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Abstract: This paper is concerned with the state and fault estimation issue for nonlinear systems
with sensor saturations and fault signals. For the sake of avoiding the communication burden, an
event-triggering protocol is utilized to govern the transmission frequency of the measurements
from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism
(ETM), the current transmission is released only when the relative error of measurements is bigger
than a prescribed threshold. The objective of this paper is to design an event-triggering recursive
state and fault estimator such that the estimation error covariances for the state and fault are both
guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper
bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples
are given to validate the effectiveness of the designed algorithm.

Keywords: event-triggering mechanism (ETM); nonlinear system; recursive estimator; sensor satura-
tions; state and fault estimation

1. Introduction

State estimation/filtering problems have always been one of the fundamental issues
in the areas of target tracking, navigation and positioning, electric power systems, econo-
metrics, biosystems, etc. Therefore, enormous research attention has been paid to the state
estimation problems and some elegant work has been reported, see e.g., [1–5]. According
to different performance indices, the current state estimation approaches include Kalman
filtering (KF), extend Kalman filtering (EKF), H∞ filtering and so on. To be specific, the
famous KF approach has been proposed in [2] by providing optimal state estimates in the
sense of minimal mean-squared error under the assumption that system parameters and
noise statistics are precisely known. The H∞ filtering method proposed [6,7] is capable
to attenuate the influence from the exogenous disturbance to the filtering error. When
it comes to the case that the system model is nonlinear or uncertain, the celebrated EKF
approach has been shown to be a useful tool for the state estimation issues. For instance,
in [8], the EKF approach has been developed to cope with the nonlinear systems subject to
missing measurement. Moreover, in [9], the filtering approach has also been applied in the
complex networks with incomplete measurements.

It is often the case that the faults are inevitable in practical applications because of
a variety of reasons including component failure, ageing equipment, complex external
environment, bandwidth limitation, etc. During the past few decades, fault detection
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and fault-tolerant control issues have gained considerable research enthusiasm due to
the demand in reliability and security of the practical systems. It should be pointed out
that the accurate information of the fault signals are hard to acquire, whilst the recently
emerging state and fault estimation (SFE) approach provides a good solution to obtain
the sufficient information of the state and fault signals simultaneously. By such a merit,
increasing research attention has been paid on this aspect recently, and some inspiring
work has been available in the literature [10–12]. For instance, an SFE algorithm relying
on a recursive approach has been designed in [13] for uncertain systems with missing
measurements and stochastic nonlinearities. H∞ SFE problems have also been studied for
various dynamic systems, such as fuzzy systems [12,14], nonlinear systems [15,16] and 2-D
systems [17,18]. Nevertheless, the SFE problems have not been thoroughly investigated yet
and still have been a research hotspot in control/filtering community.

In reality, sensors may not always provide signals with unlimited amplitudes owing
to the physical constraints. If the sensor saturation is not properly handled, it will severely
decrease the system performance. The main challenge of research on the saturations in
control community is how to design a filtering/control algorithm that can effectively
dealing with the nonlinearities brought by the sensor saturations. As a consequence, the
filtering/control issues subject to sensor saturations have gained initial research focus, see,
e.g., [19,20]. For example, a recursive filtering issue has been solved for uncertain systems
with faults and sensor saturations in [21]. In [22,23], the H∞ filtering issues have been
settled for nonlinear systems with incomplete measurements and sensor saturations. In [20],
mean-squared consensus control problem has been studied for stochastic multi-agent
systems subject to sensor saturations where the desired controllers have been designed
depending on the solutions to recursive matrix inequalities.

On another research front, the event-triggering mechanism (ETM) has become a re-
search hotspot recently due mainly to its superiority of effectively reducing communication
resources compared with the traditional time-triggering protocol. Under the ETM the
current measurement will be transmitted only when the predefined triggering condition
is met, and thereby the transmission numbers can be reduced largely. Based on this idea,
various control and filtering issues under the ETM have been studied, see e.g., [6,24–26].
Very recently, considerable research attention has been paid on the event-triggering fault
estimation issue owing to its vital role in the practical engineering. Accordingly, the
event-triggering fault estimation problems have been investigated for various systems,
such as nonlinear systems with missing measurements [27], stochastic systems subject to
nonlinearities and packet dropouts [28], and stochastic systems with deception attacks [29].
However, to the best of the authors’ knowledge, the event-triggering state and fault esti-
mation (ETSFE) problem for nonlinear systems with sensor saturations has not been fully
studied, which constitutes the main motivation of this paper.

