
sensors

Article

A Spatiotemporal-Oriented Deep Ensemble Learning Model to
Defend Link Flooding Attacks in IoT Network

Yen-Hung Chen 1,* , Yuan-Cheng Lai 2 , Pi-Tzong Jan 3 and Ting-Yi Tsai 2

����������
�������

Citation: Chen, Y.-H.; Lai, Y.-C.;

Jan, P.-T.; Tsai, T.-Y. A

Spatiotemporal-Oriented Deep

Ensemble Learning Model to Defend

Link Flooding Attacks in IoT

Network. Sensors 2021, 21, 1027.

https://doi.org/10.3390/

s21041027

Academic Editor: Hyung Seok Kim

Received: 5 January 2021

Accepted: 29 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Management, National Taipei University of Nursing and Health Sciences,
Taipei 112, Taiwan

2 Department of Information Management, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; laiyc@cs.ntust.edu.tw (Y.-C.L.); 403402279@gapp.fju.edu.tw (T.-Y.T.)

3 Department of Applied Informatics, Fo Guang University, Yilan 262, Taiwan; ptjan@gm.fgu.edu.tw
* Correspondence: yenhung@ntunhs.edu.tw or pplong@gmail.com; Tel.: +886-2-2822-7101

Abstract: (1) Background: Link flooding attacks (LFA) are a spatiotemporal attack pattern of dis-
tributed denial-of-service (DDoS) that arranges bots to send low-speed traffic to backbone links and
paralyze servers in the target area. (2) Problem: The traditional methods to defend against LFA are
heuristic and cannot reflect the changing characteristics of LFA over time; the AI-based methods
only detect the presence of LFA without considering the spatiotemporal series attack pattern and
defense suggestion. (3) Methods: This study designs a deep ensemble learning model (Stacking-based
integrated Convolutional neural network–Long short term memory model, SCL) to defend against
LFA: (a) combining continuous network status as an input to represent “continuous/combination
attacking action” and to help CNN operation to extract features of spatiotemporal attack pattern;
(b) applying LSTM to periodically review the current evolved LFA patterns and drop the obsolete
ones to ensure decision accuracy and confidence; (c) stacking System Detector and LFA Mitigator
module instead of only one module to couple with LFA detection and mediation at the same time.
(4) Results: The simulation results show that the accuracy rate of SCL successfully blocking LFA is
92.95%, which is 60.81% higher than the traditional method. (5) Outcomes: This study demonstrates
the potential and suggested development trait of deep ensemble learning on network security.

Keywords: long short-term memory; ensemble learning; convolutional neural network;
link flooding attack

1. Introduction

Internet of Things (IoT) is becoming of crucial importance in social, corporate, and
government activities. The notorious distributed denial-of-service (DDoS) attack, however,
launches large-scale unexpected traffic to the target servers to exhaust their resources and
keep users from accessing the business IoT services. Sixty percent of service providers
in the world have experienced DDoS attacks and suffered from huge economic losses
as a consequence. With the evolution of DDoS attack technology, a new type of DDoS
attacks, called link flooding attacks (LFA), has emerged. Unlike traditional DDoS, LFA
arranges a lot of bots to send valid low-rate traffic to decoy servers and manipulate these
servers to generate enormous network traffic flooding into backbone links, which connect
between a target IoT network segment and the Internet. All servers in the target area
will then be degraded or even cut off from network connectivity [1]. Furthermore, for the
purpose of expanding the effectiveness of attacks and ensuring the indistinguishability of
attack traffic from legitimate traffic, LFA dynamically attacks different target links during
different periods, which is called a spatiotemporal series attack pattern [2]. For example,
LFA attack some set of target links for a while and attack the other set of target links
at another time–space. In summary, LFA are difficult to defend against due to the two
research problems: (1) indistinguishability of the changing LFA characteristics and (2) the
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spatiotemporal attack pattern, leading to the requirement of developing varying LFA
defending methodologies.

Defending against LFA is composed of two steps: detecting and mitigating. First, the
detecting step sets rules to observe flow or packet information and to judge whether LFA
happen. The conventional defending LFA methodology can be classified into types of flow
metric threshold [1,3–8] and traceroute packet monitoring [9,10]. The flow metric threshold
methods determine whether LFA happen according to specific flow metrics exceeding their
corresponding thresholds. On the other hand, in [9,10] the authors attempt to monitor the
traceroute packets, which are launched by the attacker to acquire the topology and attacks
on target links. The second LFA defending step is to mitigate LFA by rerouting traffic [1,10]
or blocking malicious traffic [4,5,8,11–13] in order to deter the attack, to relieve the harm,
and to recover the attacked network to a normal status. The traffic rerouting methods
reroute flows that originally travel through the target links to relieve their congestions. The
blocklist (or blacklist) works to collect suspicious flows into a blacklist and drop packets
based on this blacklist when the LFA have been detected. These LFA defending methods,
however, are heuristic in that they rely on the experience of algorithm designers and cannot
reflect the changing attack characteristics of LFA in a timely manner.

