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Abstract: Industrial environments are characterised by the non-lineal and highly complex processes
they perform. Different control strategies are considered to assure that these processes are correctly
performed. Nevertheless, these strategies are sensible to noise-corrupted and delayed measurements.
For that reason, denoising techniques and delay correction methodologies should be considered
but, most of these techniques require a complex design and optimisation process as a function of
the scenario where they are applied. To alleviate this, a complete data-based approach devoted to
denoising and correcting the delay of measurements is proposed here with a two-fold objective:
simplify the solution design process and achieve its decoupling from the considered control strategy
as well as from the scenario. Here it corresponds to a Wastewater Treatment Plant (WWTP). However,
the proposed solution can be adopted at any industrial environment since neither an optimization
nor a design focused on the scenario is required, only pairs of input and output data. Results show
that a minimum Root Mean Squared Error (RMSE) improvement of a 63.87% is achieved when
the new proposed data-based denoising approach is considered. In addition, the whole system
performance show that similar and even better results are obtained when compared to scenario-
optimised methodologies.

Keywords: artificial neural networks; data-driven methods; denoising autoencoders; industrial
control; wastewater treatment plants

1. Introduction

Industrial systems are characterised by the highly complex and non-linear processes
they require. These processes have to be performed under certain working conditions
that have to be maintained over the time in order to assure a correct operation of the
industrial plant. To assure this, different control strategies have been proposed, from the
most simple ones, Proportional Integral and Derivative Controllers (PID), to the most
complex model-based approaches like a mix between Model Predictive Controllers (MPC)
and Fuzzy Logic Controllers (FLC) [1] (Chapter 1).

In that sense, two industrial fields where the control systems have been widely
adopted and developed over the last years are the petrochemical industries and the wastew-
ater facilities. Proportional Integral (PI) and Proportional Integral Derivative (PID) [2]
controllers have been considered in [3-5]. In [3], two PI controllers have been proposed in
a Wastewater Treatment Plant (WWTP) to control the dissolved oxygen in the fifth reactor
tank (Sp5) and the nitrite-nitrogen in the second one (Sno,2). In [4], an hybrid controller
based on Proportional Integral Derivative (PID) Controllers and FLC is proposed to control
the temperature of a stripper devoted to producing gasoline and liquefied petroleum gas
products, whereas in [6] an application approach is presented. On the other hand, in [5],
two Fuzzy PID controllers are adopted to control a distillation column guaranteeing high
control performance. However, in some cases more complex control structures are required.
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For instance, in [7] a unique MPC approach is considered to maintain the WWTP dissolved
oxygen and the nitrite-nitrogen concentrations whereas in [8] MPCs have been considered
to control several set-points of a depropanizer system. Hybrid control approaches have
also been considered in different works like in [9], where MPCs complemented with FLCs
are proposed to avoid violations of the effluent concentrations, understanding a viola-
tion as an exceed of the WWTP effluent limits. All these model-based controllers have a
common point: they are based on mathematical models able to describe the behaviour
of the processes to be controlled. However, the design and tuning procedures of such
a kind of control strategies require a linearisation of the highly complex and non-linear
mathematical models [1] (Section 2.7). This entails a degradation in the modelling of the
processes under control. In that sense, Artificial Neural Networks (ANNSs) have arisen
as tools able to model highly complex and non-linear relationships without the necessity
of a linearisation. They only require pairs of input and output data of the process being
controlled [10] (Section 1). Not only this, the digital transformation and the Industry 4.0
paradigm is motivating the adoption of data-driven methods and ANNs in the modelling
and control processes [11-13].

Data-driven methods and ANNSs have arisen as new approaches able to offer a good
control performance at the same time they increase the scalability and decoupling of the
control strategy from the highly complex mathematical models [14-19]. In such a context,
ANNSs have been considered to perform different tasks: (i) act as soft-sensors, (ii) com-
plement the model-based controllers, and (iii) act as a control strategy as such. ANNs
acting as soft-sensors are able to measure certain components where a hardware-based
sensors is either too expensive, or it has not been implemented yet. This is motivated by
the ANNSs ability in the modelling of highly complex and non-linear processes as well
as by their easy tuning process [10] (Chapter 1). For instance, in [20], soft-sensors based
on ANNSs are proposed to determine the Chemical Oxygen Demand (COD), the Total
Nitrogen (TN) and the Total Suspended Solids (Tss) concentrations in the WWTP reactor
tanks. Another approach is shown in [21], where Long Short-Term Memory (LSTM) cells
have been considered to develop two soft-sensors predicting the ammonium and total
nitrogen in the WWTP effluent. In terms of ANNs complementing the control strategies,
neural networks have been considered in [22] to complement a MPC controller. There,
three different non-lineal autoregressive exogenous model neural networks are in charge of
determining the optimal set-points considered by an MPC-based control strategy devoted
to controlling the (Sp 5) and the ammonium (Syp 5) in the fifth WWTP reactor tank. Finally,
ANNs have been considered in some works as the main control structure. In [23], an
ANN-based Fuzzy Logic Controller is proposed to track the optimal set-points of the Sno 2
and Sp 5 concentrations. In [24], ANNs model the direct relationships of an oil well drilling
process. Later, they have been adopted either to determine the actuation variable of the
control process, or to determine the next state of the system before being considered by a
controller. Another example corresponds to [25], where two LSTM networks have been pro-
posed to control the Sp 5 concentration by means of an Internal Model Controller structure.
However, these nets have been designed to track a variable set-point. Other approaches
correspond to Reinforcement Learning methodologies, where ANNSs are considered as the
main core of the reinforcement agents. One example where Reinforcement Learning is
considered in the control of a WWTP corresponds to [26]. Here, the Reinforcement Agent
has been trained observing the plant operators behaviour during a year.

In such a context, one of the common points among model-based controllers and the
ANN-based ones is that they are sensible to perturbations of the signals involved in the
control process [3,25]. The main perturbations that affect these signals are the noise and
delays introduced by the different non-ideal sensors placed over the industrial plants. The
appearance of time-delays is inevitable and as a consequence, they have to be corrected
in order to avoid undesirable phenomena like undesired oscillations and the eventual
instability of the control system [27]. In terms of the noise, the control strategies are charac-
terised by the requirement of accurate control parameters and therefore, by the adoption of
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an accurate identification process. Thus, when noise is present in the measurements, the
identification and proper controller tuning becomes a challenging task [28]. Besides, when
noise is transferred to the manipulated variable, it may be easily amplified by the controller.
This may originate the tear and wear of actuation mechanical parts, therefore degrading
the performance and lowering instrumentation life. One clear example of time-delays
and noise effects can be observed in the Benchmark Simulation Model No.1 (BSM1), a
general purpose model of a WWTP plant [29], where the noise introduced by the consid-
ered sensors produces an incorrect measurement of the controlled variable and therefore,
an incorrect actuation signal. On the other hand, the delays introduced by the same sen-
sors entail a degradation of the control actuation. As a consequence, the reduction of the
gain of the controller is required not only to reduce the delay effect and its propagation
through time, but also to avoid the instability of the control system [30]. To alleviate these
effects, different denoising and delay correction approaches can be considered: (i) from
the denoising filter-based solutions [31,32] to the data-based denoising techniques such as
Principal Component Analysis [33] and Denoising Autoencoders (DAE) [34], and (ii) from
forecasting algorithms and controllers to the application of ANNSs [35]. In [36], a mix
between optimised, highly tuned and data-based denoising approaches is proposed. It
implements two stages, one to denoise the measurements and the other to correct the
introduced delays. The denoising process is performed adopting highly tuned low-pass
filters whereas the delay correction process is performed by means of ANNSs. This entails
the increment of the controller’s gain and therefore, the control enhancement. The main
drawback there is that the complete structure has been designed and optimised to offer
a good performance in a specific scenario: its filters have been designed considering the
type of signals as well as the type of sensors, whereas the ANNSs correcting the delays are
considering input and output pairs of data obtained from controlled structures. Thus, a
high knowledge of the processes being controlled is required at the same time that the
control solution will not be generalisable. This could be approached with the denoising
and control approaches proposed in [25], where an ANN-based Internal Model Controller
has been proposed to control the dissolved oxygen in the fifth reactor tank of the WWTP
plant. Realistic sensors have been considered and as a consequence, the cleaning of noise
corrupted measurements has also been proposed. However, this work neither considers
the control of a fixed set-point, nor the correction of delays introduced by sensors.

For that reason, the approach proposed in [36] has been enhanced in this work by means
of a complete and easy tuning data-based enhanced control solution. The new proposed
approach will achieve the reduction of the design process complexity and the increment of its
scalability [14,16]. It considers a new denoising approach, the data-based Denoising Stage. It
is based on the application of ANNs whose main objective is to denoise the measurements
involved in the control considering ideal and noise-corrupted measurements. In addition,
this proposal also considers a delay correction stage, the ANN-based Delay Correction. It will
correct all the delays affecting the control and actuation signals. Thus, the gain of the controller
can be increased and consequently its actuation enhanced. The novelty here is placed in the
ANN s training process. They will be trained considering input and output data obtained
from open-loop configurations. Therefore, the decoupling of the proposal from mathematical
models and specific controllers will be achieved. In other words, the proposed data-based
Enhanced Control Strategy will correct the noise-corrupted and delayed measurements by
means of the experience obtained from input and output data, neither requiring a highly
complex tuning process, nor a deep knowledge of the processes being controlled.