In terms of the methodologies, due to the effects brought by nonlinearities (includ-
ing the saturation functions) and event-triggering protocol, it is almost impossible in the
Kalman filtering framework to minimize the estimation error covariance through adjust-
ment of the gain matrices. In [30], an alternative way has been proposed to handle the
effects of norm bounded parameter uncertainties and a robust filter has been designed such
that an upper bounded matrix of the estimation error covariance is minimized. Enlightened
by this idea, such a filtering approach has been applied in various complex systems such as
complex networks [9] and sensor networks [31]. However, it should be pointed out that, for
the state and fault simultaneous estimation problem in the existing literature, the estimation
error covariance minimization method has still been the main method which is incapable
of dealing with more real complex phenomena. Therefore, it is the second motivation of
this paper to develop the filtering approach proposed in [30] to handle the state and fault
estimation problems with sensor saturations under the event-triggering strategy.

The novelties of this paper are emphasized as follows: (1) a novel ETSFE issue is,
for the first time, addressed when the effects of sensor saturations, nonlinearities as well
as ETM are simultaneously taken into consideration; (2) the state and fault estimator
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is designed such that the upper bounds on the error covariances of the state and fault
estimation are respectively guaranteed at each time instant; and (3) the gain matrices are
designed via two recursions which minimize the obtained upper bounds. Finally, two
illustrative examples are utilized to verify the feasibility of the developed ETSFE algorithm.

The remaining part of this paper is organized as follows. In Section 2, the problem
to be investigated is addressed. The main results are listed in Section 3 where the desired
state and fault estimators is designed. In Section 4, two illustrative examples are given and
the conclusion is drawn in Section 5.

Notations: In this paper, the notations mentioned are standard. Rn and Rm×n re-
spectively denote the n-dimensional Euclidean space and m × n real matrix. I is the
identity matrix, while diag{a1, a2, . . . , aN} represents the block-diagonal matrix with ma-
trices a1, a2, · · · , aN . For symmetric matrices x and y, x ≥ y (x > y) means that x − y
is positive semi-define (positive definite) matrix. The superscript “T” and “−1” refer to
matrix transposition and inverse, respectively. R(M) is the rank of the matrix M. E{x}
denotes the mathematical expectation of the stochastic variable x. tr{M} denotes the trace
of the matrix M. ‖ · ‖ stands for the Euclidean norm.

2. Problem Formulation

The estimation structure under consideration is shown in Figure 1 and the dynamics
of the plant is given by

xk+1 = hk(xk) + Bk fk + wk (1)

where xk ∈ Rnx is the system state vector, fk ∈ Rn f represents a fault signal, wk ∈ Rnx is
the process noise, and Bk is a given compatible matrix.

Figure 1. Structure of the state and fault estimation.

The measurements with sensor saturation are described by

yk = ϑ(Ckxk) + Dk fk + vk (2)

where yk ∈ Rny represents the measurement vector at time instant k, vk ∈ Rny is the
measurement noise, and Ck, Dk are both appropriate-dimensional matrices.

Assumption 1. The matrix Dk is full column rank, i.e., R(Dk) = n f , n f ≤ ny.

The nonlinear function hk(·) satisfies the following condition

‖hk(X)− hk(Y)‖ ≤ νk‖X−Y‖, ∀ X, Y ∈ Rnx (3)

where νk > 0 is a known matrix.
The noise signals wk and vk have the following statistical properties

E{wk} = 0, E{wkwT
l } = Rkδkl ,

E{vk} = 0, E{vkvl
T} = Qkδkl

(4)
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where Rk > 0 and Qk > 0 are known appropriate-dimensional matrices, and δkl represents
the Kronecker function with

δkl =

{
1, k = l,
0, k 6= l.

The saturation function ϑ(·): Rny 7→Rny is defined by

ϑ(s) =
[
ϑ(s1) ϑ(s2) · · · ϑ(sny)

]T
(5)

with ϑ(si) = sign(si) min{$i, |si|} (i = 1, 2, . . . , ny), where si is the ith element of vector s,
sign(·) represents the signum function, and $i denotes the saturation level for ith element.

