupervised deep neural
network is used to achieve illumination invariance in visual loop detection. Autoencoder-
based loop detection methods using unsupervised deep neural networks achieved state-
of-the-art performance for loop detection in variable environmental conditions [88,127].
However, these methods are not scale invariant. The viewpoint invariance problem up
to 180-degree rotation change is addressed in [84] through an object-based point-cloud-
segmentation approach.

BoW features are sensitive to illumination changes and cause loop detection failure in
severe environmental condition changes. Chen et al. [89] extracted the abstract features
from AlexNet and improved the illumination invariance through multiscale deep-feature
fusion. For varying weather conditions, [118] performed camera-LiDAR-based loop closure
detection using a deep neural network.
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4.3. Dynamic Environment

The presence of moving objects in the environment is one of the major challenges
for true loop detection. The mobile objects cause occlusion to the essential features in the
scene [126,128], as shown in Figure 3; thus, the available features are not sufficient for the
algorithm to detect the loop closure, leading to the closed-loop detection failure.
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Many researchers have addressed this problem to improve the accuracy of the algo-
rithm. The BoW-based loop closure detection methods perform well in a static environment.
However, the detection performance decreases in the presence of dynamic objects due to
reduced feature similarity in loop scenes. This issue can be better addressed using the
semantic information of the environment as the semantic extraction is not affected if there
are mobile objects or people [112].

Hu et al. [95] fused the object-level semantic information with the point features based
on the BoW model [129] to enhance the image similarity in loop scenes and stabilize the
system in a dynamic environment. Object-level semantic information is extracted using
Faster R-CNN [130], pretrained on the COCO dataset [131]. It is shown that the point
feature matching fused with semantics achieves better detection precision in comparison to
only BoW-based loop detection. In [96], the object-based semantic information is embedded
with the ORB features to improve the performance of the overall SLAM framework. The
proposed framework extracts the semantic information of objects and assigns the class
labels to the feature vectors which lie within the boundary boxes. Feature matching is only
performed among the features with same class labels. Thus, avoiding the wrong matches
and reducing the computation time for the loop closure detection thread. Memon et al. [16]
combined the supervised and unsupervised deep learning methods to speed up the loop
detection process. The true-loop detection is ensured by removing the features from
dynamic objects that are either moving or temporarily static. Through deep learning, the
proposed system performs eight times faster loop closure detection at low memory usage
in comparison to traditional BoW-based methods.

4.4. Real-Time Loop Detection

In SLAM, the mapping and loop detection run in parallel threads. As the robot keeps
on generating the environment map along the trajectory, the loop detection algorithm
compares the current frame (in visual SLAM) with all previously seen images to detect
the closed loop. As the map size increases, the similarity computation time for each frame
increases which slows down the system and is not suitable for real-time applications [88].
Many approaches have been proposed in the past to overcome this challenge such as
selecting random frames [132,133] or the fixed keyframes as used in ORB-SLAM2 [134]
for comparison with the current frame, but still, the system will slow down in case of



Sensors 2021, 21, 1243 12 of 17

longer trajectories and also the probability of detecting true loop will decrease [88]. Thus,
developing a real-time loop closure detection algorithm able to optimize the computation
time with the variable map size is one of the major challenges. In the previous few years,
deep learning-based loop closure detection methods have been developed to enhance
the computational efficiency through different schemes such as reducing the descriptor
size [121], reducing the deep network layers during deployment [94,98], matching features
of same semantic class [96], generalizing scene representation with segmentation and
matching segment feature descriptors instead of point features [109].

5. Conclusions and Future Research Directions

SLAM is an integral part of most autonomous robots. This article presents an extensive
survey primarily focused on loop closure detection methods based on visual and Lidar
features and groups them into two major categories. Based on the limitations of each
approach, the major challenges of loop closure detection are identified. The survey also
argues on how those challenges are addressed by the deep learning-based methods. From
the reviewed literature, it is observed that loop detection methods based on deep neural
networks proved to be robust to the challenges, but true-loop detection is still an open
issue as both the camera and Lidar-based deep-learning loop closure detection approaches
have some limitations.

The vision-based loop closure detection methods are sensitive to illumination varia-
tions and cannot work, but LiDAR can. Similarly, the Lidar-based methods fail in weather
changes such as rain, while vision-based methods can perform comparatively well [135].
Thus, there is a need for research in visual–LiDAR fusion-based loop closure detection
to take advantage of both modalities for achieving robustness against illumination and
environmental changes [118]. To this end, the LiDAR scan analysis for feature detection and
camera–LiDAR calibration are the primary problems to be addressed [118]. The semantics
provides high-level understanding of the environment allowing the robot to percept the en-
vironment like the humans. One of the major limitations of semantics-based loop detection
methods is the assumption that there are enough objects learned by the pretrained CNN
model. In a real environment, this assumption may not be satisfied. Also, learning-based
methods are computationally expensive, and the performance is dependent on the dataset
used for training the network.
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