
sensors

Article

Anonymous Asynchronous Ratchet Tree Protocol for
Group Messaging †

Kaiming Chen , Jiageng Chen * and Jixin Zhang

����������
�������

Citation: Chen, K.; Chen, J.; Zhang, J.

Anonymous Asynchronous Ratchet

Tree Protocol for Group Messaging.

Sensors 2021, 21, 1058.

https://doi.org/10.3390/s21041058

Academic Editor: James (Jong Hyuk)

Park

Received: 28 November 2020

Accepted: 26 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer, Central China Normal University, NO. 152 Luoyu Road, Wuhan 430079, China;
cvk907@gmail.com (K.C.); zhangjixxx@foxmail.com (J.Z.)
* Correspondence: chinkako@gmail.com
† This paper is an extended version of the conference paper: Chen, K.; Chen, J. Anonymous End to End

Encryption Group Messaging Protocol Based on Asynchronous Ratchet Tree. In Proceedings of the 22nd
International Conference on Information and Communications Security (ICICS 2020), Copenhagen, Denmark,
24–26 August 2020; pp. 588–605.

Abstract: Signal is the first application that applies the double ratchet for its end-to-end encryption
protocol. The core of the double ratchet protocol is then applied in WhatsApp, the most popular
messaging application around the world. Asynchronous Ratchet Tree (ART) is extended from ratchet
and Diffie-Hellman tree. It is the first group protocol that applies Forward Secrecy (FS) with Post-
Compromised Security (PCS). However, it does not consider protecting the privacy of user identity.
Therefore, it makes sense to provide anonymous features in the conditions of FS and PCS. In this
paper, the concepts of Internal Group Anonymity (IGA) and External Group Anonymity (EGA) are
formalized. On the basis of IGA and EGA, we develop the “Anonymous Asynchronous Ratchet Tree
(AART)” to realize anonymity while preserving FS and PCS. Then, we prove that our AART meets
the requirements of IGA and EGA as well as FS and PCS. Finally, the performance and related issues
of AART are discussed.

Keywords: end-to-end encryption; forward secrecy; post-compromised security; anonymity; group
messaging protocol

1. Introduction
1.1. Background

With the help of Internet development, Instant Messaging (IM) applications are much
important in people’s lives. According to statistics, WhatsApp is the most popular IM
application around the world with more than 2 billion active users. Facebook Messenger
has 1.3 billion users. The third is WeChat with about 1 billion. In 2018, people spent 27.6 h
a week online, of which 15.6% was used for instant messaging. In addition, WeChat
is the second IM application of China, and LINE is popular in East Asian countries.
A large amount of data containing personal privacy information will be generated through
these platforms.

End-to end encryption (E2EE) is used to protect user privacy such that the server or
any attackers cannot read messages during the communication of IM. When the secret
key is not compromised, Indistinguishability under Chosen Ciphertext Attack (IND-CCA)
is considered as a standard to protect IM communication, in which case an attacker can
request a prepared ciphertext [1]. However, when the secret key is compromised, there
should be Forward Secrecy (FS) [2] and Post-Compromised Security (PCS) [3]. FS is
to ensure that the adversary cannot obtain the key or plaintext information of the past
secret messages. PCS is to guarantee that after multiple interactions, the compromised
communication will be restored to a secure state again.

The group message protocol is extended from one-to-one IM with at least three users
during the communication. The sender transmits a message, and the other group members

Sensors 2021, 21, 1058. https://doi.org/10.3390/s21041058 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6624-0347
https://doi.org/10.3390/s21041058
https://doi.org/10.3390/s21041058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041058
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1058?type=check_update&version=2

Sensors 2021, 21, 1058 2 of 19

will receive the corresponding one. Many protocols of IM applications directly send the
message ciphertext, the encryption key, and the ciphertext of the key to each member with
the one-to-one secure protocol. This strategy is called “sender keys”. Because the session
key is determined by the sender, all members should keep the connection with others. This
operation cannot meet the requirements of PCS because the receiver should obtain the
identity of the sender to apply “sender keys”. To deal with this issue, ART protocol [4] is
designed, which is based on the ideas of point-to-point [5] and stateful [3] protocols.

However, there are still issues. In 2019, WhatsApp was hacked through its phone
call bug, which led to user information being leaked [6]. Thus, the user’s identity may be
disclosed because of the engineering loopholes in the implementation of applications, and
anonymous features are required. Current group message protocol cannot provide FS, PCS,
as well as anonymity at the same time. Therefore, we aim to propose a protocol that can
satisfy FS, PCS, and anonymity. According to the conference version [7], we re-formalize
the two anonymous features, External Group Anonymity (EGA) and Internal Group
Anonymity (IGA), as attack games to resist internal and external group attackers. In EGA,
communications among different groups cannot be distinguished. Therefore, in EGA,
attackers who are not members of a group cannot link users to the appropriate group.
When the key is leaked, the external attacker can be regarded as a member of the group.
EGA cannot resist such attackers. Therefore, IGA is required, in which other members
cannot accurately locate the message sender except for the messages sent by themselves.

1.2. Contributions

In this paper, we develop the structure of ART to satisfy IGA security and apply the
one-time address [8] to achieve the security of EGA. We formalize our construction with
the algorithms Init to create the group channel, Enc to encrypt and send messages, and
Dec to receive and decrypt messages. The sub-algorithm SKG is to derive the session key,
and Update and UpdateGpk are to update group tree by sender and receiver, respectively.
The tools are used to construct the following algorithms: a cipher E = (ECPA, DCPA) which
satisfies Indistinguishability under Chosen Plaintext Attack (IND-CPA), a MAC system
I = (S, V) to protect the integrity of the message, and (Send,Get) to send and get messages
from the server according to the one-time address. Then, we prove the security of AART
that satisfies FS, PCS, and anonymity. Finally, we show that the performance of AART is
better than the “sender keys” and pair-wise Signal group protocols and it is close to ART
while providing anonymity features.

2. Related Works

In this section, we analyze the group protocols of IM applications and show that these
protocols do not provide anonymity along with FS and PCS.

2.1. Group Protocols
2.1.1. iMessage

Apple’s iMessage is the first popular E2EE application, but it turns out to be insecure
under IND-CCA [9]. According to iMessage white paper [10], before sender A transmits a
message to receiver B via iMessage, A should get the address of B from Apple’s server called
APN because APN will store all users’ addresses. Furthermore, The group messaging
protocol of iMessage is “sender keys”. Thus, anonymous features cannot be satisfied
with iMessage.

2.1.2. LINE

LINE [11] is an E2EE application that is popular in East Asia. According to the proto-
col of LINE called Letter Sealing, there are some issues such as impersonating attacks [12].
In group messaging, a group master key is calculated by the creator and sent to other mem-
bers via “sender keys”. This master key will not be changed so that if it is compromised,

Sensors 2021, 21, 1058 3 of 19

the contents of communication will be revealed by the attacker. Thus, PCS is not satisfied
in LINE.

2.1.3. Signal

OTR [13] is the first application to provide ratchet. In ratchet protocol, users negotiate
new Diffie-Hellman (DH) keys of each session, and the old session keys will be deleted and
cannot be derived again. Signal’s protocol is called double ratchet. It proves that double
ratchet can satisfy FS and PCS [5]. It can be observed from this protocol that long-term
public keys are included in the associated data. So, the identities of users will be disclosed
to the message server. Signal’s group messaging protocol is pair-wise, which requires that
each member should maintain a one-to-one Signal protocol with other members rather
than sending keys. Because of the pair-wise protocol, anonymity cannot be satisfied.

2.1.4. ART

ART [4] is extended from ratchet and Diffie-Hellman tree, which first applies FS
and PCS to group messaging protocol. The creator of a group generates DH key pairs
for others. DH key pairs are set as the leaves of the DH tree, and the parents’ DH key
pairs are generated from the ones of their children. The public DH tree is sent to other
members. When sending messages, the sender needs to refresh his leaf DH key and the
public DH keys from the corresponding leaf to the root of the group tree. The new public
keys are sent to others to update their DH trees according to the location of the sender.
Because the position of the sender is public and bound to the identity of the sender, ART
cannot satisfy anonymity.