Thus, the main contributions of this work can be summarised as:

* A complete data-based solution is proposed to improve an existing control strategy.
Its main objectives are the reduction of the design complexity as well as the increment
of the solution scalability.

* A deep knowledge of the process under control is not required since the proposed
solution only requires input and output data to learn how to enhance the control system.
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e  Data-based methodologies and specially ANNs are considered as the main tools in
the denoising process of measurements involved in the control process.

* ANNSs in charge of correcting the delays introduced by the sensors and actuators
will be trained with open-loop input and output data to assure the decoupling of the
solution from the control topology.

¢ Results show that a similar and even better performance can be achieved when our
approach is adopted instead of an optimized PI controller designed to work in a
specific scenario. In our case, similar results are obtained when the control of a fix
set-point is considered while the best performance is given when a variable set-point
is tracked.

The structure of the paper is as follows: in Section 2 the material and methods adopted
in this work are shown. Specially, the BSM1 framework and the DAEs are defined here. In
Section 3, the data-based control approach with the proposed data-based Denoising and
the ANN-based Delay Correction stages are described. In Section 4, the results in terms
of the denoising performance, the delay correction and the whole structure behaviour are
presented. Finally, Section 5 concludes the paper.

2. Material and Methods
2.1. Benchmark Simulation Model No.1

The proposed data-based Enhanced Control System will be implemented over a
WWTP scenario consisting in a general purpose WWTP facility whose main aim is to
manage the residual urban waters. Since WWTP facilities are critic infrastructures where
any change or error in its behaviour can be translated into the pollution of the environment
where the WWTP is placed, this work considers the adoption of the Benchmark Simulation
Model No.1 (BSM1). It consists in a well-known and widely adopted digital framework
modelling the behaviour of a general purpose WWTP [29]. BSM1 implements the Ac-
tivated Sludge Model No.1 (ASM1) mathematical models which describe the biological
and biochemical processes required to reduce the nitrogen derived pollutant components
present in the incoming residual waters [37]. It is worth to remember that one of BSM1
objectives is to offer generality, easy comparison and results replication of different control
strategies. For that reason, any new control strategy can be designed and tested in BSM1
before being implemented in a real scenario.

In terms of the pollutant components, incoming waters do not only contain nitrogen
components, but also phosphorus ones. In such a context, the International Water As-
sociation (IWA) has also developed the Activated Sludge Models No.2 (ASM2), No. 2d
(ASM2d) and No.3 (ASM3), which are able to model all the processes performed in the
reduction of these other pollutants [38]. These models require more complex structures
and frameworks such as the phosphorus removal BSM1 (BSM1-P) [39] or the Benchmark
Simulation Model No.2 (BSM2) [40]. However, we have considered the adoption of BSM1
due to its simplicity [29]. Besides, the study of the chemical processes performed in the
WWTP as well as its sludge processing are out of the scope of this work. Here we will
only focus on the improvements provided by a data-based control strategy which can be
implemented not only in WWTP environments, but also in any industry implementing a
control strategy.

2.1.1. BSM1 Architecture

BSM1 architecture can be observed in Figure 1. It considers five reactor tanks devoted
to managing an average influent flow of 18,446 m®/day [29]. In addition, its total volume
corresponds to 12,000 m? divided in the following way: each one of the first two reactor
tanks (anoxic tanks) have a total volume of 1000 m?, 1333 m? the three aerated tanks and
6000 m? the secondary clarifier. As a consequence, the total retention time, i.e., the time
that the influent water lasts until it is spilled to its natural cycle, is equal to 14.4 h [29].
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Figure 1. Benchmark Simulation Model No. 1 (BSM1) architecture. Notice that the first two reactor tanks
are anoxic (working without oxygen) whereas the remaining three are working under aerated conditions.

BSM1 influent considers a total amount of 15 variables which define the concentration
of certain chemical components, the flow rate between tanks or the amount of solids in
suspension inside a WWTP reactor tank [3,29]. These variables are also characterised by
their high correlation in time. For that reason, they can be treated as time-series signals
sampled every 15 min, the sampling time of the BSM1 model [29]. As stated before, BSM1 is a
digital model of a general purpose WWTP. Consequently, the evolution of these 15 variables
can be observed at any point of the plant. For instance, after the first two anoxic tanks,
one can observe the effects of the nitrification process, where the nitrate components are
transformed into nitrogen gas (N,) and its derivates (NOy). The denitrification process
can be observed after the last three aerated tanks, where the concentration of ammonia
present in the remaining water (Syp) is reduced [41]. In such a context, nitrification and
denitrification processes are correctly performed if certain components of the reactor tanks
are in a determined range [41]. To achieve this, BSM1 framework incorporates two simple
control strategies based on Proportional Integral controllers (PI) [3,42]. They are devoted
to maintaining the nitrate-nitrogen concentration in the second reactor tank (Syo2) and the
dissolved oxygen in the fifth reactor tank (Sp ) at the desired set-points of 1 mg/L and
2 mg/L, respectively [3]. The first PI assures the Sy, concentration modifying the internal
(Qq) and the external recirculation flows (Q,) accordingly to the output of the PI controller.
The PI in charge of the dissolved oxygen loop, compares the Sp 5 concentration with the
give set-point in order to increase or decrease the oxygen transfer coefficient (Ky,5) [3]. This
coefficient is directly related to the opening or closing of the fifth reactor tank oxygen valve.

2.1.2. BSM1 Simulation Protocol

BSM1 implements a set of sensors able to measure the concentrations involved in the
processes performed in the reactor tanks. They have two possible configurations: (i) an
ideal one where all the measurements are gathered under ideal conditions neglecting the
noise and delays introduced by the sensor itself, and (ii) a real analysis where the effects of
non-idealities (noise and delays) are considered in the simulation of BSM1 and therefore,
in the performance of the WWTP [3,29]. The model of noise considered by each sensor
corresponds to the Additive White Gaussian Noise (AWGN) model, i.e., white zero mean
an unit variance Gaussian noise. However, the variance is multiplied by the noise level
defined in the sensor description, which equals to a 2.5% of the maximum value sensed
by each sensor [29]. Among the different classes of sensors defined in [29], only two of
them are considered here: the A and the By sensor classes. This is motivated by the fact
that BSM1 model recommends their adoption as the sensors to be considered to measure
the different variables (see Table 14 in [3]). When working under realistic conditions, their
behaviour can be described in terms of their transfer functions. As suggested in [3], A class
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sensors have a response time (f,) which equals to one minute while By sensors rising time
is equivalent to 10 min. Their respective transfer functions are:

1

— - 1
Gs (1+ 75)2 @)
for the A class sensors, and:
1
— _ 2
G (14 7s)8 @

for By sensors. T corresponds to the time constant of the transfer function. In the case of
A class sensors it equals to t,/3.89, where ¢, is equivalent to one minute. In terms of By
these variables correspond to t,/11.7724 and 10 min for the 7 and ¢, variables, respectively.
For more details about the implementation of the considered sensors, readers are referred
to [3] (Section 7).

In such a context, from the 15 variables of the BSM1 model this work only considers
the following ones: the dissolved oxygen (Sp 1), the nitrate nitrogen (Sno 4), the ammonium
(SnH.4), the flow rate (Qy), the Total Suspended Solids (Tss 4), all of them measured at the
fourth reactor tank, the Total Suspended Solids in the input (Tss ;,,), the K45 and the Sp 5.
SnH4, Q4 and Tsg 4 have been considered because these variables are involved in the mass
balance equation of the S 5 concentration, its conversion rate and the biological processes
described in [36,37]. In addition, Sp 4 and Sy 4 have also been considered due to the fact
that they are two of the variables showing the highest mutual information with respect to
So5 (see Figure 5 in [25]). For more details about the selection of input variables taking
into account the mutual information readers are referred to [43]. Finally, So 5 and Ky, 5 are
the variables involved in the control process. The configuration of their respective sensors
can be observed in Table 1. It is noteworthy to mention that K;, 5 is not a measurable
parameter, but an actuation value. In other words, it determines the opening and closing
of the actuator which introduces a delay equal to four minutes [3].

Table 1. Parameters of the sensors involved in this work. The saturation level corresponds to the
minimum and maximum measurable values.

Parameters of the Sensors

Measurement Class of Sensor Saturation Delay
50/4 A 0-10 1 min
SNo4 By 0-20 10 min
SNHA By 0-20 10 min

Tss 4 A 0-10,000 1 min

Q4 A 0-100,000 1 min

Tss,in A 0-1000 1 min

Sos A 0-10 1 min

In order to assure a fair comparison, BSM1 implements its own simulation protocol,
which consists in the simulation of 14 days of daily influent variations. Depending on these
variations, the different control strategies can be tested under different weather conditions.
For that purpose, BSM1 implements its own influent profiles as a function of the weather:
the dry, rainy and stormy influent profiles [40,44]. They can be defined as follows,

*  Dry weather consists in 14 days without rainy episodes where daily variations
are produced.

*  Rainy weather consists in 14 days with a large rainy episode during days 9 and 10.
Daily variations are still produced.

¢  Stormy weather consists in 14 days with two stormy episodes at days 8 and 11. Daily
variations are still produced.
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Regardless the weather condition, BSM1 model has to be carried out to its steady-state
point before simulating a specific weather condition. This is performed by means of the
initialisation process which consists in the simulation of a 100-days constant influent profile.