For the sake of reducing limited communication resource, the ETM is adopted to
govern the transmission frequency between the sensor and the estimator. We denote the
transmission instants by 0 = k0 < k1 < k2 < · · · < kl < · · · , which is determined by

kl+1 =min
{

k ∈ N|k > kl , ‖yk − ykl
‖ > τ

}
(6)

where τ > 0 is a given scalar and ykl
is the measurement transmitted at the latest time.

For the purpose of estimating the state and fault simultaneously, we construct the
estimator as follows

{
x̂k+1 = hk(x̂k) + Bk f̂k + Gk

(
ykl
− Ck x̂k − Dk f̂k

)

f̂k = Lk
(
ykl
− Ck x̂k

) (7)

where f̂k, x̂k represent the estimates of fault and state respectively and Lk, Gk are the
estimator parameters respectively.

Let the state estimation error and fault estimation error be x̃k = xk − x̂k and
f̃k = fk − f̂k, respectively.

By noting (1) and (7), one has

x̃k+1 =hk(xk)− hk(x̂k) + (Bk − GkDk) f̃k + Gkεk

− Gkϑ(Ckxk)− Gkvk + GkCk x̂k + wk
(8)

and
f̃k = fk − LkDk fk − Lk(ϑ(Ckxk) + vk − εk − Ck x̂k) (9)

where εk = yk − ykl
.

Assuming that the constraint condition LkDk = I is met, we eventually derive

f̃k = −Lk(ϑ(Ckxk) + vk − εk − Ck x̂k). (10)

Remark 1. The constraint condition LkDk = I plays a key role in the estimator design. It is obvious that
the fault estimator (9) contains the fault vectors fk. Since the dynamics of the faults is generally unknown,
the fault term should be eliminated. To this end, LkDk = I is introduced as an additional condition.

Then, we define the estimation error covariances of the state and fault as follows

Px
k = E{x̃k x̃T

k }, P f
k = E{ f̃k f̃ T

k }. (11)

Our main objective of this paper is to develop an event-triggering state and fault
estimator of the form (7) such that, for all nonlinearities as well as sensor saturations,
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the upper bounds (Σx
k and Σ f

k ) for the estimation error covariances of state and fault are
respectively guaranteed, that is

Px
k =E{x̃k x̃T

k } ≤ Σx
k ,

P f
k =E{ f̃k f̃ T

k } ≤ Σ f
k .

(12)

Moreover, the designed gain matrices Gk and Lk are expected to minimize the upper
bound Σx

k and Σ f
k simultaneously at each iteration.

3. Main Results

In this section, the upper bounds on the estimation error covariances of the state and
fault are expressed by means of recursions. Then, the proper gain matrices Gk and Lk are
designed to minimize the upper bounds on the estimation error covariances and fault error
covariances, respectively. The following lemmas will be used for obtaining the results.

Lemma 1 ([4]). For ∀k ∈ [0, N], let the matrix function be Ξk(·) : Rn×n 7→ Rn×n, and
arbitrary symmetric matrices x > 0 and y > 0. If Ξk(x) ≤ Ξk(y) for all x ≤ y, then under the
initial condition G0 = H0, the solutions Gk and Hk to difference equations Gk+1 = Ξk(Gk), and
Hk+1 = Ξk(Hk) satisfy Gk+1 ≤ Hk+1.

Lemma 2 ([8]). The following relationship is true for arbitrary real vectorsM and N

MN T +MN T ≤ εMMT + ε−1NN T

where ε > 0 is an arbitrary scalar.

Lemma 3. Under the constraint condition LkDk = I, the fault error covariance P f
k = E{ f̃k f̃ T

k }
can be derived as follows

P f
k = LkΛkLT

k (13)

where
Λk =E

{
ϑ(Ckxk)ϑ

T(Ckxk) + Ck x̂k x̂T
k CT

k + εkεT
k + εk x̂T

k CT
k

+ Ck x̂kεT
k − ϑ(Ckxk)ε

T
k − εkϑT(Ckxk)− Ck x̂kϑT(Ckxk)

+ Qk − ϑ(Ckxk)x̂T
k CT

k − εkvT
k − vkεT

k

}
.