2.1.5. WeChat and QQ

WeChat [14] and QQ [15] are the most popular IM applications in China. They apply
Secure Sockets Layer (SSL) or Transport Layer Security (TLS) to protect the message security.
A TLS connection will be set with the server to which the user is logged in. The group
messages are transferred through this channel. TLS 1.3 proves to be FS. Though for PCS,
because the later session key is derived from the former one, it cannot be satisfied in TLS,
the same as WeChat and QQ. It is claimed that the identities of users can be protected.
However, they do not offer technical details as well as the source code. Moreover, it is also
not clear whether they are E2EE protocols or not.

2.2. Some Anonymous Approaches Applied in E2EE

Tor [16] is an anonymous network composed of many user volunteers. Tok [17] is
the IM application based on Tor. When communicating, the sender randomly selects the
same volunteer points, then derives long-time session keys of them. These keys are used
to encrypt sending messages in sequence. According to the sequence, these messages are
passed to the next point and decrypted by each point using the derived key until it is
delivered to the receiver. Thus, the address of the sender is only known to the first point.
This address of the receiver is only known to the last point. However, FS and PCS cannot
be satisfied when the long-term keys are compromised.

Identity-based encryption (IBE) is used to validate and authenticate the anonymous
public keys in E2EE [18]. Because of the low efficiency, KEM/DEM is applied to encrypt
the secret key of the authenticator [19]. The encrypted secret key is sent to a proxy, then the
proxy delays this message to the service provider for validation. As the proxy is trusted,
the identity of the sender can be protected. Just like Tor, the secret key of the sender is
long-term. So, it cannot provide FS and PCS.

3. Security Definitions

There are fundamental tools for the security definition. M is the message space.
K is the key space. C is the cipher space. Σ is the MAC space. U is finite user identity
set. E = (E, D) is the encryption scheme, E(k, m) = c : K ×M → C is the encryption

Sensors 2021, 21, 1058 4 of 19

algorithm, and D(k, c) = m : K×C →M is the decryption algorithm. I = (S, V) is a MAC
system where S(k, c) = σ : K × C → Σ and V(k, (c, σ)) = {0, 1} : K × (C × Σ) → {0, 1}.
The output of V is 1 if a MAC pair is from S; if it is 0, V will reject this pair.

3.1. Algorithm Definition

The AART is the protocol with the following algorithms:

• (gpk, gsk) $←− Init(·): it is the initialization algorithm to create group tree, generate the
public group key gpk and public group key gsk.

• (C, σ) ← Enc(gpk, gsk, m): it is the encryption algorithm to encrypt the message m
with gpk and gsk. The outputs are a ciphertext C and a MAC σ.

• m∪⊥ ← Dec(gpk, gsk, C, σ): it is the decryption algorithm to check the σ and decrypt
the ciphertext C. The output is the message m if it is decrypted correctly or ⊥ if it
does not pass the validation of σ.

The sub-algorithms involved in the AART are defined as follows:

• {k1, ..., kn} ← SKG(gpk, gsk): it is the session keys generation algorithm where
{k1, ..., kn} ∈ Kn.

• (pos, path) ← Update(gpk, gsk, pos): it is the update algorithm to refresh the leaf of
the sender after he encrypts a message. pos is the position of the leaf to be updated,
and path is the updated public key set in the group tree.

• gpk ← UpdateGpk(gpk, pos, path): it is the update algorithm to replace part of the
public keys of group tree according to path and pos after the receiver decrypts a
message.

The encryption oracle Enc and decryption oracle Dec made up of these sub-algorithms
and tools are illustrated in Figure 1.

Version December 3, 2020 submitted to Sensors 4 of 19

3. Security Definitions97

M is the message space. K is the key space. C is the cipher space. Σ is the MAC space. Assume98

(gpk, gsk) ← Init(·) is a group public key generator. {k1, ..., kn} ← SKG(gpk, gsk) is session keys99

generator where {k1, ..., kn} ∈ Kn. Messages queried by A are from M and the length of them is100

equal. In challenge phase, the messages from A are different from queried messages. E = (E, D) is101

encryption scheme, E(k, m) = c : K ×M → C is encryption algorithm and D(k, c) = m : K × C → M102

is decryption algorithm. I = (S, V) is a MAC system where S(k, c) = σ : K × C → Σ and103

V(k, (c, σ)) = {0, 1} : K× (C × Σ)→ {0, 1}. The output of V is 1 if a MAC pair is from S, if it is 0, V will104

reject this pair. The adversaries mentioned in each definition are all probability polynomial time (PPT)105

attackers.106

107

Authenticated Encryption Security (AE-Security). AE-Security should satisfy the chosen plaintext attack108

(CPA) and ciphertext integrity (CI) requirements. The attack game of AE is shown in Figure 1.109

AEAS (λ)

(gpk, gsk)←$ Init(·)
gpk→ A
(m0, m1, c∗, σ∗)← AEnc(gpk,gsk,m)

b←$ {0, 1}
cb, σb ← Enc(gpk, gsk, mb)

cb, σb → A
b̂←$A
return b = b̂ OR V(k2(c∗, σ∗))

Enc(gpk, gsk, m)

k1, k2 ← SKG(gpk, gsk)
c← E(k1, m), σ← S(k2, c)
return c, σ

Figure 1. Authenticated Encryption

An encryption scheme S can satisfy AE-Security if AdvAE[A,S] = |Pr(b̂ = b) − 1
2 | +110

Pr(V(kQ+1,2, (c∗, σ∗)) = 1) is negligible.111

112

Forward Secrecy (FS). The definition shows that adversary cannot reveal the forward session113

keys when keys are compromised. The attack game of FS is shown in Figure 2. An encryption scheme S is114

FS if AdvFS[A,S] = |Pr(b̂i = bi)− 1
2 | for any i is negligible.115

116

Post Compromised Secure (PCS). This definition shows that when key is compromised, after at117

most Q times queries, PCS will establish new secure channel again. The attack game of PCS is shown in118

Figure 2. An encryption scheme S is PCS if AdvPCS[A,S] = |Pr(b̂ = b)− 1
2 | is negligible.119

120

Internal Group Anonymity (IGA). This definition shows that when adversary knows the secret121

key, or adversary is one of the group members, he cannot distinguish which group member sends the122

target message. IGA is specific to ART-like protocols because we apply this feature on the Init and Update123

algorithms. An encryption scheme S is IGA secure if AdvIGA[A,S] = |Pr(b̂ = b)− 1
2 | is negligible. In124

ART, because A knows the updated position of sender, it means that in this definition, cb,1 is related125

to b and can be accessed byA. So, in ART, AdvIGA[A,S] = 1. The attack game of IGA is shown in Figure 3.126

127

External Group Anonymity (EGA). This definition shows that an adversary cannot distinguish128

Figure 1. Authenticated encryption.

3.2. Security Model

In the security models, messages queried byA are fromMwith the same length. In the
challenge phase, the messages fromA are different from queried messages. The adversaries
mentioned in each definition are all probability polynomial time (PPT) attackers.

Unforgeability of MAC. The adversary on a MAC system attacks a chosen message
and tries to forge a MAC pair that can pass the MAC system. The attacking game of
unforgeability is shown in Figure 2. If AdvUNF = |Pr(V(k, m∗, σ∗) = 1)| is negligible,
the MAC system can satisfy unforgeability.

Chosen Ciphertext Attack. The adversary of IND-CCA cannot only ask the plaintext
encryption query but also has the ability to access decryption of the cipher. The attack-
ing game of IND-CCA is shown in Figure 2. An encryption scheme S is IND-CCA if
AdvCCA[A,S] = |Pr(b̂ = b)− 1

2 | is negligible.
Forward Secrecy. The definition shows that the adversary cannot reveal the forward

session keys when the keys are compromised. The attack game of FS is shown in Figure 2.

Sensors 2021, 21, 1058 5 of 19

Oracle O illustrates the forward encryption. After the challenge phase, the adversary can
run decryption oracle Dec.