2.1.3. Evaluation

As a framework offering generality, easy comparison, and replicable results, BSM1
adopts different metrics to determine the behaviour and the improvement achieved by
the control strategies under analysis. These metrics are divided into two different groups:
(i) environmental metrics, and (ii) control metrics [29,40]. Here, we will focus on the second
ones since the main objective of this work is to offer a complete data-based control strategy
which is independent and decoupled from the kind of industry where it will be applied.
These metrics are the Integrated Absolute Error (IAE) and the Integrated Squared Error
(ISE) which are measured only from the 7th day until the 14th one [29]. They are computed
as follows:

14th day 14th day
IAE = Z le[n]] ISE = Z (e[n])2 (3)
n=7th day n=7th day
where e[n] = r[n] — y[n] is the error between the reference signal or set-point and the

feedback signal. In this case, if the dissolved oxygen control loop is considered, the reference
signal equals to the Sp 5 set-point while the feedback one equals to its real measurement. In
addition, these two metrics will be complemented for comparison purposes with the metrics
defined in [36]: the average of the absolute error (mean(|e|)), its maximum (max(|e|)) and
variance (var(|e|)) values. They are computed as:

14th day

mean(le|) = Zn—mlilayk[n” “
max(le]) = max(|e[n]]) 5

14th day 2
7th day (6[7[]

N

where N is the number of samples gathered from the 7th day of the simulation until the
14th day.

var(le|) = — mean(e[) (6)

2.2. Data-Based Denoising Methods

The data-based Enhanced Control Strategy proposed in this work deals with industrial
scenarios where the measurements involved in the control processes are corrupted by noise.
To alleviate this, data-based denoising methods are adopted to obtain clean measurements
from noise-corrupted ones. In that sense, denoising methods consist in a set of actuations
devoted to reducing the effects of noise-corrupted measurements or signals. They have
been applied in a great variety of fields, for instance, in the image or the signal processing
ones [31,32]. Some of these methods consist in the application of low band-pass filters,
wavelet transform and the application of certain estimations like the ones based on Least
Means Squares [32,45]. However, data-based denoising techniques are mainly based
on the application of denoising methods which only consider the data gathered from
the scenario. This is the case for example of the Principal Component Analysis (PCA)
considered as a denoising technique. The noise-corrupted signals are decomposed into
two spaces: the signal and the noise space. Then, the signal is recovered only considering
the signal space [33]. However, one of the main drawbacks in PCA is that offers its best
performance when dealing with linear systems [46] (Chapter 13). To alleviate this, the
Denoising Autoencoder (DAE), which can be interpreted as a non-linear extension of PCA,
has been conceived [46] (Chapter 14).

The DAE consists in a neural network whose main objective is to transform the noise-
corrupted measurements into clean ones [46] (Chapter 14). It has two clearly differentiated
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parts: (i) the encoder and (ii) the decoder. The encoder is in charge of taking the m
noise-corrupted measurements and map them into a latent space of dimensionality k,
which not only extracts the characteristics of the input measurements, but also reduces
their input dimensionality (m > k). The decoder part performs the inverse action, it
takes the outputs of the latent space and transform them into clean measurements with
the same dimensionality as the inputs [47]. The type of ANNs considered in the DAEs
implementation depends on the type of measurements. In such a context, DAEs can be
designed either considering Multilayer Perceptron (MLP) networks (see Figure 2) in those
cases where the time correlation between measurements is not so important [10] (Chapter 5).
In those cases where the time correlation is predominant, MLPs with a Sliding Window
(SW) or LSTM nets can be considered [46] (Chapter 10).

A

Y

§\00

\
“{i\wtf

Latent  Decoder
Space

. Input/Output Node O Decoder Node

O Encoder Node . Latent Space Node

Figure 2. Denoising Autoencoder (DAE) structure. x and X € R"*! are the input and denoised data,
respectively. w € R"*1 corresponds to the noise added by the different sensors. z € R*! vector
corresponds to the data mapped into a latent space with k dimensionality.

2.3. Modelling

As previously mentioned, the proposed data-based enhanced control system will
be deployed over the BSM1 framework. It will be in charge of cleaning and correcting
the noise and delays added by the sensors considered in [29]. In such a context, three
different tools have been considered to implement the proposed data-based control strategy.
They correspond to Simulink, Matlab and Python. Simulink has been considered as the
simulation environment where the data-based control strategy is implemented and tested.
BSM1 is also implemented in this environment. The proposed data-driven control strategy
considers a delay correction module, where the delays added by the different sensors
can be corrected by means of ANNs. These ANNs have been implemented in Matlab
(version R2020b) with the Neural Networks Toolbox and the Neural Net Fitting tool. The
metrics considered in the BSM1 evaluation are also implemented in Matlab. Finally, the
ANN s considered in the implementation of the data-based Denoising Methods have been
designed considering Python and trained with a NVIDIA GeForce RTX 2080 Titan GPU
to speed up the ANN training process. In this case, Python version 3.6 and the following
open-source libraries have been adopted in the design of the ANNSs:

e NumPy (1.18.1) [48]: NumPy library has been considered to manage the vectors and
matrices involved in the ANNSs training process.
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e Pandas (1.0.3) [49]: Pandas is adopted to load the input and output data from Matlab
and Simulink into Python environment.

¢ Scikit-Learn (0.22.1) [50]: Scikit-Learn library implements most of the functions consid-
ered in the data preprocessing techniques, cross-validation of results and evaluation
processes. In this case, it has been considered to normalise and denormalise the ANNs
input and output data, to divide the input data into training and test datasets and to
perform the K-Fold cross-validation [51,52]. The metrics considered in the evaluation
of the denoising autoencoders are obtained from this library.

¢  Tensorflow (1.14.0) [53]: The open-source Tensorflow machine learning framework
and its Keras API have been considered to implement the different ANNs adopted in
the DAE implementation. Since Keras API is adopted, the architectures considered
here have been derived from predefined ANNSs structures.

3. Data-Based Enhanced Control Strategy

One of the main objectives of this work is to design a data-based enhanced control
strategy which can be deployed at any industry regardless its design and purpose. Measure-
ments original quality is one of the key factors that determines the operational performance.
Based on this, in this work the control enhancement will be directed towards a data-driven
processing of the process measurements before it reaches the controller. The main purpose
is to minimise the effect of noise and delays therefore allowing the controller to be as much
transparent as possible to these effects. To achieve this, the proposed control enhancement
strategy is mainly based on data obtained from the industrial scenario where it will be
applied. In this case, the scenario considered corresponds to a WWTP where a Pl-based
control strategy was previously implemented [36]. That control strategy was devoted to
managing the Sp 5 and maintaining it at the desired value of 2 mg/L. It considers two
different stages in charge of denoising the measurements and correcting the delays of
the different sensors. The denoising stage considers moving average low-pass filters, a
classical denoising method which reduces the effect of the higher frequency components
and therefore the effects of noise [31,32]. The second stage, i.e., the delay correction one,
adopts ANNSs to predict the level of Sp 5 ten minutes in advance with respect to the instant
where measurements are obtained. As a consequence, the effects of possible delays added
by the sensors as well as by the filter-based denoising approach can be mitigated. However,
these ANNs have been trained considering data from scenarios with a closed-loop config-
uration or, in other words, where a control strategy is already working [36]. In addition,
that control strategy has been designed and optimised to work under a certain scenario,
the WWTP one. Thus, the proposed denoising and delay correction methods are designed
considering specificities of the scenario and as a consequence, losing their generalisation
and scalability.

Our proposal here is the data-based enhanced control approach shown in Figure 3. It
can be understood as an improvement of the control strategy defined in [36]. However,
our approach is mainly based on input and output data of the process being controlled.
Therefore, it can be implemented without requiring a deep knowledge of the system where
it is going to be deployed. Moreover, the fact that this approach is based only on data
allows its application at any industrial environment since only input and output pairs of
measurements of the processes being controlled are needed. These measurements can be
obtained following two manners according to the industrial scenario. If the scenario is not
being controlled, input and output measurements can be directly obtained from sensors
and systems monitoring the processes performed in the industrial plants, for instance, the
SCADA systems. In the case where the scenario is already being controlled, these pairs
of measurements can be obtained from monitoring systems as well. However, the effects
of the considered control structure will be intrinsically observed in the measurements.
Therefore, the decoupling of the proposed approach from the control strategy will not be
achieved. If the decoupling is desired, the industrial environment should be working in an
open-loop configuration if it is available. Otherwise, a digital model or a digital twin of the
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Figure 3. Data-based Control Structure. u is the actuation signal whereas i corresponds to the clean estimation of the

controlled signal. It is also part of y, the vector of measurements obtained from the different sensors. m; and m, are the

delays introduced by the sensors and the actuator, respectively.

In this case, our proposal considers the complete control process from the sensor to the
output of the actuator just before entering in the plant. In the case of a WWTP, the sensor
will be in charge of determining the controlled, delayed and noise-corrupted variable
(y[n — ms] + win — mg)), ie., the Sp 5 measured. The novelty here is in the data-based
Denoising Stage and the Delay Correction Stage (red blocks in Figure 3). Now, the denoising
stage will be implemented considering DAEs and ANNSs instead of classical denoising
approaches like low-pass filters. As a consequence, the delays introduced by the low-pass
filters can be neglected at the same time the denoising process is improved. However, the
delays introduced by the real sensors (11,) are still present in the measurements. They will
be corrected in the ANN-based Delay Correction Stage.