Proof. The validation of (13) can be verified by noting (10) and (11) and the rest of proof is
omitted.

Lemma 4. Under the condition LkDk = I, the state estimation error covariance Px
k =E{x̃k x̃T

k } is
derived by

Px
k+1 =E

{
(hk(xk)− hk(x̂k))(hk(xk)− hk(x̂k))

T + (Bk − GkDk) f̃k f̃ T
k (Bk − GkDk)

T

+Gkϑ(Ckxk)ϑ
T(Ckxk)G

T
k + GkεkεT

k GT
k + GkCk x̂k x̂T

k CT
k GT

k

}
+ Rk + GkQkGT

k

−<k,1 −<T
k,1 +<k,2 +<T

k,2 +<k,3 +<T
k,3 +<k,4 +<T

k,4 +<k,5 +<T
k,5 +<k,6 +<T

k,6

−<k,7 −<T
k,7 −<k,8 −<T

k,8 −<k,9 −<T
k,9 +<k,10 +<T

k,10 −<k,11 −<T
k,11

(14)
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where

<k,1 =E
{
(hk(xk)− hk(x̂k))ϑ

T(Ckxk)
}

GT
k , <k,2 = E

{
(hk(xk)− hk(x̂k)) f̃ T

k

}
(Bk − GkDk)

T ,

<k,3 =E
{
(hk(xk)− hk(x̂k))x̂T

k

}
CT

k GT
k , <k,4 = E

{
(hk(xk)− hk(x̂k))ε

T
k

}
GT

k ,

<k,5 =(Bk − GkDk)E
{

f̃k x̂T
k

}
CT

k GT
k , <k,6 = (Bk − GkDk)E

{
f̃kεT

k

}
GT

k ,

<k,7 =(Bk − GkDk)E
{

f̃kϑT(Ckxk)
}

GT
k , <k,8 = GkE

{
ϑ(Ckxk)x̂T

k

}
CT

k GT
k ,

<k,9 =GkE
{

ϑ(Ckxk)ε
T
k

}
GT

k , <k,10 = GkCkE
{

x̂kεT
k

}
GT

k , <k,11 = GkvkεT
k GT

k .

Proof. It can be shown that (14) follows directly from (8) and (11), and the proof is omitted
for conciseness.

3.1. Fault Estimation

The following Theorem 1 provides the explicit form of the upper bound on the fault
estimation error covariance P f

k in terms of the recursion.

Theorem 1. Consider the fault estimation error covariance in (13). Assume that the condition
LkDk = I is satisfied. For any given positive scalars ak, bk, ck and dk, the upper bound on the fault
estimation error covariance P f

k is obtained by

Σ f
k = LkΛ̄kLT

k (15)

where

Λ̄k =κ1τ2 I + κ2

ny

∑
i=1

$2
i I + κ3Ck x̂k x̂T

k CT
k + κ4Qk,

κ1 =1 + a−1
k + bk + dk, κ2 = 1 + ak + ck

κ3 =1 + b−1
k + c−1

k , κ4 = 1 + d−1
k

(16)

Proof. In view of the triggering condition (6), one has

εkεT
k ≤ εT

k εk I ≤ τ2 I. (17)

Using Lemma 2, we obtain

− εkϑT(Ckxk)− ϑ(Ckxk)ε
T
k ≤ akϑ(Ckxk)ϑ

T(Ckxk) + a−1
k εkεT

k , (18)

εk x̂T
k CT

k + Ck x̂kεT
k ≤ bkεkεT

k + b−1
k Ck x̂k x̂T

k CT
k , (19)

− ϑ(Ckxk)x̂T
k CT

k − Ck x̂kϑT(Ckxk) ≤ ckϑ(Ckxk)ϑ
T(Ckxk) + c−1

k Ck x̂k x̂T
k CT

k , (20)

and
− εkvT

k − vkεT
k ≤ dkεkεT

k + d−1
k vkvT

k . (21)

Moreover, from the definition of the saturation function, we have

E{ϑ(Ckxk)ϑ
T(Ckxk)} ≤

ny

∑
i=1

$2
i I. (22)

It then follows from (13), (17)–(22) that

Λk ≤ Λ̄k. (23)

Finally, considering (13), (15) and (23), we have P f
k ≤ Σ f

k , which ends this proof.
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By the results obtained in Theorem 1, the following theorem is going to design a gain
matrix Lk such that the upper bound on the fault estimation error variance is minimized at
each iteration.