Version December 3, 2020 submitted to Sensors 5 of 19

FSAS (λ)

(gpk, gsk)←$ Init(·)
gpk→ A
(m∗)← AO(gpk,gsk,mi

0,mi
1)

c, σ← Enc(gpk, gsk, m∗)
c, σ, gsk, k1, k2 → A
b̂i ← A
return bi = b̂i

PCSAS (λ)

(gpk, gsk)←$ Init(·)
gpk, gsk→ A
(m0, m1)← AEnc(gpk,gsk,m)

b←$ {0, 1}
cb, σb ← Enc(gpk, gsk, mb)

cb, σb → A
b̂← A
return b = b̂

Enc(gpk, gsk, m)

k1, k2 ← SKG(gpk, gsk)
c← E(k1, m), σ← S(k2, c)
return c, σ

O(gpk, gsk, mi
0, mi

1)

bi ←$ {0, 1}
ci

b, σi
b ← Enc(gpk, gsk, mi

b)

return ci
b, σi

b

Figure 2. Forward Secrecy and Post Compromised Security

IGAAS (λ)

(gpk, gsk)←$ Init(·)
gpk, gsk→ A
m← A, b←$ {0, 1}
cb, σb ← Enc(gpk, gsk, m, b)
cb, σb → A
b̂←$A
return b = b̂

Enc(gpk, gsk, m, b)

k1, k2 ← SKG(gpk, gsk)

c1
b ← Update(gpk, gsk, b)

c0
b ← E(k1, m), σ← S(k2, (c0

b, c1
b))

return (c0
b, c1

b), σb

Figure 3. Ixternal Group Anonymity

communications between two groups, which means adversary cannot locate the user to corresponding129

group. An encryption scheme S is EGA secure shown in Figure 4 if AdvEGA[A,S] = |Pr(b̂ = b)− 1
2 | is130

negligible.131

4. Our Construction132

4.1. Security Goals133

The aim of our construction is to ensure the security against the five kinds of adversaries in134

AE-Security, FS, PCS, IGA and EGA. All of the adversaries can deliver and modify the message and135

control the message server. Except AE-Security, current random values including long term secret keys,136

session keys, and leaf keys can be compromised. To break the security features, adversary can access the137

Key Derived Function (KDF) as random oracle. Our construction does not consider the impersonating138

attack when keys are compromised. Besides, we do not consider the condition that initial stage is139

compromised and we assume that the initial stage is based on trusted third-party.140

4.2. Security Assumption and Notation141

In this subsection, the necessary assumptions and notations for AART are defined. x $←− X means142

choosing a group element x from group X randomly. The size of all groups and spaces is super-poly number.143

Each adversary is PPT adversary, which means that to exhaust all group and space elements is impossible.144

Figure 2. Forward Secrecy and Post-Compromised Security.

An encryption scheme S is FS if AdvFS[A,S] = |Pr(b̂i = bi)− 1
2 | for any i is negligible.

Post-Compromised Secure. This definition shows that when the key is compromised
after at most Q times queries, the channel will be refreshed and secure again. The attacking
game of PCS is shown in Figure 2. The adversary can access the decryption oracle before
and after the challenge phase. An encryption scheme S is PCS if AdvPCS[A,S] = |Pr(b̂ =
b)− 1

2 | is negligible.
Internal Group Anonymity. This definition shows that the adversary who knows the

secret key cannot distinguish the identity of the target message sender. The attacking game
of IGA is shown in Figure 3. An encryption scheme S is IGA secure if AdvIGA[A,S] =
|Pr(b̂ = b)− 1

2 | is negligible. After C receives the challenge, he should update the group
tree according to the position b. If the Update algorithm of a protocol cannot cut off the
relation between b and the updated position, the adversary will win the game. For the
example of ART, because A knows the updated position of the sender, it means that in this
definition, cb,1 is related to b and can be accessed by A. So, in ART, AdvIGA[A,S] = 1.

Version December 3, 2020 submitted to Sensors 5 of 19

FSAS (λ)

(gpk, gsk)←$ Init(·)
gpk→ A
(m∗)← AO(gpk,gsk,mi

0,mi
1)

c, σ← Enc(gpk, gsk, m∗)
c, σ, gsk, k1, k2 → A
b̂i ← A
return bi = b̂i

PCSAS (λ)

(gpk, gsk)←$ Init(·)
gpk, gsk→ A
(m0, m1)← AEnc(gpk,gsk,m)

b←$ {0, 1}
cb, σb ← Enc(gpk, gsk, mb)

cb, σb → A
b̂← A
return b = b̂

Enc(gpk, gsk, m)

k1, k2 ← SKG(gpk, gsk)
c← E(k1, m), σ← S(k2, c)
return c, σ

O(gpk, gsk, mi
0, mi

1)

bi ←$ {0, 1}
ci

b, σi
b ← Enc(gpk, gsk, mi

b)

return ci
b, σi

b

Figure 2. Forward Secrecy and Post Compromised Security

IGAAS (λ)

(gpk, gsk)←$ Init(·)
gpk, gsk→ A
m← A, b←$ {0, 1}
cb, σb ← Enc(gpk, gsk, m, b)
cb, σb → A
b̂←$A
return b = b̂

Enc(gpk, gsk, m, b)

k1, k2 ← SKG(gpk, gsk)

c1
b ← Update(gpk, gsk, b)

c0
b ← E(k1, m), σ← S(k2, (c0

b, c1
b))

return (c0
b, c1

b), σb

Figure 3. Ixternal Group Anonymity

communications between two groups, which means adversary cannot locate the user to corresponding129

group. An encryption scheme S is EGA secure shown in Figure 4 if AdvEGA[A,S] = |Pr(b̂ = b)− 1
2 | is130

negligible.131

4. Our Construction132

4.1. Security Goals133

The aim of our construction is to ensure the security against the five kinds of adversaries in134

AE-Security, FS, PCS, IGA and EGA. All of the adversaries can deliver and modify the message and135

control the message server. Except AE-Security, current random values including long term secret keys,136

session keys, and leaf keys can be compromised. To break the security features, adversary can access the137

Key Derived Function (KDF) as random oracle. Our construction does not consider the impersonating138

attack when keys are compromised. Besides, we do not consider the condition that initial stage is139

compromised and we assume that the initial stage is based on trusted third-party.140

4.2. Security Assumption and Notation141

In this subsection, the necessary assumptions and notations for AART are defined. x $←− X means142

choosing a group element x from group X randomly. The size of all groups and spaces is super-poly number.143

Each adversary is PPT adversary, which means that to exhaust all group and space elements is impossible.144

Figure 3. External Group Anonymity.

External Group Anonymity. The security model of EGA is shown in Figure 3.
If AdvEGA[A,S] = |Pr(b̂ = b) − 1

2 | is negligible, an encryption scheme S is EGA.
To make it indistinguishable, the only clue for the adversary is the output of Enc. It
includes three parts: associated data pos and path, ciphertext c, and MAC σ. For ART
and Signal, identity is an important associated data and easy to be distinguished. If an
adversary cannot distinguish those associated data, it means that he cannot locate a user in
an exact group.

Sensors 2021, 21, 1058 6 of 19

4. Our Construction
4.1. Security Goals

Our construction aims to ensure security against the five kinds of adversaries in
IND-CCA, FS, PCS, IGA, and EGA. All of the adversaries can deliver and modify the
message, control the message server, and have the ability to access the decryption oracle.
Except for IND-CCA, current random values including secret keys, session keys, and leaf
keys can be compromised. To break the security features, the adversary can access the
Key Derived Function (KDF) as a random oracle. Our construction does not consider
the impersonating attack when the keys are compromised. Besides, the condition is not
considered that the initial stage is compromised, and it assumes that the initial stage is
based on a trusted third-party.

4.2. Security Assumption and Notation

In this subsection, the necessary assumptions and notations for AART are defined.

x $←− X means choosing a group element x from group X randomly. A secure pseudoran-
dom generator (PRG) prg is to pick up the update position for group members. Sig is a
secure signature, and I = (S, V) is a secure MAC system. E = (ECPA, DCPA) is an IND-CPA
encryption scheme, Zq is a finite field, q is a big prime number. The basic operation of
AART is over point group P of Elliptic Curve (EC), where P = {(x, y) ∈ Zq ×Zq : (x, y) ∈
EC}⋃{∞}. The generator of P is P.

Decisional Diffie-Hellman Problem (DDHP). DDHP is to distinguish two tuples (a · P,

b · P, ab · P) and (a · P, b · P, z · P), where a, b ∈ Zq and z $←− Zq. The advantage for any PPT
adversary to deal with DDHP is negligible.

Computational Diffie-Hellman Problem (CDHP). CDHP is to compute ab · P, given
a tuple (a · P, b · P), where a, b ∈ Zq. The advantage for any PPT adversary to deal with
CDHP is negligible.