As in [36], the ANNSs will predict the difference between the delayed measurements
and the real ones (/[n] — [n — m;)). Later, the delays added by sensors will be corrected
obtaining an estimation of the ideal value with the correction of the actuator delay (i/[n])
at the output of the ANN-based Correction Stage. Then, this output will be compared to
the given set-point and transformed into the corresponding actuation signal (u[n]). Notice
that the actuator adds a delay equal to m,, however, the forecasted measurements as well
as the actuation signal given by the PI controller will consider this amount of time (the
forecasting time considers the delays introduced by the sensors and the actuators). Thus,
the actuation signal entering in the plant (u[n — m,]) equals to a non-delayed actuation
signal with respect to the forecasted control one (i7[n]). In this case, the ANN-based Delay
Correction nets will be trained considering data from an open loop configuration of the
process under control. Thus, the effects of the controller are not present in the training
of the ANNs and therefore, achieving the decoupling of the control strategy from the
controller type.

As a summary, our data-based enhanced control strategy, which is implemented by
means of ANNSs, allows us to improve a control approach by means of (i) decreasing
the design process complexity, and (ii) increasing its scalability [14,16]. The complexity
reduction is achieved due to the fact that ANNSs do not require a such precise adjustment
to the scenario as usual filtering strategies do. Besides, the scalability is increased since
ANN s can be applied in different industrial scenarios (not constrained to WWTP ones):
the knowledge of the controlled scenario will be directly derived by ANNSs if they are
trained with proper data [10] (Chapters 1, 2, 5 and 17). Results in Section 4 show that our
data-based enhanced control approach is able to offer similar and even better results in the
control performance than the ones obtained in [36], a control approach specially designed
and optimised to work in WWTP scenarios.
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It is worth to noting that the proposed data-based Enhanced Control system has
been designed and implemented over the BSM1 framework. In a real scenario, the ANNs
considered in the proposed strategy should be trained considering an offline training
process to avoid the interruption or malfunctioning of the WWTP behaviour. The networks
will be trained and tested outside the industrial plants considering the measurements
obtained from the monitoring or SCADA system of the plant. Once trained and tested,
they will be implemented as a complement of the WWTP monitoring system. In that sense,
only the weights and biases of the ANNSs are required to implement the whole structure
since each ANN can be completely defined adopting its respective weights and biases.

3.1. Data-Based Denoising Stage

The data-based Denoising Stage is required to clean the measurements obtained from
the real sensors considered in [29]. This is an important process due to the fact that the
performance of the control strategy is directly related to the measurements quality. For
instance, DAEs have been considered in [25], where the improvement achieved in the
control performance is around a 16.84% in average with respect to the situation where
DAE:s are not adopted. Besides, the control performance is also dependant on the denoising
quality. Again, in [25], the best denoising approach is able to improve the performance in
six percentage points with respect to the worst denoising approach.

Among the different denoising methods available in the literature (PCA, Low-pass
and Band-pass filters, Wavelet Transformations, Denoising Autoencoders, etc. [32-34,54]),
we have adopted two MLP-based denoising structures due to their good performance
when dealing with signals showing a high correlation in time [34,54]. Although recurrent
LSTM networks have been designed to work with such time-correlated signals, we have
considered MLP-based structures for two reasons: their complexity is reduced with respect
to LSTM nets, and they also show a good performance when dealign with WWTP mea-
surements [25]. Besides, the time correlation between measurements is still preserved by
means of the Sliding Window (SW), which not only sorts the measurements in time, but
also helps in the denoising process.

Denoising Architectures

A classical denoising method, a moving average low-pass filter, has been considered
to clean the measurements involved in the control in [36]. It corresponds to a weighted
moving average filter which gives more information to the new measurements to decrease
the filter delay during long variations of the measured signal. In this case, the filter
multiplies the average of the 25% of the new measurements by 0.7 whereas it multiplies by
0.3 the rest of the data [36]. In such a case, the filter has been able to reduce the noise effects
at expense of adding extra delays. Not only this, the denoising performance can be still
improved since it does not consider any kind of knowledge about the noise affecting the
measurements. For that reason, two different MLP-based denoising architectures have been
considered: (i) a MLP-based DAE, and (ii) a Dedicated MLP-based DAE, both considering a
Sliding Window (SW) of 4 h (see Figure 4). The former corresponds to the structure shown
in Figure 4a whereas the Dedicated MLP-based DAE approach is shown in Figure 4b. Both
architectures have a common structure in charge of the data preprocessing tasks: the Sliding
Window and the Normalisation Layers. Here, the Sliding Window Layer is adopted to sort
the measurements in time and also to preserve the time-correlation between measurements.
Its length has been obtained through the process explained in [55], where it is shown that
the minimum periodicity of input variables should be considered as the minimum length
of the SW, here the SW length has been set to 4 h. Then, the sorted measurements are
normalised towards zero mean and unit variance in the Normalisation Layer, which is
placed previously to the Denoising Approach. This layer is considered to address the
heterogeneity of data since the different variables of BSM1 are widely heterogeneous as
shown in the saturation values of BSM1 sensors (see Table 1).
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Figure 4. MLP-based Denoising Architecture. Notice that the main difference is placed after the
denoising approach. The MLP-based DAE obtains a clean version of the measurements, i.e., a
column vector of length m - I, where m represents the number of input measurements and [ the
length of the sliding window. The Dedicated MLP-based DAE directly estimates a clean version of a
unique measurement.

The denoising approaches of both architectures differ in the topology of the considered
net in their implementation. The MLP-based DAE will take the vector of noise measure-
ments sorted in time and normalised as the input data and will return a cleaned version of it
(see Figures 2 and 4a). The dimension of input and output vectors are exactly equal, R"/*1,
where m and [ are the number of input variables and the length of the sliding window,
respectively. However, the input vector has noisy measurements while the output one has
the same measurements without noise. Then, the clean measurements are denormalised in
the Denormalisation layer and finally, only the last cleaned measurements per variable are
selected in the Time Selector layer. The denoising approach considered in the Dedicated
MLP-based DAE structure (see Figure 4b) corresponds to a modified MLP-based DAE. It
will directly obtain an estimation of the clean measurements of a unique variable instead
of mapping the inputs into a latent space and then recover a clean version of them (see
Figure 5). Then, this estimation is denormalised in the Denormalisation Layer.

In terms of the input measurements, both architectures consider inputs obtained
from the mass balance equation of the Sp 5 variable, its conversion rate and the biological
processes described in [36,37]. These variables are:

*  SnH4 (mg/L): the ammonium concentration present at the output of the fourth
reactor tank.

*  Tsg4 (mg/L): the total suspended solids at the output of the fourth reactor tank.

e Q4 (m3/day): the flow rate at the output of the fourth reactor tank.

*  Tss,in (mg/L): the total suspended solids at the input of the WWTP plant.
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*  Sos5 (mg/L): the dissolved oxygen in the fifth reactor tank

Not only this, extra variables are considered to complement the MLP-based Denoising
architectures. They correspond to the Sp 4 and the Syo 4, both measured in (mg/L). They
are two of the variables showing the highest mutual information with respect to the S 5
concentration [43,56,57].

X+W

. Input Node O Output Node

O Hidden Node

Figure 5. Dedicated MLP-based DAE denoising method. i € R corresponds to one of the variables
involved in the control strategy.

The grid search methodology has been considered to determine the internal structure
of both denoising approaches, i.e., their hyperparameters. This methodology has been
considered as one of the most effective methods to determine the ANNs hyperparameters
testing different net configurations [58,59]. Here, it has been considered to determine the
number of hidden layers and hidden neurons per layer of the two denoising approaches.
Once it finishes, different structures will be obtained. Consequently, the structure perform-
ing better is the one which should be considered in the neural network training process.
After performing the grid search, two optimal structures will be obtained. Then, they will
be trained and tested with new data in order to determine their denoising performance.
The results of the grid search show that the best architectures are:

¢  MLP-based DAE: Denoising Autoencoder structure with two hidden layers as the
encoder part, a hidden layer acting as the latent space and two hidden layers as the
decoder. The two layers forming the encoder consider a total amount of 100 and
50 hidden neurons, respectively. The latent space considers 25 hidden neurons and
the decoder layers consider 50 and 100 hidden neurons, respectively. Each hidden
node implements a Rectified Linear Activation (ReLU) function with the exception of
the last hidden layer which implements a Linear Activation function in each node [10]
(Chapter 1).

e Dedicated MLP-based DAE: The Dedicated MLP-based DAE of the second denoising
approach considers three hidden layers where the first one considers 100 hidden
neurons whereas the last two 50 hidden nodes. Here, the last hidden layer corresponds
to a unique node which implements a Linear Activation function. The rest of nodes
consider a ReLU function.
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In both cases, an initial learning rate of 1 x 1073 and a total amount of 500 epochs
have been considered to perform the grid search. It has been performed considering the
Back-propagation and Adam training and optimisation algorithms [46] (Sections 6.5 and
8.5.3). As in most of the neural networks, regularisation techniques have been applied
to avoid the overfitting problem, i.e., the memorisation of input and output data. Thus,
applying them we assure the generalisation of the denoising approaches [46] (Chapter 7).
To alleviate the overfitting problem, two different techniques have been considered: (i) L2
extra-penalty [46] (Section 7.1), and (ii) early stopping [46] (Section 7.8). In this context,
the L2 parameter of the L2 extra-penalty and the patience of the early stopping technique
(number of times that a worsening of the training metrics is allowed before ending up the
training process) have been obtained after performing the cross-validation of the networks.
It has been performed adopting the K-fold method with five folds [51]. The L2 parameter
has been set to 1 x 10~ for the MLP-based DAE structure and 1 x 10~ for the Dedicated
MLP-based DAE net. The early stopping patience is equal to 10.