Theorem 2. Under the constraint condition LkDk = I and supposing that ak, bk, ck and dk are
given positive scalars, the upper bound Σ f

k on the fault estimation error covariance is minimized, if
the estimator gain Lk is chosen as

L∗k = (DT
k Λ̄−1

k Dk)
−1DT

k Λ̄−1
k . (24)

Meanwhile, the minimum upper bound is given by

Σ f ∗
k = (DT

k Λ̄−1
k Dk)

−1. (25)

Proof. This proof is substantially to solve the following constrained optimization problem

minLk {Σ f
k}

s.t. LkDk = I.
(26)

By means of Lagrange multiplier method, we introduce the following Lagrange function

Ξ(Lk, Υk) =LkΛ̄kLk
T + (I − LkDk)Υk + ΥT

k (I − LkDk)
T (27)

where Υk is the Lagrange factor.
The derivatives of Ξ(Lk, Υk) with respect to Lk and Υk can be written as

∂Ξ(Lk, Υk)

∂Lk
= 2LkΛ̄k − 2ΥT

k DT
k

and
∂Ξ(Lk, Υk)

∂Υk
= 2(I − LkDk).

Letting the above derivatives be zero, we have

L∗k = ΥT
k DT

k Λ̄−1
k (28)

and
L∗k Dk = I. (29)

Then, substituting (28) into (29), one has

Υk = (DT
k Λ̄−1

k Dk)
−1 (30)

from which we have L∗k = (DT
k Λ̄−1

k Dk)
−1DT

k Λ̄−1
k .

Combining (27), (28) and (30), we derive the minimized upper bound on the fault
estimation error covariance as follows

Σ f
k
∗
= Ξ(L∗k , Υk) = (DT

k Λ̄−1
k Dk)

−1. (31)

The proof is now complete.

3.2. State Estimation

In the following theorem, an upper bound on the state estimation error covariance is
derived by means of the recursion and then minimized by the designed gain parameter G∗k .
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Theorem 3. Consider the state estimation error covariance obtained in (14). Assume that the
condition LkDk = I is satisfied and πi > 0 (i = 1, 2, · · · , 11) are arbitrary positive scalars. If
matrix Σk satisfies the following difference equation

Σx
k+1 =φ1νkνT

k tr(Σx
k ) + Rk + φ2(Bk − GkDk)Σ

f
k (Bk − GkDk)

T + φ3τ2GkGT
k

+ φ4

ny

∑
i=1

$2
i GkGT

k + φ6GkQkGT
k + φ5GkCk x̂k x̂T

k CT
k GT

k ,
(32)

with the initial value Px
0 ≤ Σx

0 , where

φ1 =1 + π1 + π2 + π3 + π4, φ2 = 1 + π−1
2 + π5 + π6 + π7,

φ3 =1 + π−1
4 + π−1

6 + π−1
9 + π−1

10 + π−1
11 , φ4 = 1 + π−1

1 + π−1
7 + π8 + π9,

φ5 =1 + π−1
3 + π−1

5 + π−1
8 + π10, φ6 = 1 + π11,

(33)

then Σx
k+1 is the upper bound of Px

k+1, i.e., Px
k+1 ≤ Σx

k+1.
Moreover, if the gain matrix Gk is selected by

G∗k =ΦkΨ−1
k (34)

where
Φk = φ2BkΣ f

k DT
k

and

Ψk =φ2DkΣ f
k DT

k + φ3τ2 I + φ4

ny

∑
i=1

$2
i I + φ5Ck x̂k x̂T

k CT
k + φ6Qk,

then the upper bound Σx
k+1 is minimized and the minimum upper bound is given by

Σx∗
k+1 = φ1νkνT

k tr(Σx
k ) + φ2BkΣ f

k BT
k + Rk −

{
φ2BkΣ f

k DT
k

{
φ2DkΣ f

k DT
k + φ3τ2 I

+ φ4

ny

∑
i=1

$2
i I + φ5Ck x̂k x̂T

k CT
k + φ6Qk

}−1



{

φ2BkΣ f
k DT

k

{
φ2DkΣ f

k DT
k + φ3τ2 I

+ φ4

ny

∑
i=1

$2
i I + φ5Ck x̂k x̂T

k CT
k + φ6Qk

}−1




T

.