Pseudo-Random Function Oracle Diffie-Hellman (PRF-ODH) [20]. Assume a secure
PRF t(·) is: P→ Zq, which maps the group element of P to an element of Zq. If DDHP is
held in group P and t is a secure PRF over P, general PRF-ODH assumption is satisfied

on P such that if z $←− Zq, given (a · P, b · P, t(ab · P)), (a · P, b · P, t(z · P)), the probability
adversary distinguishes t(ab · P), and t(z · P) is negligible. Because of PRF-ODH, CDHP is

still satisfied over P and t if z $←− Zq, given (a · P, b · P), the advantage that the adversary
computes t(ab · P) is negligible.

Node. node is the basic unit of group tree. The construction of node is

• node[i]: the ith leaf node of group tree;
• node[i].sk: the secret key of node[i];
• node[i].pk: the public key of node[i];
• node[i].sibling: the sibling of node[i];
• node[i].p: the parent of node[i].

Other operations are outlined: push is to push an element to the end of a list. pop is
to get and remove the first element from a list. agt is the tree of public and private keys.
size() is to get the number of group members or the number of a list. KeyExchange can be
any authentication key exchange (AKE) function or protocol. In signal, KeyExchange is
X3DH [5] protocol.

KeyExchange(ikR, IKI , sukR, EKI) = KeyExchange(ikI , IKR, ekI , SUKR)

This design involves several random values. The one-time secret key node[i].sk is
owned to user i, node[i].pk is the corresponding public key. (ik, IK) is the identity key pair,
(ek, EK) is the short-term key pair. ik and ek are kept by the user, and IK, EK are published.
j denotes the sequence number of current stage. Session keys mk j, rj, ck j are derived from
KDF(ck j−1, tk j). mk j is used to encrypt message, rj is used to calculate one-time address,
and ck j is used to generate MAC and session key pair for stage j + 1.

Sensors 2021, 21, 1058 7 of 19

4.3. Internal Group Anonymity
4.3.1. Group Setup

Considering the three-member group, let A, B, and C be the group members. The ini-
tialization algorithm Init creates an anonymous group tree and sets up a communication
channel. The leaves A, B, and C stand for each group member. This tree is created by the
group initiator A. An overview of the group tree is shown in Figure 4.

tk = t(sk3sk4 · P); tk · P

sk3 = t(sk1sk2 · P); sk3 · P

sk1 = t(θA1 θ
x
1 · P); sk1 · P

θA1 ; θ
A
1 · P θx1 ; θ

x
1 · P

sk2 = t(θB1 θ
y
1 · P); sk2 · P

θB1 ; θB1 · P θy1 ; θ
y
1 · P

sk4 = t(θC1 θ
z
1 · P); sk4 · P

θC1 ; θ
C
1 · P θz1 ; θ

z
1 · P

Figure 4. Anonymous group tree overview.

The Init procedure is shown as follows:

• Ask for public key pairs (IKi, EKi) of each group member through the third channel.

• Generate setup key suk $←− Z∗q . Let SUK ← suk · P. Generate A’s leaf key pair

(θA
0 , θA

0 · P) such that θA
0

$←− Z∗q . θi
0 is the leaf secret key of user i and θi

0 · P. Set initial

chain key ck0
$←− K.

• Send IKA, SUK, ck0 to other group members via a trusted third-party, which means
that the adversary cannot access these messages and reveal the identity of other group
members in the initial session.

• Generate leaf keys of other members: θi
0 ← KeyExchange(ikA, IKi, suk, EKi), generate

random leaf key as θi
0

$←− Z∗q .
• Set up group tree by agt ← Create(). Let the root private key and public key be

(tk1, TK1). Set gpk as public group tree that deletes all secret keys from agt.
• Run σ0 ← Sig(ikA, gpk1) and broadcast (gpk1, σ0) to other group members.

Create and Init algorithms are illustrated in Algorithm 1.
When initiating anonymous group tree, the initiator has the full view of group tree,

including the private leaf key of each node. After receiving this tree, other group members
should check if (IKA, gpk1, σ0) is valid or not. If σ0 is valid, each group member will accept
this tuple. He will only obtain public part gpk1 and his private leaf key. Leaf keys can be
calculated by running

θi
0 ← KeyExchange(iki, IKA, eki, SUK) (1)

After getting θi
0, group members should calculate their public leaf keys to ensure the

position i of them. If the pk in gpk1 of kth leaf is equal to θi
0 · P, the position of this group

member is i ← k. Then, he generates the group shared key tk1 according to procedure
KeyGen(i, node[i], gpk1) :

1. Parent node p← node[i].p, s← node[i]
2. Find s’s sibling node s.sibling
3. Calculate p.sk← t(s.sk · s.sibling.pk)
4. set s← p, p← s.p
5. If p is null, tk← s.sk, else go to step 2

According to Equation (1), the group initiator knows the location of each member in
gpk1. However, each other member only knows his own location.

Sensors 2021, 21, 1058 8 of 19

Algorithm 1 Anonymous Tree Generation

1: function Create(node,size)
2: if size 6= 1 then
3: if size is odd then
4: Let last node of newNode be node[size]
5: end if
6: for i = 1; i < size; i+ = 2 do
7: newNode[(i + 1)/2].sk← t(node[i].sk · node[i + 1].pk)
8: newNode[(i + 1)/2].pk← newNode[(i + 1)/2].sk · P
9: Let newNode[(i + 1)/2] be the parent of node[i] and node[i + 1]

10: end for
11: return Create(newNode, size(newNode))
12: else
13: return node
14: end if
15: end function
16: procedure Init(ikA, IK, EK,size n)

17: size← 2n, suk $←− Z∗q , SUK ← suk · P, ck0
$←− K

18: Send IKA, SUK, ck0 to other members through trust third-party
19: for each i ∈ [1, 2n] do
20: if i mod 2 = 0 or i = A then
21: node[i].sk $←− Z∗q
22: else
23: node[i].sk← KeyExchange(ikA, IKi, suk, EKi)
24: end if
25: end for
26: agt← Create(node, size), gpk← agt, delete all sk from gpk
27: Run σ0 ← Sig(ikA, gpk1) and broadcast (gpk1, σ0) to other group members
28: return gpk, agt, node
29: end procedure

4.3.2. Direct Updating

In order to satisfy FS and PCS, when one participant sends a message, the group tree
should be updated. In stage j, the root key tk j should be generated from gpk j and the
user’s leaf secret key. After sending or receiving a message, gpk j should be updated as
gpk j+1, which means that session key should be used only once. In the update phase, group
members can decide to update the group tree anonymously or directly. The overview of
directly updating is illustrated in Figure 5. Its procedure is described as follows (B stands
for the position of the updated node):

1. Set node[B].sk← θB
1

$←− Z∗q , node[B].pk← node[B].sk · P
2. Update sk2 ← t(θB

1 θ
y
1 · P); pk2 ← sk2 · P

3. Update sk3 ← t(sk1sk2 · P); pk3 ← sk3 · P
4. Update tk← t(sk3sk4 · P); TK ← tk · P
5. Broadcast B, node[B].pk, pk2, pk3 to all group members

tk = t(sk3sk4 · P); tk · P

sk3 = t(sk1sk2 · P); sk3 · P

sk1 = t(θA1 θ
x
1 · P); sk1 · P

θA1 ; θ
A
1 · P θx1 ; θ

x
1 · P

sk2 = t(θB1 θ
y
1 · P); sk2 · P

θB1 ;θB1 · P θy1 ; θ
y
1 · P

sk4 = t(θC1 θ
z
1 · P); sk4 · P

θC1 ; θ
C
1 · P θz1 ; θ

z
1 · P

Figure 5. Non-anonymous updating group tree (updated nodes and values are marked in bold).

Sensors 2021, 21, 1058 9 of 19

After receiving the updated public keys, others update the public keys of B and its
ancestor nodes, and tk j+1 is derived according to KeyGen.