The data considered in the design of the data-based Denosing Stage have been gener-
ated in the BSM1 framework simulating twice a whole year influent of the BSM1 framework.
Besides, the sensors have been configured considering their two possible configurations. As
a consequence, four datasets have been obtained: two considering ideal measurements and
the other two considering the equivalent noise-corrupted and delayed measurements. One
pair of datasets have been considered in the grid search while the others are considered in
the cross-validation process. Finally, each datasets has been divided into the usual 70-15-15
percentage distribution, where the first 85% of data are considered for training purposes
and the remaining 15% for testing ones.

Before deploying one of the two proposed structures, they have to be tested to decide
which one is performing better. This is motivated by the pros and cons of each structure.
The MLP-based DAE is implemented considering only a unique structure which will be
able to denoise all the considered noise-corrupted measurements. However, its denoising
efforts are divided among all the measurements. On the other hand, as many Dedicated
MLP-based DAE:s as sensors have to be implemented in order to denoise the measurements
involved in the proposed approach. In this case, the number of required DAE nets is
increased at expense of focusing their denoising efforts in a specific measurement. Thus,
the trade-off between the number of required ANNs and their denoising performance has
to be solved.

3.2. ANN-Based Delay Correction Stage

The Delay Correction Stage purpose is to correct the delay introduced not only by
the sensors, but also by the actuator by means of predicting the controlled variable of the
control strategy, i.e., the Sg 5. This is performed by means of a simple MLP network which
has been designed with the Neural Net Fitting tool of Matlab’s Neural Network Toolbox
in order to decrease the complexity of the ANN-based Delay Correction Stage. The MLP
architecture is already defined by the same neural network fitting tool. It corresponds to
a simple MLP feedforward network with two layers (see Figure 6), where the first one
corresponds to a Sigmoid Layer (sigmoid activation function [10] (Chapter 1)) while the
second one corresponds to a Linear Layer (linear activation function [10] (Chapter 1)).
The sigmoid layer dimension i can de determined by the designer while the Linear Layer
dimension is fixed to 1, j = 1, by default.

Here, the input data correspond to m denoised and delayed measurements which will
be modified by the weights and biases of the Sigmoid Layer, Wy 1 € RI*"™ and bn1 € Rix1,
respectively. The number of hidden neurons in this layer, which can be defined by the
designer, is equal to i. Then, the outputs of this hidden layer are modified by the Linear
layer, whose weights and biases are Wy » € R*J and bn2 € Ri*1, respectively. Finally, the
output of the net corresponds to a prediction of the difference between the expected values
of the controlled signal with the actuator delay correction, i/[n], and the delayed controlled
signal yj[n — m;]. This difference is computed because the ANNS trained in Matlab have
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a better performance when they predict this difference instead of directly predicting the
delay-corrected Sp 5 measurements [36]. Therefore, the output of the whole ANN-based
Delay Correction Stage (see Figure 3) will be equal to i/[n]. Then, the controller will compute
the actuation variable accordingly to its input, u[n]. Finally, the signal obtained after the
actuator, and therefore, the signal entering in the plant corresponds to u[n — m,|, which is
an estimation of the actuation signal derived from the ideal controlled variable. This signal
corresponds to the oxygen transfer coefficient in the fifth tank, i.e., the K, 5 [3].

Wai € R*™ W, , € RIX

R . + + N
y € R™* yelR
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Figure 6. ANN-based Delay correction net. y corresponds to the vector of denoised measurements
and ¥ corresponds to the controlled variable. bnx and Wy x are the biases and weights of the
xth hidden layer, respectively. m is the number of variables considered in the ANN-based Delay
Correction net. Hidden layers are green coloured while input and output layers are depicted in blue.

The number of hidden neurons in the Sigmoid Layer of the MLP network has been set
to 20, since results show that a good prediction performance is achieved. Here, the Bayesian
regularisation algorithm is adopted [60] considering a maximum number of epochs equal
to 1000. Moreover, the cost function to optimize in the training process corresponds to the
Mean Squared Error (MSE). Input and output pairs of data have been split again in the
following distribution: 70% for training purposes, 15% for validation purposes and 15%
for testing ones.

The vector of input measurements has been determined considering different con-
figurations of input variables. They have been selected accordingly to the mass balance
equations of Sq 5, the type of control and the simulated weather profile as well. As a result,
three different configurations have been tested for the Dry, Rainy and Stormy weathers
when either a fixed set-point, or a variable one is considered in the control strategy. These
configurations are:

¢ ANNconfl: It considers the Sy 4, the Tsg 4, the Qy, the Tsg ;,, the K5, the Sp 5 and
a storm flag which is enabled when Tgg ;, is over 400 mg/L.

¢ ANNconf2: It considers the same inputs as ANNconfl, but the storm flag is changed
by the readily biodegradable substrate in the fourth reactor tank (mg/L), which is
measured with the software sensor proposed in [61].

e ANNconf3: It considers the same inputs as the ANN-based denoising architectures
adding the actuation variable, the Ky ;5.

Among the different variables, Tsg ;, and Q4 will be considered to detect the topology
of weather since Q4 values higher than 9.24 x 10* m?®/day will be observed when rainy
and stormy events are produced. In that sense, Tsg ;,, and Syo 4 will determine when a
stormy event is produced whenever Tss ;, values are placed over 400 mg/L or Syo 4 is
below 5.5 mg/L (see Figure 7a,b).



Sensors 2021, 21, 1237

16 of 31

%104 Q. flow rate 14 SNOA concentration
16 : ‘ : : : ‘
Rainy Episodes Py

= 14 \ — 12

3 ~

= 20
~> 121 &

g . 10+

T g

2 =N

.dJ ~

] +

= sl g

g =

3! 8 6f

g 6 c.; Stormy EpisodeS\

S '

S 4 wn 4F

2 I I I I 2 I I I I I I
0 2 6 8 10 12 14 0 2 4 6 8 10 12 14
Days Days
(a) Q4 flow rate (b) Sno4 concentration with two stormy episodes

Figure 7. Variables where the effects of rainy and stormy episodes are more noticeable.

Finally, each configuration has been trained considering a BSM1 open-loop config-
uration, i.e., without any kind of control. This is performed to achieve the decoupling
the ANN-based Delay Correction stage from the considered controller. Moreover, this
also decreases the design complexity of the whole structure since no controller is required.
This entails that the ANN-based Denoising Stage can be designed at the same time as
the controller. Thus the same data can be adopted. Otherwise, the controller has to be
implemented and deployed before generating the data considered in the delay correction
stage. In addition, for comparison purposes the different measurements have been ob-
tained performing the same pattern of simulations as in [36]. This pattern corresponds
to the simulation of 35 days of the WWTP behaviour. The first 21 days correspond to
the simulation of a dry weather considering the following variations of K, 5: seven days
between 45 and 245 days !, seven days between 5 and 355 day ! instead, and seven days
with a fixed Ky, 5 equal to 145 day~!. The last 14 days correspond to the simulation of
seven days of rainy and seven days of stormy weather profiles, respectively. Notice that
ANNCconfl and ANNconf2 adopt the same input measurements or variables as the ones
considered in ANN3 and ANN4 configurations of [36]. Nevertheless, the nets considered
here have been trained considering only open-loop configurations.

4. Results

Results have been computed to determine the performance of those stages where a
novelty has been proposed with respect to [36]: ANNSs are considered in the design of the
data-based Denoising and the ANN-based Delay Correction stages. The former considers
ANN: s instead of Moving Average Low-pass filters to denoise the noise-corrupted and
delayed measurements. Thus, the proposed data-based Denoising stage will achieve a two-
fold objective: (i) base the denoising strategy only on data, and (ii) simplify its design and
implementation process since this solution does not require neither an exhaustive adjust
of the filters to the characteristics of the controlled system, nor a deep knowledge of the
scenario where it is implemented. The ANN-based Delay Correction stage, which has been
firstly designed in [36], is now trained with data obtained from a non-controlled WWTP
scenario (open-loop configuration) instead of a controlled one (closed-loop configuration).
Applying this, we try to assure the decoupling of the delay correction from the considered
control strategy. Results will show that the proposed system is able to yield similar and
even better results than the system proposed in [36] where similar approaches have been
designed and optimized towards the scenario.
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Three different analysis of the WWTP performance have been carried out, one analysis
to determine the behaviour of the data-based Denoising Stage, another to compute the
performance of the ANN-based Delay Correction Stage, and the last one which shows the
performance of the whole system. The data-based Denoising performance will be computed
and analysed in terms of the Root Mean Squared Error (RMSE), the Mean Absolute Error
(MAE), the Mean Average Percentage Error (MAPE) and the determination coefficient (R?)
since these are metrics commonly considered when dealing with ANNSs [62]. All of them
have been computed over the test dataset and considering normalised measurements with
the exception of the MAPE, which considers denormalised data to avoid divisions by zero.
The performance of the ANN-based Delay Correction stage will be given in terms of the
metrics adopted in the ANN training process, i.e., the MSE and the R?, whereas the whole
system performance will be computed in terms of IAE and ISE as well as in terms of the
aforementioned error derived ones (mean(|e|), var(|e|) and max(|e|)).