(35)

Proof. By noting (14) and using Lemma 2, one has

−<k,1 −<T
k,1 ≤π1E{(hk(xk)− hk(x̂k))(hk(xk)− hk(x̂k))

T}+ π−1
1 GkE{ϑ(Ckxk)ϑ

T(Ckxk)}GT
k ,

<k,2 +<T
k,2 ≤π2E{(hk(xk)− hk(x̂k))(hk(xk)− hk(x̂k))

T}+ π−1
2 (Bk − GkDk)P f

k (Bk − GkDk)
T ,

<k,3 +<T
k,3 ≤π3E{(hk(xk)− hk(x̂k))(hk(xk)− hk(x̂k))

T}+ π−1
3 GkCk x̂k x̂T

k CT
k GT

k ,

<k,4 +<T
k,4 ≤π4E{(hk(xk)− hk(x̂k))(hk(xk)− hk(x̂k))

T}+ π−1
4 GkE

{
εkεT

k

}
GT

k ,

<k,5 +<T
k,5 ≤π5(Bk − GkDk)P f

k (Bk − GkDk)
T + π−1

5 GkCk x̂k x̂T
k CT

k GT
k ,

<k,6 +<T
k,6 ≤π6(Bk − GkDk)P f

k (Bk − GkDk)
T + π−1

6 GkE
{

εkεT
k

}
GT

k , (36)

−<k,7 −<T
k,7 ≤π7(Bk − GkDk)P f

k (Bk − GkDk)
T + π−1

7 GkE{ϑ(Ckxk)ϑ
T(Ckxk)}GT

k ,

−<k,8 −<T
k,8 ≤π8GkE{ϑ(Ckxk)ϑ

T(Ckxk)}GT
k + π−1

8 GkCk x̂k x̂T
k CT

k GT
k ,

−<k,9 −<T
k,9 ≤π9GkE{ϑ(Ckxk)ϑ

T(Ckxk)}GT
k + π−1

9 GkE
{

εkεT
k

}
GT

k ,

<k,10 +<T
k,10 ≤π10GkCk x̂k x̂T

k CT
k GT

k + π−1
10 GkE

{
εkεT

k

}
GT

k ,

−<k,11 −<T
k,11 ≤π11GkQkGT

k + π−1
11 GkE

{
εkεT

k

}
GT

k .
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Combining (14), (33) and (36), we have

Px
k+1 ≤φ1E{(hk(xk)− hk(x̂k))(hk(xk)− hk(x̂k))

T}+ φ2(Bk − GkDk)P f
k (Bk − GkDk)

T

+ φ3GkE
{

εkεT
k

}
GT

k + φ4GkE{ϑ(Ckxk)ϑ
T(Ckxk)}GT

k

+ φ5GkCk x̂k x̂T
k CT

k GT
k + φ6GkQkGT

k + Rk.

(37)

From (3), (17), (22) and (37), we obtain

Px
k+1 ≤φ1νkνT

k tr(Px
k ) + Rk + φ2(Bk − GkDk)P f

k (Bk − GkDk)
T + φ3τ2GkGT

k

+ φ4

ny

∑
i=1

$2
i GkGT

k + φ5GkCk x̂k x̂T
k CT

k GT
k + φ6GkQkGT

k .
(38)

By using Lemma 1, we arrive at Px
k+1 ≤ Σx

k+1.
Next, the gain parameter Gk given by (34) is ready to be optimal in the sense of

minimizing the upper bound Σx
k+1.

The derivative of Σx
k+1 with respect to Gk is computed by

∂

∂Gk
Σx

k+1 =− 2φ2(Bk − GkDk)Σ
f
k DT

k + 2φ3τ2Gk + 2φ4

ny

∑
i=1

$2
i Gk

+ 2φ5GkCk x̂k x̂T
k CT

k + 2φ6GkQk.