4.3.3. Anonymous Updating

Because the group initiator knows the location of each member, he can see which one
is to update group tree. So, the initiator knows who sent the target message. In order to
limit the authority of the initiator, the relation between the updated location and identity
should be separated. By using random node, this feature can be obtained according to
Figure 6. The procedure is shown as follows (b stands for the updated node’s position):

1. b← prg({2, 4, 6, ..., 2n})
2. Set node[b].sk← θi $←− Z∗q , node[B].pk← node[B].sk · P
3. Update sk2 ← t(θB

1 θ
y
1 · P); pk2 ← sk2 · P

4. Update sk3 ← t(sk1sk2 · P); pk3 ← sk3 · P
5. Update tk← t(sk3sk4 · P); TK ← tk · P
6. Broadcast b, node[b].pk, pk2, pk3 to all group members

tk = t(sk3sk4 · P); tk · P

sk3 = t(sk1sk2 · P); sk3 · P

sk1 = t(θA1 θ
x
1 · P); sk1 · P

θA1 ; θ
A
1 · P θx1 ;θ

x
1 · P

sk2 = t(θB1 θ
y
1 · P); sk2 · P

θB1 ; θB1 · P θy1 ; θ
y
1 · P

sk4 = t(θC1 θ
z
1 · P); sk4 · P

θC1 ; θ
C
1 · P θz1 ; θ

z
1 · P

Figure 6. Anonymous updating group tree (updated values are marked in bold).

Because in group tree node[i], i ∈ {2, 4, 6, ..., 2n} are random nodes, this means that
the leaf keys of these nodes are generated randomly, and thus no group member is located
in these nodes. In this way, the initiator cannot bind the sender with a random node.
Therefore, he cannot reveal the identity of the sender.

4.4. External Group Anonymous Encryption
4.4.1. One-Time Address

Although ratchet tree can provide PCS and FS, it delivers messages through central
servers. If those servers are controlled by the adversaries, they can know the relations of all
users. With the help of the topological net, attackers can perform behavior analysis to infer
the identities of the user.

One-time address applied in Monero [8] tries to hide the identity of receiver using
Equation (2).

addr ← H(r · PKs
B) · P + PKv

B (2)

Here, PKs
B ← sks

B · P and PKv
B ← sks

B · P are the long-term public keys of user Bob.
H : P ← Zq is a collision-resistant hash function. If user Alice wants to trade with Bob,

she first generates r $←− K, calculates addr, and then puts r, addr and transactions onto the
block chain. Bob should use r and his secret key pairs to validate the addr. Because addr is
changed by r and r is randomly chosen, addr is changed in each transaction. Because DDHP
is hard in PRF-ODH, the adversary cannot reveal the identity of Bob from addr. However,
because Bob should check all addr, the valid operation will cost a lot of time. The idea
from Monero’s one-time address is to hide the group public key, so that cloud servers
cannot distinguish different messages from different groups according to one-time address.
The SKG of our construction contains two parts: Equations (3) and (4).

mk j, rj, ck j ← KDF(ck j−1, tk j) (3)

addrj ← H(t(rj · P)) · P + tk j · P (4)

Sensors 2021, 21, 1058 10 of 19

AART generates the pseudorandom value mk j, rj, ck j from tk j and ck j−1 based on
KDF : K×Zq → K3 modeled as random oracle, so that group members can pre-calculate
the one-time address for each message.

4.4.2. Encryption and Decryption

Here type ∈ {0, 1} is the updated type: 0 is direct update, 1 is anonymous update.

• SKG(node[i]j, gpk j, ck j−1):
– tk j ← KeyGen(i, node[i]j, gpk j)

– mk j, rj, ck j ← KDF(ck j−1, tk j)

– addrj ← H(t(rj · P)) · P + tk j · P
• Enc(node[i]j, gpk j, typej, ck j−1):

– (mk j, rj, addrj, ck j)← SKG(node[i]j, gpk j, ck j−1)

– (posj, pathj, gpk j+1)← Update(i, gpk j, typej, node[i]j)
– cj ← ECPA(mk j, mj)

– σj ← S(ck j, (cj, posj, pathj))

– Send((cj, posj, pathj, σj), addrj, server)
– output : cj, σj, addrj, gpk j+1

• Dec(gpk j, node[i], ck j−1)

– (mk j, rj, addrj, ck j)← SKG(node[i]j, gpk j, ck j−1)

– cipher ← Get(addrj, server)
– If cipher = ⊥: output ⊥
– cj, posj, pathj, σj ← cipher
– If V(ck j, (cj, posj, pathj), σj) 6= 1: output ⊥
– else: (mj, posj, pathj) = DCPA(mk j, cj)

– gpk j+1 ← UpdateGpk(posj, pathj, gpk j)

– output : mj, gpk j+1

Update is the algorithm to update the group tree during encryption, and UpdateGpk is
to update the group tree after receiving updated path. The details of these two algorithms
are illustrated in Algorithm 2. Send(msg, addr, server) means putting message msg on the
server according to the position of addr. Get(addr, server) means getting the message from
the position addr in the server. If sending is wrong or nothing is obtained, the response of
the server is ⊥. These messages can be observed and accessed by the adversary.

Sensors 2021, 21, 1058 11 of 19

Algorithm 2 Update Group Tree

1: function Update(i, gpk j, typej, nodej)
2: if typej = 0, posj = i, otherwise posj ← prg({2, 4, 6, ..., 2n})
3: nodej+1 ← nodej, node[posj]j+1.sk $←− Z∗q , node[posj]j+1.pk← node[posj]j+1.sk · P
4: return pos,UpdatePath(gpk j, nodej+1, posj)
5: end function
6: function UpdatePath(gpk j, nodej, posj)
7: cur ← node[pos]j+1, pathj ← []
8: while current node cur is not the root do
9: the sk of cur’s parent is t(cur.sk · cur.sibling.pk), the pk of cur’s parent is its sk · P

10: pathj.push(cur.pk), let cur move to the parent of cur
11: end while
12: return pathj, cur
13: end function
14: function UpdateGpk(posj, gpk j, pathj, nodej)
15: tmp← node[posj]
16: while pathj 6= [] do
17: tmp.pk← pathj.pop(), tmp← tmp.p
18: end while
19: return tmp
20: end function

5. Security Analysis

In this section, it proves that AART satisfies the secure definitions of IND-CCA, FS,
PCS, IGA, and EGA. The sequence of current stage is j.

5.1. IND-CCA Security

Theorem 1. Let E ← (ECPA, DCPA) be a cipher, and I ← (S, V) is a MAC system. KDF :
K×Zq → K3 is modeled as a random oracle. Assuming E is IND-CPA secure and I is a secure
MAC system, if adversary A has the advantage to break IND-CCA of AART, with Qd times
decryption queries and QH time Random Oracle queries, then there exists an adversary BUNF
against I, an adversary BPRF−ODH against CDHP in PRF-ODH, and an adversary BCPA against
IND-CPA of E with the following bound:

AdvRO
CCA[A, AART] ≤QH · AdvCDHP[BPRF−ODH ,P] + AdvCPA[BCPA, E]

+ Qd AdvUNF[BUNF, I]
(5)

Proof. In each Gamej, b is randomly chosen by C, and b̂ is the output of A. Wj is the event
that in Gamej, b = b̂. The decryption query is defined in Game0 as

1. When receiving cj, σj from adversary, check if V(k0, cj, σj) = 1.
2. If it is true, reply D(k1, cj), else ⊥.

It should prove that

AdvRO
CCA[A, AART] = |Pr(W0)−

1
2
| (6)

Then, Game0 is changed into Game1. Step 1 is deleted and step 2 is changed to send
“reject” except when j = ω ∈ {1, Qd}. It can be seen that the difference between Game0 and
Game1 is the event that cω is queried. According to the definition of Unforgeability, there is

AdvUNF[BUNF, I] = |Pr(W0)− Pr(W1)|/Qd (7)

Sensors 2021, 21, 1058 12 of 19

To simplify, we will remove the decryption query in accordance with Equation (7)
from our proofs. Thus, Game1 is the IND-CPA game of AART and then is modified into
Game2.