In that sense, the RMSE is computed as

1 N
RMSE = \| 5 X (y[n] = g[n])? @)

n=1

where N corresponds to the number of samples being denoised, i/ to the denoised measure-
ment and y[n] to the ideal value. RMSE gives an idea of the topology of errors present in
the denoising stage since it penalises more the high errors than the lower ones. For that
reason, RMSE metric is complemented with the MAE error, which indistinctly penalises
the errors. It is computed as

1Y N
MAE = 5 ) ly[n] = gln]]. ®)
n=1

It can also be defined as an absolute metric. In other words, the MAE is not able
to say if an error is too big or otherwise it is very low. For that reason MAPE has also
been considered,

MApE = L 3b Iyl 3l o
N.= o Iyl

MAPE corresponds to a metric which computes the percentage error with respect to
the ideal value, therefore, telling how big is the error performed by the denoising approach.
All these metrics compute the difference between the ideal and the denoised values. For
that reason, the lower the values of the metrics, the better the denoising performance.
Moreover, an extra metric, the R? has been adopted to determine the correlation between
the denoised and the ideal measurements. Here, values closer to 1 are sought, since a R2
equal to 1 is translated into a perfect correlation whilst R? equal to 0 means that there is no
correlation between predicted and target values.

4.1. Data-Based Denoising Performance

The data-based Denoising performance is shown in Table 2, where the results of the
proposed data-based denoising techniques are computed in terms of RMSE, MAE, MAPE
and R?. The classical denoising approach, i.e., the moving average low-pass filter denoising
approach proposed in [36], is also considered as a baseline showing the minimum available
performance. One of the most clear points is that data-based methodologies overcome
the performance offered by the moving average low-pass filter in terms of the RMSE and
the MAE. For instance, the MLP-based DAE improves the RMSE and the MAE a 63.87%
and a 61.29%, respectively. These improvements are increased until a 87.32% and a 86.56%
when the Dedicated MLP-based DAEs are considered. Results also show that the best
denoising approach corresponds to the Dedicated MLP-based DAEs, which are able to
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offer an average RMSE equal to 0.033, an average MAE of 0.025, an average MAPE of 1.27%
and a R? coefficient equal to 0.998.

Table 2. Results of the different data-based Denoising approaches. RMSE and MAE are expressed in
(mg/L) for all the measurements except the Q4 which is given in (m3/ day). MAPE is a percentage
and R? is a dimensionless variable. Training time is given in seconds.

Data-Based Denoising Stage
Classical Filter Approach [36]

Variable RMSE MAE MAPE R? Training Time
SNHA4 0.203 0.129 14.65 0.959 -
Tssa 0.350 0.273 1.22 0.877 -
Qa 0.215 0.155 4.75 0.966 -
Tss,in 0.339 0.223 6.64 0.909 -
So5 0.194 0.148 17.87 0.962 -
MLP-Based DAE
Variable RMSE MAE MAPE R? Training Time
S04 0.059 0.044 1.94 0.996 113.53
SNo4 0.078 0.063 1.29 0.994 113.53
SNHA4 0.111 0.079 11.14 0.988 113.53
Tss,4 0.127 0.102 0.46 0.984 113.53
Qs 0.165 0.133 4.04 0.973 113.53
Tss.in 0.085 0.063 2.07 0.993 113.53
So5 0.034 0.022 5.18 0.998 113.53
Dedicated MLP-Based DAE
Variable RMSE MAE MAPE R? Training Time
So4 0.027 0.021 0.73 0.999 38.40
SNOo4 0.039 0.030 1.00 0.998 43.04
SNH4 0.025 0.019 2.72 0.999 48.77
Tssa 0.055 0.043 0.39 0.994 41.71
Q4 0.029 0.023 0.96 0.999 42.70
Tss,in 0.033 0.024 0.97 0.998 49.80
So5 0.022 0.016 2.15 0.999 62.25

In addition, although the MLP-based DAE is a similar approach to the Dedicated
MLP-based DAEs and its performance shows low RMSE values, it has two critical points:
the Sy 4 and the Sp 5 MAPE values equal to 11.14% and 5.18%, respectively. To determine
their effects, we will show a simple example. Lets suppose that a real Sp 5 concentration
equal to 2 mg/L is present in the WWTP fifth reactor tank. When measured, the value will
be corrupted by noise and delayed by the sensor. To alleviate this, the MLP-based DAE
is considered, however, the range where the Sp 5 denoised measurement will be placed
corresponds to [1.90,2.10], which is a wide range and therefore, inaccurate. On the other
hand, the Moving Average Low-pass Filter approach can be selected as well. Again, we
will observe the same problem since its MAPE value is even higher (17.87%). The solution
therefore is to consider the Dedicated MLP-based DAE, whose MAPE value is equal to
2.15%. Thus, the range where the denoised Sp 5 measurement can be placed is drastically
reduced until the [1.96,2.04] range. This will entail that the controller will compare a more
accurate Sp 5 measurement with the desired set-point. So, the lower the MAPE, the higher
the accuracy, the better the denoising process and therefore, the better the control.

In terms of R? metric, all the approaches are able to show a good correlation between
denoised and ideal measurements. The exception here is placed in the classical denoising
method, the low-pass filter denoising the Tss 4, even though it is able to offer a good MAPE.
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From the point of view of the ANNSs training process, the Dedicated MLP-based DAEs
are able to offer such a good performance due to their architecture, where all the considered
inputs are directly related to a unique output. In the case of the MLP-based DAE, the
considered inputs are related to the same number of outputs. Consequently, the denoising
approach has to divide its efforts in the denoising process of multiple variables instead of
focusing them in cleaning a unique measurement. This is also clearly observed in terms
of the Training Time. The MLP-based DAE requires a total amount of 113.53 s while the
Dedicated MLP-based DAEs highest training time equals to 62.25 s. Nearly the half of the
MLP-based DAE training time.

All these points motivate us to consider the Dedicated MLP-based DAEs as the
denoising approach of the data-based Denoising Stage. Although more Dedicated MLP-
based DAEs (one per denoised measurement) are required, their low complexity and
good performance are crucial to make the choice. Lastly but not less important, this
low complexity entails that the network will be able to denoise the measurements in less
time than the other two methods, and therefore, no extra delays have to be taken into
account (see Figure 8). This is also motivated by the training process where noise-corrupted
measurements are referred to the ideal ones. In terms of the denoising behaviour, here it
is observed that again, the worst performance if offered by the low-pass filter approach
due to their implicit delay and low denoising accuracy. On the other hand, the best one
corresponds to the Dedicated MLP-based DAEs which offer clean measurements practically

identical to the ideal measurements. In other words, the measurements obtained when
BSM1 sensors do not add noise and delays, i.e., when their ideal configuration is applied.

Tss4 denoising process
T 4000 \1 &b T

T
wee Noisy measurement, «e NolSy measurement
- - - Low-pass filter denoising [36] - - - Low-pass filter denoising [36]
MLP-based DAE denoising 4 3800 H MLP-based DAE denoising 4
- - = Dedicated MLP-based DAE denoising| ;; - - = Dedicated MLP-based DAE denoising
““““““““ Ideal measurement ] < Ideal measurement
F 4 3600 i
=
=
20
g
- 4 ~— 3400
K
b=
= 320
=
I3}
=
2 3000
<«
%
& 2800
2600
2400 L L L L
8 8.2 8.4 8.6 8.8 9
Days Days

(a) Syp 4 denoising process

(b) Tss 4 denoising process

Figure 8. Denoising Process performed by the different approaches. Notice that in the Tgg 4 denoising process the Dedicated
MLP-based DAE output is hidden by the Ideal output.

4.2. ANN-Based Delay Correction Performance

The ANN-based Delay Correction stage considers MLP networks whose main ob-
jective is to predict the difference between the cleaned measurement of the Sp 5 sensor
and the Sp 5 concentration observed six minutes later. This amount of time is selected to
assure that all the delays introduced by the non-ideal A sensors (1 min) as well as by the
delays of the actuator (4 min) are corrected. In addition, some extra time is also included
in this six minutes to correct the minimum delay introduced by the data-based Denoising
process. In those cases where measurements of By sensors are considered, the delay is
nearly completely reduced since MLP networks will receive more information from type
Ay sensors. Thereby, they will be able to correct the delays of Sp 5 measurements even
tough the delay introduced by By sensors is bigger than the prediction time (six minutes).
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As it has been stated previously, three different configurations of MLP networks have
been considered accordingly to their input variables or measurements. Their training
performance is shown in Table 3, where the training results are given in terms of the MSE
and the R? coefficient as well as in terms of the training and test datasets. Here, a 75% of
data has been considered as the training dataset, a 15% as the validation one and finally, the
remaining 15% for testing purposes. The hyperparameters of the MLP networks have been
obtained with the training and validation data. The final performance has been computed
with data which is not considered in the training process, i.e., the test dataset.

Table 3. ANN Training performance.