(39)

Letting the derivative in (39) be zero, one has

G∗k =φ2BkΣ f
k DT

k

{
φ2DkΣ f

k DT
k + φ3τ2 I + φ4

ny

∑
i=1

$2
i I + φ5Ck x̂k x̂T

k CT
k + φ6Qk

}−1

, (40)

and the minimum upper bound is given as the form as (35). The proof is now complete.

Based on the above results, the developed ETSFE algorithm is summarized as follows
(Algorithm 1).

Algorithm 1: ETSFE algorithm

1. Let parameters ak, bk, ck, dk, πi(i = 1, 2, · · · , 11) be given. Set initial values x̂0 = x̄0
and Σx

0 = Px
0 , the length of time horizon N and k = 0;

2. Calculate the fault estimator gain matrix L∗k according to (24), the upper bound of the

fault estimation error covariance Σ f
k
∗

via (25), and the fault estimate f̂k according to (7);
3. Calculate the state estimator gain matrix G∗k according to (34), the upper bound of the
state estimation error covariance Σx

k
∗ via (35), and the state estimate x̂k according to (7);

4. If k ≤ N, set k = k + 1 and go to step 2, else go to step 5;
5. Stop.

Remark 2. Theorems 2 and 3 provide the expressions for the estimator gain matrices Lk and Gk,
respectively, and the desired estimator has been designed. In the design of the estimator, three
difficulties can be identified as follows: (1) how can we choose an appropriate standard to evaluate
the estimation performance when the systems are subject to nonlinearities and sensor saturations
under the event-triggering protocol? (2) how can we construct an appropriate estimator structure
which is closely related to the selection of the estimation analysis method? (3) After the estimator
structure is determined, how can we obtain the expressions for the estimator gain matrices by using
the mathematical tool appropriately. In this paper, these questions have been well answered.

Remark 3. To date, we have studied the ETSFE problems for nonlinear systems subject to sensor
saturations. Relying on the matrix analysis technique, the estimation error covariances for the state
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and fault are both guaranteed by upper bounds, and then such upper bounds have been minimized
by appropriately designing the gain parameters L∗k and G∗k . Comparing with the existing methods in
literature [10,21], the estimation approach proposed in this paper is capable of dealing with state and
fault simultaneous estimation problem when the systems are subject to the nonlinearities including
the sensor saturation nonlinearity under the event-triggering protocols. Actually, the proposed
estimation approach is applicable to all those situations where the complex phenomena could be
modelled by a bound-limited variable. Moreover, the corresponding ETSFE algorithm proposed is of
a simple and recursive form, which is suitable for online computation. The following section will
provide two illustrative examples to validate the usefulness of the developed ETSFE algorithm.

4. Experimental Simulation

In this section, two simulation examples are utilized to validate the usefulness of the
developed ETSFE algorithm.

Example 1. The system under consideration in (1) has the following parameters

Ak =

[
0.6 −0.5
0.2 0.4 + 0.4cos(k)

]
, Bk = [0.9 − 0.7]T ,

Ck =

[−0.4 1
−0.3 1.5

]
, Dk = [−0.9 0.9]T , νk = 0.15.

(41)

Let the nonlinear function hk(xk) be

hk(xk) = Akxk + h̄k(xk) (42)

where h̄k(xk) =
[
0.17sin(x1

k) 0.16sin(x2
k)
]T .

The process noise wk and measurement noise vk are Gaussian noises with zero mean and their

covariances are set as Rk =

[
0.3 0
0 0.3

]
and Qk =

[
0.2 0
0 0.2

]
, respectively. The saturation levels

are $1 = $2 = 0.1 and the threshold of the triggering threshold is τ = 1.2. In this example, the
parameters πi (i = 1, 2, . . . , 11), ak, bk, ck and dk are chosen as 1, and the initial state is chosen as
x0 = [0.5 − 0.5]T . Based on the above parameters, the gain matrices L∗k and G∗k can be iteratively
computed by (24) and (34).

The designed algorithm is validated in MATLAB (R2016a), Intel Core CPU i5-8265.
Figures 2–5 show the simulation results based on the parameters mentioned above. The above
picture in Figure 2 plots the state trajectory and its estimate for x1

k and the picture below shows
the state trajectory and the estimate for x2

k . The fault signals as well as its estimates are shown in
Figure 3. It is seen from Figures 2 and 3 that the proposed estimator performs well. The mean square
errors (MSEk) and the traces of their minimal upper bounds for state are shown in Figure 4. The cor-
responding results for fault are given in Figure 5. The simulation results shown in Figures 4 and 5
concur with our theoretical analysis.