The random oracle is recorded by MAP. Game2 is the same as Game1 except for
deleting MAP operation of step 8 from Game1. Event Z is defined such that A queries
tkQ1+1, ckQ1+1 in domain(MAP). The difference between these two games is that event Z
happens. So there is

|Pr(W2)− Pr(W1)| = Pr(Z) (8)

Using CDHP. If event Z happens, it means that A queries tkQ1+1, ckQ1+1 ∈domain
(MAP), which can be used to break CDHP and to construct BPRF−ODH . To break CDHP, one
tk, ck pair should be picked out, but BPRF−ODH is not sure which one in domain(MAP) is
the right answer. Assume there are at most Q2 times random oracle queries; the probability
to select right pair is at most Pr(Z)

Q2
. We use Game2 to construct GameCDHP. Instead of

running Init, KeyGen, Update, BPRF−ODH should query them from CPRF−ODH . The gray
parts with boxes of Game2 challenger are constructed as CPRF−ODH . Thus, from A’s view,
there is no difference between Game2 and GameCDHP. Event Z happens ⇐⇒ tkQ1 , ckQ1 ∈
domain(MAP) when BPRF−ODH finishes the game. Let Q← Q2, because the pairs may be
queried more than once, the size of domain(MAP) is no greater than Q. So, there is

AdvCDHP[BPRF−ODH ,P] ≥ Pr(Z)
Q

(9)

According to Game2, to deal with Pr(W2) means to deal with IND-CPA. So

|Pr(W2)−
1
2
| = AdvCPA[A, AART] (10)

Using CPA. GameCPA can be constructed from Game2. Let Game2 challenger be BCPA
except that after receiving message from A, BCPA should run encryption query to CCPA
such like the gray parts with no boxes in Figure 7. So there is

AdvCPA[ACPA, AART] = AdvCPA[BCPA, E] (11)

Combining Equations (6)–(11), Theorem 1 can be derived. Because CDHP in PRF-
ODH is hard and E is IND-CPA cipher, I is secure MAC system, A cannot win Game0. So
AdvCCA[A, AART] is negligible. IND-CCA of AART is satisfied.

5.2. Forward Secrecy

Theorem 2. Let KDF : K × Zq → K3 be modeled as a random oracle. When the keys of stage
j + 1 are leaked, if adversary A can break FS of AART, there exists adversary BCCA that can break
the IND-CCA of stage j with the advantage:

AdvRO
FS [A, AART] ≤ Q · AdvRO

CCA[A, AART] (12)

Proof. Assume there are Q stages. According to SKG and Update, tk j is derived from gpk j,
and session keys of stage j are generated by tk j, ck j−1. So if all random values including sk
of each user, tk j, session keys mk j, rj, ck j are compromised, and adversary A wants to get
session keys of stage j− 1, he needs to know tk j−1. If the current leaf key of each user is not
compromised, each stage can be reduced to an IND-CCA game in Theorem 1. If the current
leaf key is compromised, he can get tk j−1 when the leaf key is not updated. So he can try to
get ck j−2 to break FS. In order to get ck j−2, he should get ck j−3 recursively until the initial
stage. However, the initial stage is run through secure AKE and a trusted third-party, and
the adversary cannot break FS through this way. Assume challenger C is the group creator.
Game0 is illustrated in Figure 8.

Sensors 2021, 21, 1058 13 of 19

Game1Game2

1 : gpk0, agt0, node1, SUK ← Init(ikC , IK, EK, n) Run Init query

2 : ck0
$←− K, set MAP : K×Zq → K3, set posu

$←− {1, 3, ..., 2n− 1}
3 : Send public key tree gpk0 to A
4 : Plaintext Query from i = 1 to Q1:

5 : mi ← A

6 : tki ← KeyGen(posu, node[posu]i, gpki−1), t $←− {0, 1} Run KeyGen query

7 : mki, ri, cki ← K3

8 : MAP[cki−1, tki]← mki, ri, cki Delete

9 : ci = ECPA(mki, (mi))

10 : addri = H(t(ri · P)) · P + tki · P
11 : If t = 0: posi−1 ← posu, otherwise posi−1 ← prg{2, 4, ..., 2n}

(posi, pathi, gpki)← Update(posi−1, gpki−1, t, nodei) Run Update query

12 : σi ← S(cki, (ci, posi, pathi))

13 : Send ci, posi, pathi, σi, addri to A
14 : Challenge Query:

15 : mQ1+1,0, mQ1+1,1 ← A

16 : b $←− {0, 1}, run plaintext query for mQ1+1,b

17 : Random Oracle Query from j = 1 to Q2:

18 : ˆtkj, ˆckj ← A
19 : If (ˆtkj, ˆckj) in domain(MAP): MAP[ˆtkj, ˆckj]→ A

20 : Otherwise: MAP[ˆtkj, ˆckj]
$←− K3, MAP[ˆtkj, ˆckj]→ A

21 : b̂← A

Figure 7. Game1 Challenger and Game2 Challenger for IND-CPA.

For the ith message query, if b̂i = bi, A wins Game0. By querying each session key,
root key, and plaintext encryption from the IND-CCA challenger of Game0 in Figure 7,
Game0 can be changed into GameCCA,i for each stage i. According to Theorem 1:

AdvRO
FS [BFS,i, si] ≤ AdvRO

CCA[A, AART] (13)

There are Q times of Gamei, so Theorem 2 proves to be true. Because AdvRO
CCA[A, AART]

is negligible, AdvRO
FS [A, AART] is negligible too. Forward Secrecy of AART is satisfied.

Sensors 2021, 21, 1058 14 of 19

Game0

1 : Stage 0:

2 : gpk0, agt0, node1, SUK ← Init(ikC , IK, EK, n), send gpk0 to A, ck0 ← K
3 : Set MAP : K×Zq → K3

4 : Stage i from i = 1 to Q:

5 : tki ← KeyGen(posC , node[posC]i, gpki−1)

6 : mki, ri, cki
$←− K3

7 : MAP[cki−1, tki]← mki, ri, cki

8 : Receive mi,0, mi,1 from A, where |mi,0| = |mi,1| and mi,0, mi,1 ∈ M

9 : bi, typei
$←− {0, 1}2

10 : ci,b = ECPA(mki, mi,b)

11 : addri = H(t(ri · P)) · P + tki · P
12 : posi, pathi, gpki ← Update(posC , gpki−1, typei, nodei−1)

13 : σi ← MAC(cki, (ci,b, posi, pathi))

14 : Send ci,b, posi, pathi, σi to A
15 : Decryption Query: directly reply Dec using current stage session keys. (Actually, it would be ⊥)

16 : Key compromised phase(stage Q + 1):

17 : Send tkQ+1,ikC,ckQ, mkQ+1,rQ+1,ckQ+1 to A
18 : Decryption Query: directly reply Dec using current stage session keys. (Actually, it would be ⊥)

19 : A outputs b̂i, i from 1 to Q

Figure 8. Game0 Challenger for FS.

5.3. Post-Compromised Security

PCS is proved with Theorem 3.

Theorem 3. Let KDF : K× Zq → K3 be modeled as a random oracle. When the keys of stage j
are compromised, if in the challenge stage all leaf keys are updated, the advantage of adversary A to
break PCS of AART is equal to the advantage of A to break IND-CCA of stage j + 1, such that

AdvRO
PCS[A, AART] = AdvRO

CCA,j+1[A, AART] (14)

Proof. When other keys except for ck j of jth session are compromised, because the keys
of the next session j + 1 are based on ck j, the adversary cannot derive them. So, the only
way for the adversary is to break the IND-CCA of j + 1 session. Thus, Theorem 3 can be
reduced. When all keys are compromised, if the leaf keys adversary holds are not updated
until the Q session finished, the advantage for the adversary is 1. However, when each leaf
key of the group tree is updated, the advantage of A is reduced to the IND-CCA of Qth
session and becomes negligible.

5.4. Internal Group Anonymity

IGA of AART is proven with Theorem 4.

Theorem 4. Let KDF be modeled as random oracle, ECPA be IND-CPA cipher, and prg be secure
PRG; if there exists adversary A to break IGA, then there exists adversary B that breaks PRG:

AdvIGA[A, AART] = |Pr(b = 0)− Pr(b̂ = 0)| = AdvPRG[B, prg] (15)

Proof. Because the random leaf to be used in the anonymous update is chosen randomly
by secure PRG, if the adversary can distinguish between two anonymous users from each
other depending on their updated messages, he can break the security of PRG.

Sensors 2021, 21, 1058 15 of 19

5.5. External Group Anonymity

Theorem 5. Let H be a collision-resistant hash function and KDF be modeled as random oracle;
if adversary A can break EGA of AART, there exists adversary BPRF−ODH against DDHP in
PRF-ODH with the advantage:

AdvEGA[A, AART] ≤ 2 · AdvDDHP[BPRF−ODH ,P] (16)

Proof. Illustrated as Figure 9, GameEGA includes two parts Game0(0) and Game0(1)

simulating two groups. Challenger C plays Game0(b) with adversary A where b $←− {0, 1}.
A should distinguish which game is played. If the output of A is b̂ and b̂ = b, A win
GameEGA. For each Game0(b), a DDHP game can be constructed such that tkb is generated
from random as Game1(b). Wb

0 denotes that Game0(b) is played and Wb
1 denotes that

Game1(b) is played. According to the definition of EGA, there is

AdvEGA[A, AART] = |Pr(W0
0)− Pr(W1

0)| (17)

According to the definition of DDHP in PRF-ODH, there is

AdvDDHP[BPRF−ODH ,P] = |Pr(Wb
0)− Pr(Wb

1)| = |Pr(Wb
0)−

1
2
|

2AdvDDHP[BPRF−ODH ,P] ≥ |Pr(W0
0)− Pr(W1

0)| = AdvEGA[A, AART]
(18)

Then, Theorem 5 proves to be true. Because DDHP is hard in PRF-ODH, AdvEGA is
negligible. So EGA of AART is satisfied.