ANN Training Performance

ANN Configuration Dataset RMSE R?
e
T gme
s T s o

As it is observed, all the configurations are offering a good performance since their
RMSE values are below 0.03 and their R? coefficient is bigger than 0.93. However, there is a
structure overcoming the other two. It corresponds to ANNconf3 configuration, which is
able to improve the RMSE and R? of the ANNconf1 configuration in a 44.64% and a 4.50%,
respectively. Besides, the improvement of ANNconf3 when compared to the ANNconf2
equals to a 34.16% in the case of the RMSE and a 2.25% in the case of the R?.

Overfitting is not observed in the results of the Table 3 since an offset between the
performance of the training and test datasets is not appreciated. This means that the three
proposed configurations are not memorising the pairs of input and output data. Thus,
the performance will not drop drastically if these nets are adopted as a delay correction
method in similar scenarios.

Finally, the distribution of the ANN prediction error, understood as the difference
between the targets and the predicted values, has been analysed to determine if errors
are biased towards a value or if they are centred to the zero error point (see Figure 9). It
is observed that nearly all the errors are distributed around the zero error point, which
means that predictions are correctly performed. In addition, nearly all the errors do not
exceed an absolute error bigger than 0.06, less than 100 instances are above this error. As it
happens with the data-based Denoising approach, this can be translated into the range of
So5 values where the clean and delay-corrected measurement will be placed. This range
will equal to [1.94, 2.06] if the maximum absolute error is considered as 0.06. This will entail
that although there is a configuration performing better than the others, any of them can
be considered in the ANN-based Delay Correction stage implementation.

4.3. Control Performance

After analysing the effects of the new proposed data-based Denoising stage as well
as the ANN-based Delay correction process, we will compute the performance of the
whole structure. The data-based Denoising stage has been implemented considering the
Dedicated MLP-based DAEs and all the configurations proposed in the ANN-based Delay
Correction stage. In addition, performance of the whole control structure (see Figure 3) will
be computed considering fix and variable set-points. Variable set-points are considered
due to the fact that most of the times the set-points considered in a control loop are either
determined by another control strategy, or directly by certain parameters which vary along
time. For instance, the considered set-points in [23,26,63] correspond to variable ones which
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Error
T

have been determined by means of reinforcement learning methods, hierarchical control
structures, or algorithms devoted to finding the optimal set-point to achieve the best WWTP
effluent quality. In such a context, the fix set-point will equal to a Sp 5 concentration of
2 mg/L whilst the variable set-point will be determined following the hierarchical control
presented in [63].
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Figure 9. Distribution of prediction errors for the training and test datasets.

4.3.1. Fix Set-Point Results

Results when a fix set-point is considered are shown in Table 4. It is clearly observed
that the Default PI-based control strategy is the one yielding the worst performance. This
is directly related to the noise effect introduced by the real sensors. On the other hand,
the performance is improved in all terms when measurements are denoised and delay
corrected in the data-based Denoising stage and in the ANN-based Delay correction stage,
respectively. The effects of both processes are directly observed in the IAE and ISE control
metrics. The lowest IAE improvement, a 32.81%, is yielded by the ANNconf1 configuration
when stormy weather is considered.

In addition, it is important to highlight that if measurements are denoised and their
delays corrected, the gain of the controller can be increased and therefore, an improvement
in the control performance achieved. This principle was implemented in [36] and therefore,
it has been considered in the implementation of this proposal.
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Table 4. Control performance when a fix set-point is considered. All the errors are measured in mg/L. Results of the best
structure are in bold.

Control Performance—Fixed Set-Point

Weather Evaluation Criteria Default PI Best Performance in [36] ANNconfl ANNconf2 ANNconf3
mean(|e|) 0.084 0.034 0.043 0.039 0.041
IAE 0.590 0.240 0.294 0.251 0.284
Dry ISE 0.084 0.014 0.020 0.015 0.019
max(|e|) 0.400 0.160 0.305 0.199 0.248
var(|e]) 0.0120 0.0018 0.0031 0.0026 0.0028
mean(|el|) 0.079 0.050 0.043 0.048 0.049
IAE 0.560 0.350 0.299 0.335 0.348
Rainy ISE 0.075 0.026 0.023 0.025 0.042
max(|e|) 0.380 0.180 0.290 0.236 0.357
var(le]) 0.0110 0.0036 0.0034 0.0034 0.0058
mean(|e|) 0.081 0.043 0.055 0.056 0.045
IAE 0.570 0.300 0.383 0.380 0.324
Stormy ISE 0.079 0.022 0.036 0.032 0.024
max(|e|) 0.380 0.210 0.275 0.258 0.353
var(le]) 0.0110 0.0030 0.0051 0.0049 0.0033

In terms of the control strategies where denoised and delay-corrected measurements
are considered, one can observed that the best performance is not always given by the
same configuration. When dry and stormy weathers are simulated, the designed and
scenario-optimised strategy in [36] is the one offering the best results. This shows that the
moving average low-pass filters and the PI controller have been exhaustively designed to
offer such a good behaviour. Notwithstanding, our proposals do not differ too much from
the best results. When dry weather is considered, the ANNconf2 configuration shows IAE
and ISE values which are very close to the ones offered in [36]: they are only degraded a
4.38% and a 6.66%. This is also corroborated with the other metrics, the mean absolute error
is degraded 0.005 units, the variance of the error differs in 8 x 10~* units and the maximum
error in 0.039 units. The same is observed when the stormy weather is considered. The
IAE and ISE yielded by the ANNconf3 are degraded a 7.4% and a 16.67% respectively.
In absolute values, IAE is degraded from 0.300 to 0.324 whereas ISE is increased from
0.022 to 0.024. The mean(|e|), the max(|e|) and the var(|e|) metrics differ 0.002, 0.143 and
0.0003 units, respectively.

When rainy weather is considered, results show that all the proposed configurations
(ANN-based Delay Correction ones) are able to improve the best performance shown
in [36]. Now, the best improvements are offered by the ANNconf1 and they correspond to a
14.57% in terms of the JAE and a 11.54% in terms of the ISE. The mean(|e|) and the var(|e|)
are improved 7 x 1072 and 2 x 10~* units. However, the max(|e|) is increased from 0.180
to 0.290. These improvements are related to the abilities of the ANNs considered in the
data-based Denoising and ANN-based Delay Correction approaches. ANNs are able to
better model non-linear behaviours and variations. In such a fashion, rainy weather is the
one offering a bigger variation in the influent values since two long episodes of rain are
produced between days 8 and 10 (see Figure 7a).

Finally, in Figure 10 the performance of ANNconf2, ANNconfl and ANNconf3 for
the Dry, Rainy and Stormy weathers are compared to the best performance in [36]. As it
is observed, all the structures are offering a good control performance since they are able
to maintain the Sg 5 at the desired level or very close values most of the time. Notice that
changes in ANNconfl, ANNconf2 and ANNconf3 are produced by the daily variations of
the influent profile. In addition, one can observe that measurements have been properly
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denoised and also that effects of delays are not present between the ideal Sp 5 and the

predicted one.
As a conclusion, results corroborate that the data-based Denoising and the ANN-based

Delay Correction approaches proposed here can be adopted to change the methodologies
designed and optimised towards the WWTP scenarios. Even though data-based structures
are not always offering the best performance, it is worth to decrease a little bit their accuracy
at expense of increasing their scalability, decreasing the design complexity and easing the
implementation of the whole solution.
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Figure 10. Control processes for the different weather profiles. Only the days where the effects of the weather events are

predominant are shown.

4.3.2. Variable Set-Point Results

Variable set-points are the ones being tracked mostly since most of the control strate-
gies consider set-points determined by other control strategy under a hierarchical control
structure, or directly by parameters of the industrial plant which vary along time. In such a
context, results of the whole system performance when a variable set-point is considered are
shown in Table 5. The same effects as in the fix set-point results are observed between the
Default PI and the other control structures. However, the differences are not so big due to
the fact that effects of noise are lower when variable set-points are considered [36]. Now, the
best improvement in terms of the IAE, a 41.05%, is offered by the ANNconf2 configuration
when it is compared to the Default PI structure and the dry weather is simulated.

Table 5. Control performance when a variable set-point is considered. All the errors are measured in mg/L. Results of the

best structure are in bold.