Remark 4. Due to the effects of the nonlinearities and the event-triggering protocol, upper bounds of
the estimation error covariances are employed as the performance index of state and fault estimation.
Such a practice inevitably gives rise to conservatism which may affect the real estimation accuracy.
Although the estimator gains are designed to minimize the upper bounds at each step, the minimized
upper bounds are actually not tight. Note from Theorems 2 and 3 that the minimized upper bounds
are closely related to the parameters ak, bk, ck, dk, πi > 0 (i = 1, 2, · · · , 11). Therefore, in the
experiment, these parameters should be selected prudently and the appropriate selection of these
parameters may further improve the experimental results.
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where hk(xk) = Akxk + h̄k(xk), h̄k(xk) = νk(gk(xk)+G), gk(xk) = − gψ(x2,k)
2Υ

√
ẋ2

1,k + ẋ2
2,k

[
ẋ1,k
ẋ2,k

]
,

ψ(x2,k) = κ1 · exp(−κ2x2,k) and

Ak =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


, Bk =




0.01
0

0.01
0


, Ck =

[
1 0 0 0
0 0 1 0

]
,

Dk =




0.01
0

0.01
0


, G =

[
0
−g

]
, νk =




T2

2 0
T 0
0 T2

2
0 T


.

The parameters involved in the above system are stated as follows: xk = [x1,k ẋ1,k x2,k ẋ2,k]
T

where x1,k, ẋ1,k represent respectively the position and the velocity of the target on x-axis and x2,k,
ẋ2,k represent the position and the velocity of the target on y-axis; T is the sampling period; g denotes
the gravity acceleration; Υ represents the ballistic coefficient; the exponentially decaying function
ψ(·) is the air density; and wk, vk are both Gaussian noises with zero mean and their covariances

are Rk = λ · diag{R̄k, R̄k} and Qk = 10I2 where R̄k =

[
T3

3
T2

2
T2

2 T

]
and λ is a parameter related to

the process noise.
In this example, the triggering thresholds are set as τ1 = τ2 = 200 and the saturation

levels are selected by $1 = $2 = 6000. The other parameters are chosen as g = 9.8 m/s2,
Υ = 4× 104 kg/ms2, λ = 0.1 m2/s3, T = 1 s, κ1 = 1.227, κ2 = 1.094 × 10−4, πi = 1
(i = 1, 2, . . . , 11), ak = bk = ck = dk = 1.

The simulation results are displayed in Figures 6–10. The position of the target on x-axis x1,k
and its estimate are plotted in Figure 6. Figure 7 shows the velocity of the target on x-axis ẋ1,k and
its estimate. The corresponding results for the target on y-axis are depicted in Figures 8 and 9. The
actual fault and its estimate are shown in Figure 10. From the simulation, it is observed that the
proposed ETSFE algorithm is indeed effective in the ballistic object tracking system.
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10 20 30 40 50 60 70 80

k

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

x
2 k
a
n
d
it
s
es
ti
m
a
te

position of the target

estimated state

5 10 15

500

1000

1500

2000

Figure 8. The position of the target x2,k and its estimate.

Figure 7. The velocity of the target ẋ1,k and its estimate.
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ẋ
1 k
a
n
d
it
s
es
ti
m
a
te

velocity of the target

estimated state

25 30 35

90

100

110

120

Figure 7. The velocity of the target ẋ1,k and its estimate.
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5. Conclusions

In this paper, we have addressed the state and fault estimation issues for nonlinear
systems subject to sensor saturations. The ETM based scheduling protocol has been adopted
to manage the measurement transmission, and thus relieving the communication burden.
Relying on the received measurements, the state and fault estimator has been designed where
the recursions of the upper bounds on the estimation error covariances for the state and fault
have been given, respectively. Then, the derived upper bounds have been minimized by
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properly designing the estimator gain matrices. Finally, we have utilized two simulation
examples to show the validity of the designed ETSFE algorithm. Our future research topics
would be to extend the main results in this paper to the sensor networks where multiple
coupling sensors are involved [22] and to apply the main results in practical engineering
such as power systems [3].
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