Game0(b)Game1(b)

1 : gpkb, agtb, nodeb, SUKb ← Init(ikB , IKb, EKb, n)

2 : tkb ← KeyGen(posb, node[posb], gpkb) tkb
$←− Zq

3 : ckb
$←− K

4 : mk, r, cknew = KDF(ckb, tk)
5 : Replace the root public key of gpkb as tk · P
6 : gpkb → A
7 : m ∈ M←A:

8 : addr = H(t(r · P)) · P + tk · P
9 : addr → A

10 : A outputs b̂

Figure 9. Game0 and Game1 Challengers for EGA.

6. Discussion

We further discuss the performance and some issues when running AART.
Performance. The performance comparison can be seen from Table 1. For n group

members, the number of nodes of ART is 2n. The amount of nodes in AART is 4n because of
the additional random nodes. Thus, the exponentiation times and storage cost to generate
the public tree of AART are two times as ART. Also, the height of the group tree will be
log(2n) + 1 in AART, which is increased by one compared with log(n) + 1 in ART. The
complexity and storage in update phase will retain the same relationship of the heights.
Moreover, there is an additional addr in AART. Above all, the complexity and storage of
AART are close to ART.

Sensors 2021, 21, 1058 16 of 19

Table 1. Performance comparison. n denotes the group size, each key exchange operation will access the exponentiation
one time. Each key exchange, exponentiation, and encryption will cost one storage.

#Exponentiation Times #Encryption Times #Communication Storage #Computation Storage

Sender per Other Sender per Other Sender per Other Sender per Other

sender keys
setup n n n n n n 2n 2n

ongoing 0 0 1 1 1 1 1 1

pair-wise Signal
setup n n 0 0 n n n n

ongoing n 1 n− 1 1 n 1 2n 2

ART
setup 2n log(n) 0 0 3n− 1 3n− 1 2n log(n)

ongoing log(n) log(n) 1 1 log(n) + 1 log(n) + 1 log(n) + 1 log(n) + 1

Ours
setup 4n log(2n) 0 0 5n− 1 4n + 1 4n log(2n)

ongoing log(2n) log(2n) 1 1 log(2n) + 1 log(2n) + 1 log(2n) + 1 log(2n) + 1

For the exponentiation times, it will be 4n for the sender in AART because of the tree
structure. Because of the Update algorithm, the time cost in the following stage will be
log(2n). The sender of the pair-wise Signal should update all of the channels with others.
Thus, it will cost n, worse than AART. “Sender keys” will not refresh their channels, it will
be 0.

For encryption times, only “sender keys” will encrypt the message keys for others. For
all of these protocols, there will be only one encryption operation in each stage.

For communication storage, the sender of AART should store the n− 1 long-term
public keys of others and broadcast the 4n public key pairs to others; it will be 5n− 1. Each
group member should not know the long-term public keys of other group members except
for the creator, the cost will be 4n + 1. In ART, each member should get the identity keys of
others. The ongoing cost will be log(2n) because of the outputs of the Update operation.
“Sender keys” will cost n for sending keys at the beginning, but it is only 1 ongoing since
the ciphertext for each member is the same. According to one-to-all channels, it will take
up n for both sender and others through pair-wise Signal. In the following sessions, it will
cost n to refresh all channels between the sender and receivers. The computation storage is
the addition of storage spent on exponentiation and encryption. It can be seen that the cost
of AART at the setup stage is the largest. However, because of the tree structure, AART is
more efficient in the ongoing stages compared with pair-wise Signal.

Although iMessage provides E2EE features, it cannot resist against the CCA [9] level
attacker. LINE applies E2EE, but it cannot achieve FS and PCS. Tor is not an E2EE protocol
because the last node of Tor knows the plaintext of the sender. ART is the first group
protocol applying PCS, but it cannot cope with identity protection. With the help of the
additional cost, AART can achieve FS, PCS, and anonymity at the same time compared
with other protocols. The security comparison can be seen in Table 2.

About trusted third-parties. In ART, there is no efficient way to protect the initial stage
from being attack. If the first is compromised, it means that all of the users’ long-term
secret keys can be access, and the identities of group members will be obtained at the
beginning. We follow this setting, and we initialize the first stage session key by tk1 and
ck0. The later ck j is generated by former root key tk j and ck j−1. Thus, the ck0 should be
either empty or decided by the group creator. If ck0 is empty, the FS cannot be satisfied
when tk j is compromised. The details can be found in the proof of Theorem 2.

Sensors 2021, 21, 1058 17 of 19

Table 2. Security comparison.

Apps or Protocols E2EE FS PCS EGA IGA

iMessage Yes Yes No No No

LINE Yes No No No No

Signal Yes Yes No No No

ART Yes Yes Yes No No

Tor and ToK No No No Yes Yes

KEM/DEM Yes No No Yes No

QQ and WeChat Unknown Yes No Unknown Unknown

Ours AART Yes Yes Yes Yes Yes

Anonymity when the key is compromised. From Theorems 2 and 3, AART can provide
FS and PCS. However, it should be considered whether AART will still satisfy IGA and
EGA when the key is compromised. In IGA, the adversary can be seen as the group creator,
according to Theorem 4, the adversary cannot distinguish the identities of the senders even
when he knows all of their secret keys. For the EGA adversary, if the key is compromised,
he may know the identities when the identity keys are leaked. According to Theorem 5, he
at least cannot reveal who sends the target message.

IP address. Message server may bind the IP addresses with users who access the
same addr in the server. To avoid this situation, users can visit the server through a proxy.
According to Tok, the out point of Tok should know the IP address of users. This situation
cannot be avoided. However, AART just concerns the addr in the server. If the proxy is not
controlled by the adversary and message server, or the proxy IP address is changed all the
time, the adversary cannot bind the IP of users with the same group. Thus, the adversary
cannot reveal the real relation of the group members in the real world.

Message conflict. In the real network environment, group members may send mes-
sages at the same time but generate different gpk of next stage, which will cause conflict
and break the protocol. In AART however, all users of the same group will generate the
same addr. If addr exists, it means that the updating operation is out of date and the
message should be re-encrypted again. To avoid the adversary or server taking up the
addr of the current stage, the sender can check the MAC of addr. If it is wrong, this addr
is still available for the group. When the key is compromised, AART cannot avoid the
situation that the adversary generates the same addr and legal MAC value. However, this
ability belongs to the active attacker, and we aim to prevent the adversary to become an
active attacker.

Message recovery and chosen ciphertext attack. To recover messages of a group, group
members should keep their sk of all stages along with the initial gpk1. According to gpk1
and sk1, users can generate addr1 and get the correct message matched by addr1. Thus,
users can update the correct gpk2, while they also hold sk2. That means all messages can
be put in the server and can be recovered correctly.

Keeping all sk will weaken the security of AART. For IND-CCA, the challenge can
reject the decryption query because the structure of AART is also a ratchet and can only be
pushed forward but not in the backward direction. So, users only own the secret key of
the current stage, ideally, and the former stage for the consideration of message conflict.
Besides the definitions that the adversary cannot inquire about the messages in plaintext
query, if the adversary can access old information and ask for decryption, the challenge
will reject this request because the MAC key of old information has been deleted, and
the probability that these two keys are the same is negligible. However, if users store the
past secret keys, the challenge should set up a table to combine the secret keys with old
messages. When queried by the IND-CCA adversary in this situation, the challenge should
look for the table and decrypt the message if the requested message is matched. Therefore,

Sensors 2021, 21, 1058 18 of 19

in a message recovery situation, AART cannot resist the IND-CCA adversary. If IND-CCA
is required, the message recovery should be given up.