Control Performance—Variable Set-Point

Weather Evaluation Criteria Default PI Best Performance in [36] ANNconfl ANNconf2 ANNconf3
mean(|e|) 0.083 0.056 0.054 0.049 0.057
IAE 0.570 0.390 0.381 0.336 0.372
Dry ISE 0.124 0.038 0.035 0.035 0.043
max(|e|) 0.983 0.320 0.342 0.445 0.580
var(|e]) 0.078 0.0052 0.0048 0.0049 0.0073
mean(|e|) 0.082 0.063 0.062 0.055 0.052
IAE 0.564 0.482 0.420 0.381 0.364
Rainy ISE 0.101 0.056 0.042 0.034 0.032
max(|e|) 0.709 0.300 0.332 0.342 0.299
var(|e]) 0.015 0.0065 0.0060 0.0047 0.0044
mean(|e|) 0.083 0.059 0.079 0.069 0.061
IAE 0.575 0.428 0.512 0.473 0.422
Stormy ISE 0.115 0.046 0.093 0.052 0.040
max(|e|) 0.983 0.341 0.835 0.398 0.256
var(|e]) 0.0172 0.0062 0.0142 0.0079 0.0059
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When the performance of the proposed approaches is compared to the structure
presented in [36], the improvement is reduced, however, results are still better. The
structure performing better in the case of the dry weather is the ANNconf2, which is
able to offer IAE and ISE values equal to 0.336 and 0.035, respectively. This entails an
improvement with respect to [36] equivalent to a 13.84% in terms of the IAE and a 7.89%
in terms of the ISE. These results are complemented with the mean(|e|), the max(|e|) and
the var(|e|). The mean(|e|) is now 0.049 units lower than before, the max(|e|) is increased
from 0.320 to 0.445, but its var(|e|) is reduced from 0.0052 to 0.0049. In terms of the
rainy and stormy weather, the structure offering the best performance corresponds to the
ANNCconf3. This makes sense since this structure is the one considering not only the Tgg ;,
concentration, but also the Sy 4 one. Aforementioned, these two concentrations are two of
the most affected ones when weather variations like stormy and rainy events are produced
(see Figure 7). For instance, when rainy weather is considered, this structure is able to
improve the IAE and ISE metrics from 0.482 to 0.364 and from 0.056 to 0.032, respectively.
Thus, the lower the IAE and ISE values, the better the control performance. When stormy
weather is considered, the IAE and the ISE varies from 0.428 to 0.422 and from 0.046 to
0.040, respectively. The enhancement is reduced in this case since the variations of stormy
weathers are not maintained in time like the rainy ones. Instead, they consist in high
variations during a very short period of time. The rest of the time similar variations to the
dry profile ones are observed.

Figure 11 shows the control process performed by the data-based Denoising stage
when Dedicated MLP-based DAEs are considered and when the ANN-based Delay Correc-
tion Structure considers the best ANN configuration, i.e., the ANNconf2 for a dry weather
and the ANNconf3 for the rainy and stormy weathers. Results of Default PI and [36] are
also shown.

As it is observed, the proposed approaches are the ones performing better. When
dry and rainy weathers are considered, the real Sp 5 concentrations obtained with the
ANNconf2 and ANNconf3 are the ones closer to the variable set-point, i.e., the ones
showing less oscillations as well as the ones showing no delays. Notice that there are some
points where the S 5 obtained is not as reliable as it should be (see the lowest values of the
variable set-point in Figure 11c). This effect is also observed when the stormy weather is
considered. However, this is countered with the highest values of the set-point, where our
approaches are making the point.
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Figure 11. Control processes for the different weather profiles. Results are shown from day 7 to 14, the days established in
the BSM1 simulation protocol.

As a summary, our proposed approaches are offering the best performance when a
variable set-point is considered. They are able to show the lowest errors at the same time
they do not show oscillations when the set-point is maintained at constant values. It is true
that there are some points where the obtained Sg 5 is not as close to the variable set-point
as it should be. However, they are data-based approaches able to overcome the results of
methodologies designed and optimised towards the WWTP scenario. This fact entails that
these data-based methodologies allow a higher scalability, a lower design complexity and
an easier implementation at the expense of losing some accuracy.
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5. Conclusions

This work is focused on the implementation of two data-based methodologies to
denoise and correct the delays introduced by sensors deployed over an industrial plant and
therefore, improve its control behaviour. Here, the proposed methodologies are deployed
and tested over the dissolved oxygen control loop of BSM1, a digital framework of a WWTP
facility. Nevertheless, these methodologies are not exclusively to WWTPs. Their behaviour
and results can be extrapolated to other industrial environments.

The two proposed methodologies consist in the data-based Denoising and the ANN-
based Delay Correction stage. The former will be mainly focused on the denoising process
of the measurements considered in the control process since the more precise the mea-
surements, the better the control performance. In that sense, two ANN-based denoising
approaches have been considered. The first one corresponds to a MLP-based DAE whose
objective is to generate a clean version of the input measurements. The second approach
consists in the Dedicated MLP-based DAEs which differ from the MLP-based DAE in the
number of outputs. They estimate a unique clean output instead of multiple ones. As a
consequence, as many Dedicated MLP-based DAEs as inputs have to be implemented.
Both approaches have been compared with a classical denoising method, a low-pass filter,
and they show that the best methodology consists in the Dedicated MLP-based DAEs.
They offer an average RMSE, MAE, MAPE and R? metrics equal to 0.033, 0.025, 1.27% and
0.998, respectively. Not only this, the MLP-based DAE RMSE and MAE values have been
improved a 64.89% and a 65.27%, respectively, when the Dedicated MLP-based DAEs are
adopted. The second approach corresponds to the ANN-based Delay Correction stage,
whose main objective is to correct the delays introduced by the different sensors and actu-
ators. Simple MLP networks with three different configurations of input data have been
considered to carry out this process. Results have shown a similar performance among
the different configurations. Two of them offer RMSE values between 0.0287 and 0.0235
whereas the remaining one yields a RMSE equal to 0.0154, which is the lowest value. The
novel point here is that these MLP nets have been trained with data gathered form an open
loop configuration. In that manner, the effects of the controllers involved in the control
approach are not considered and as a consequence, the delay correction is decoupled from
the controller topology.

The whole system performance is computed to determine the improvement with
respect to other approaches. Here, a PI controller has been considered as the main control
tool in two types of control scenarios, one with a fix set-point and other where a variable
set-point is adopted. Results show two evidences: (i) the whole system performance is
improved in some cases when the fixed set-point is considered whereas (ii) it is always
improved when a variable set-point is simulated. In the case of the fix set-point, it is
observed that our approach is performing better only when rainy weathers are simulated.
Nevertheless, the performance offered by our approaches are very close to the best ones
when dry and stormy weathers are considered. For instance, when dry weather is sim-
ulated, the best IAE and ISE metrics yielded by similar approaches equal to 0.240 and
0.014, respectively. Our approach yields an IAE and ISE metrics equal to 0.251 and 0.015,
respectively. In the case where a variable set-point is adopted, our proposal is the one
overcoming all the other approaches indistinctively of the weather. The best improvement
is again offered when the rainy weather is simulated. Our approach improves the IAE
and ISE values around a 24.48% and a 42.86% with respect to approaches designed and
optimised accordingly to the scenario where they are deployed.

In such a context, two points are observed. Our approach is able to improve the
methodologies designed and optimised accordingly to the scenario when it is considered
under certain weather circumstances. Similar performance is observed when fixed set-
points are considered, while this approach performs better in those cases where a variable
set-point, the most considered one, is adopted. However, the main point of our approach
is that it is completely based on data and specially on ANNs. Therefore, only input and
output measurements of the industrial plant are required. This entails similar or even a
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better performance with respect to methodologies and approaches designed and optimised
to work in the given scenario at the same time we are decreasing the design complexity of
the solution, easing its implementation process and also increasing its scalability. This is
possible since neither mathematical models are required in the development of the delay
correction methodologies, nor in the denoising process. All of them will be directly derived
by the ANNSs proposed in the data-based methodologies.

These points open a new horizon where the proposed system can be improved in
different aspects. For instance, the controller can be designed and implemented considering
only data-driven methods such as ANNSs or Reinforcement Learning techniques. This will
entail a new paradigm in the control of industrial processes since these kind of solutions will
rely uniquely on data obtained from industrial plants at the same time they could be treated
as ad-hoc solutions controlling harsh environments. Another interesting point arising from
the results is that the performance of the proposed approach should be corroborated in
real environments before applying it, not only in real WWTP facilities, but also in other
industrial scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

ASM1 Activated Sludge Model N.1

ASM2 Activated Sludge Model N.2
ASM2d  Activated Sludge Model N.2d
ASM3 Activated Sludge Model N.3
AWGN  Additive White Gaussian Noise

bn x Biases of the xth hidden layer

BSM1 Benchmark Simulation Model No. 1
BSM1-P  Benchmark Simulation Model No. 1 with Phosphorus processing
BSM2 Benchmark Simulation Model No. 2
COD Chemical Oxygen Demand (mg/L)

DAE Denoising Autoencoder

e[n] Error between set-point and output signal

FLC Fuzzy Logic Controllers

IAE Integrated Absolute Error

ISE Integrated Squared Error

IWA International Water Association

Kiax Oxygen Transfer Coefficient of the x-th reactor tank (day 1)

LSTM Long Short-Term Memory Cell
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My Delay introduced by the actuator
s Delay introduced by the sensors
MAE Mean Absolute Error

MAPE  Mean average percentage error
MLP Multilayer Perceptron

MPC Model Predictive Controller
MSE Mean-squared error

Ny Nitrogen gas

NO, Nitrogen Dioxide

PCA Principal Component Analysis

PI Proportional integral controller

PID Proportional integral derivative controller
Q Flow rate

Qx Flow rate of the xth reactor tank

Qa Internal recirculation flow rate

Qr External recirculation flow rate

R? Determination coefficient

ReLU Rectified Linear Activation Function

RMSE  Root Mean Squared Error

SNOx Nitrate-nitrogen concentration in the x-th reactor tank (mg/L)
SNH,x Ammonium concentration in the x-th reactor tank (mg/L)

So,x Dissolved Oxygen concentration in the x-th reactor tank (mg/L)
SW Sliding Window

TN Total Nitrogen (mg/L)

Tss x Total Suspended Solids in the xth reactor tank (mg/L)

u Actuation signal

W, x Weights of the xth hidden layer
WWTP Wastewater Treatment Plant

X Noise corrupted signals considered in the DAE denoising method
Xy LSTM input data

y Controlled signal

v Denoised measurement

y Vector of denoised measurements
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