Malicious group member. Malicious users who want to compromise keys or combine
two group trees are included in without the help of the leaked keys. For the former situation,
because of FS, PCS, IGA, and EGA, messages, as well as identities, can be protected. For the
latter, although a malicious user can replace his leaf key in group A with the root of another
group B, since the chain keys are different in two groups, members of group A cannot get
the addr of B. Therefore, the two groups cannot be combined.

About collusion attacks, in a group of n members, if there are n − 1 members in
collusion, including the creator and the rest sending a message, they can reveal the identity
of him. However, if the creator is trustworthy, collusion attackers can only know that one
member sent a message, but they cannot reveal the identity of him because they do not
know the long-term public key of the sender.

Dynamic group member and device. It is easy to add a new group member through
KeyExchange. The initial leaf key can be obtained by the creator, and then the creator
creates a three-node agt with one root, a new member leaf, and a new random leaf. Then
the creator inserts the three-node agt to the current agt to be a complete binary tree (two
leaves and their parent are thought to be one unit). The creator uses tk and three nodes
agt’s root public key to generate new agt’s root tk and public TK. Finally, he publishes the
new gpk of agt. Deleting a member is easy as well. Consider one unit as a three-node agt
including a user leaf, its sibling random leaf, and their parent node, the sibling of one unit
has the same parent node with this unit. To remove one user, the creator should replace the
parent of the unit where the target user is located with the sibling unit, use the random leaf
in the sibling unit to update the agt, and publish the new gpk to all group members.

Regarding the dynamic device, the user can share tk and ck with multiple devices,
create a subtree, and let the root of the subtree replace the user leaf. When updating agt,
the user should update this subtree and output the path except for the path in this subtree
to group members. Then, other group members will believe that they are chatting with a
multi-device user.

7. Conclusions

In this paper, we propose a multi-stage anonymous group messaging protocol called
AART, which is based on the design of ART. It can provide anonymity features including
IGA and EGA, while it retains the previous features such as FS and PCS of ART. The security
of AART is analyzed formally. Finally, we discuss the performance of AART compared
with ART, pair-wise Signal, and “sender keys” protocols as well as other problems that
may exist in AART and the related solutions to them. In our future work, the effort will be
focused on how to limit anonymity by tracing the secret keys and revealing the identity of
malicious users.

Author Contributions: Conceptualization, K.C. and J.C.; methodology, K.C.; validation, J.C. and
J.Z.; formal analysis, K.C. and J.Z.; writing—original draft preparation, K.C.; writing—review and
editing, K.C. and J.C.; supervision, J.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partly supported by the National Natural Science Foundation of China
under Grant No.61702212 and the Fundamental Research Funds for the Central Universities under
Grant No.CCNU19TS017.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 1058 19 of 19

References
1. Naor, M.; Yung, M. Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In Proceedings of the 22nd

Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 13–17 May 1990; Ortiz, H., Ed.; ACM: New York, NY,
USA, 1990; pp. 427–437.

2. Menezes, A.J.; Katz, J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA,
1996; pp. 496.

3. Cohn-Gordon, K.; Cremers, C.; Garratt, L. On capitalisewordsPost-compromise Security. In Proceedings of the 2016 IEEE 29th
Computer Security Foundations Symposium (CSF), Lisbon, Portugal, 27 June–1 July 2016; pp. 164–178.

4. Cohn-Gordon, K.; Cremers, C.; Garratt, L.; Millican, J.; Milner, K. On ends-to-ends encryption: Asynchronous group messaging
with strong security guarantees. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1802–1819.

5. Cohn-Gordon, K.; Cremers, C.; Dowling, B.; Garratt, L.; Stebila, D. A formal security analysis of the signal messaging protocol.
In Proceedings of the 2017 IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, 26–28 April 2017;
pp. 451–466.

6. Turton, W.; Scigliuzzo, D. Facebook Sues Israel’s NSO on Alleged WhatsApp Malware Hack. 2019. Available online: https://
www.bloomberg.com/news/articles/2019-10-29/facebook-sues-israel-s-nso-over-alleged-whatsapp-malware-attack (accessed
on 29 October 2019).

7. Chen, K.; Chen, J. Anonymous End to End Encryption Group Messaging Protocol Based on Asynchronous Ratchet Tree.
In International Conference on Information and Communications Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 588–605.

8. Sun, S.F.; Au, M.H.; Liu, J.K.; Yuen, T.H. Ringct 2.0: A compact accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero. In European Symposium on Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 456–474.

9. Garman, C.; Green, M.; Kaptchuk, G.; Miers, I.; Rushanan, M. Dancing on the lip of the volcano: Chosen ciphertext attacks on
apple imessage. In Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August
2016; pp. 655–672.

10. Apple Inc. iOS Security Guide. 2018. Available online: https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
(accessed on 10 September 2019).

11. LINE Inc. Encryption Whitepaper. 2016. Available online: https://scdn.line-apps.com/stf/linecorp/en/csr/line-encryption-
whitepaper-ver1.0.pdf (accessed on 12 September 2019).

12. Isobe, T.; Minematsu, K. Breaking Message Integrity of an End-to-End Encryption Scheme of LINE. In European Symposium on
Research in Computer Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 249–268.

13. Borisov, N.; Goldberg, I.; Brewer, E. Off-the-record communication, or, why not to use PGP. In Proceedings of the 2004 ACM
Workshop on Privacy in the Electronic Society, Washington, DC, USA, 28 October 2004; pp. 77–84.

14. Tencent. Weixin Privacy Protection Guidelines. 2019. Available online: https://weixin.qq.com/cgi-bin/readtemplate?lang=en&
t=weixin_agreement&s=privacy&cc=CN (accessed on 12 January 2020).

15. Tencent. Tencent Privacy Protection Platform. 2019. Available online: https://privacy.qq.com/ (accessed on 12 January 2020).
16. Dingledine, R.; Mathewson, N.; Syverson, P. Tor: The Second-Generation Onion Router; Technical Report; Naval Research Lab:

Washington, DC, USA, 2004.
17. Tok. Tok White Paper v1.1. 2020. Available online: https://www.tok.life/static/d/TOK_WP_en.pdf (accessed on 12 January

2020).
18. Emura, K.; Kanaoka, A.; Ohta, S.; Takahashi, T. Building secure and anonymous communication channel: Formal model and its

prototype implementation. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, New York, NY, USA,
24–28 March 2014; pp. 1641–1648.

19. Emura, K.; Kanaoka, A.; Ohta, S.; Takahashi, T. Establishing secure and anonymous communication channel: KEM/DEM-based
construction and its implementation. J. Inf. Secur. Appl. 2017, 34, 84–91. [CrossRef]

20. Brendel, J.; Fischlin, M.; Günther, F.; Janson, C. Prf-odh: Relations, instantiations, and impossibility results. In Annual International
Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2017; pp. 651–681.

https://www.bloomberg.com/news/articles/2019-10-29/facebook-sues-israel-s-nso-over-alleged-whatsapp-malware-attack
https://www.bloomberg.com/news/articles/2019-10-29/facebook-sues-israel-s-nso-over-alleged-whatsapp-malware-attack
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://scdn.line-apps.com/stf/linecorp/en/csr/line-encryption-whitepaper-ver1.0.pdf
https://scdn.line-apps.com/stf/linecorp/en/csr/line-encryption-whitepaper-ver1.0.pdf
https://weixin.qq.com/cgi-bin/readtemplate?lang=en&t=weixin_agreement&s=privacy&cc=CN
https://weixin.qq.com/cgi-bin/readtemplate?lang=en&t=weixin_agreement&s=privacy&cc=CN
https://privacy.qq.com/
https://www.tok.life/static/d/TOK_WP_en.pdf
http://doi.org/10.1016/j.jisa.2016.12.001

	Introduction
	Background
	Contributions

	Related Works
	Group Protocols
	iMessage
	LINE
	Signal
	ART
	WeChat and QQ

	Some Anonymous Approaches Applied in E2EE

	Security Definitions
	Algorithm Definition
	Security Model

	Our Construction
	Security Goals
	Security Assumption and Notation
	Internal Group Anonymity
	Group Setup
	Direct Updating
	Anonymous Updating

	External Group Anonymous Encryption
	One-Time Address
	Encryption and Decryption

	Security Analysis
	IND-CCA Security
	Forward Secrecy
	Post-Compromised Security
	Internal Group Anonymity
	External Group Anonymity

	Discussion
	Conclusions
	References