To overcome the changing attack characteristics of LFA, numerous artificial intelligence
(AI) methodologies [11,12,14–25] are introduced to defend against LFA through end-to-
end functionality (Input: network status; Output: defending action) without any manual
intervention [26–30]. The AI-based methodologies, therefore, reduce the inefficient labor
cost, subjective judgment, and self-learning regarding the changing attack characteristics
of LFA in a timely manner. The basic idea of the current AI-based methodology is to
screenshot the current network status as the input sample, then to apply convolution
and pooling operations to extract features of the LFA, and finally to decide the possibility
of the current network suffering LFA. However, these AI-based methodologies adopt
a simple deep learning architecture that can only focus on LFA detection rather than
simultaneously coupling with actions of detecting and mediating the LFA. On the other
hand, these methods only use one network status at a certain time slice and neglect the
fact that LFA are a continuous attacking action or combination of varying attacking actions
in different time–space, since LFA are gradually generated, enhanced, and dynamically
switched. Ignoring the spatiotemporal attack pattern as we mentioned at the beginning of
this study, the conventional AI-based methods inescapably suffer inaccurate LFA detection
and mitigation results.

This study designs a deep ensemble learning model, called stacking-based integrated
CNN-LSTM model (SCL), to defend against LFA. SCL adopts a two-step strategy to defend
against LFA; (1) once the System Detector located in SDN (software defined network)
controller detects an unusual flow, it then sends an alarm and amplifies the network flow
features to each link’s switch, and then (2) each link’s switch uses its own mediator module
to decide the defense strategy by using continuous network status as input sample and the
amplified network flow features. SCL develops three novel technologies to accomplish the
above two-step strategy: (a) SCL combines several continuous network status screenshots
as an input sample to represent “continuous or combination attacking action” and to help
SCL’s CNN operation to extract the features of spatiotemporal attack LFA pattern, (b) SCL
applies long short-term memory (LSTM) to store the collected samples in a short memory
queue, and periodically review the current evolved LFA patterns and drop the obsolete
ones to ensure the decision accuracy and confidence of the long-term memory, (c) stacking
System Detector and LFA Mitigator module instead of only one AI module to overcome the
issue that previous AI-based methods cannot couple with LFA detection and mediation at
the same time. The stacking methodology is just like the military operations; for example,
the System Detector acts as a scout to explore an area to gain information about network
flow features. Once the System Detector detects an unusual flow, it then raises the alarm
and sends the amplified features to frontline links. Then each link uses its own mediator to
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evaluate its link is under LFA by using current network status and the detection result as
an amplifier.

The technical reasons for SCL picking both CNN and LSTM to defend against LFA
in IoT networks are twofold. First, the conventional deep learning approaches, which
apply a single constituent learning algorithm, often encounter overfitting problems [31–33].
Overfitting is when the model is trained exactly to a particular set of data and unwittingly
extracts variation (i.e., the noise), as if that variation represents underlying population
structure; in such cases, the model may therefore fail to fit additional data or predict future
observations. Second, the conventional deep learning approaches [26–30,34–37] do not
notice that the link flooding attacks in IoT networks (e.g., LFA) is spatiotemporal. LFA
flooding contains temporal dependencies (time series attacking) and spatial characteristics
(varying attack targets due to changing IoT topology). Ignoring the spatiotemporal LFA
features would seriously affect the reliability and performance of the prediction. For
example, in [26–30] the authors focus on the spatiality of the data, which means the LFA
flowing distribution features, but they ignore the temporal dependencies of the LFA flowing
directions. On the other hand, the authors of other studies [34–37] apply the LSTM model
to address considering temporal dependencies, but they pay little attention to the spatiality
of the data. SCL, therefore, combines CNN and LSTM, extracts spatiotemporal features
of data simultaneously, and attempts to obtain better predictive performance than the
constituent learning algorithms alone.

This study is organized as follows: Section 2 reviews LFA, its countermeasures, and
deep learning including CNN and LSTM. Section 3 describes the system model and problem
statement. Section 4 first gives the concept of SCL and then describes its detailed operation.
Section 5 demonstrates the experiment results and implications. Finally, conclusions and
future works are discussed in Section 6.

2. Related Work

This chapter first introduces LFA and related works on defending against LFA. Then,
we briefly review deep learning, including CNN and LSTM.

2.1. LFA and Countermeasures

DDoS attacks against Internet servers have been around for some time. In contrast,
LFA that effectively disconnects selected Internet servers is not common, probably because
of the complexity of selective server positioning. This is the biggest difference between
DDoS and LFA. The LFA scenario is shown in Figure 1. The red links are target links,
which the adversary chooses to flood for the purpose of disconnecting from the Internet.
The yellow area is the target area, for which the adversary usually selects the servers of a
company, a region, and a country. The target links are those the adversary intends to flood,
and the servers in the target area are the real targets that the adversary intents to paralyze.
The orange nodes in the target area are public servers, by which the adversary chooses to
build an attack topology centered on the target area. The blue nodes around the target area
are decoy servers, which are used to create attack traffic. There are some bots at the outer
ring, and they are a collection of hacked network devices, which are infected by malware
so that the adversary can control them [15].
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A general attack procedure of LFA is as follows. LFA first detects the path from the
bot to the public server by sending traceroute packets and builds the topology map. Then,
the attacker selects some core links in the networks as the target links. Finally, an adversary
launches a large-scale, coordinated attack against target links. In order to optimize the
attack effects and remain undetected, LFA utilizes numerous sets of target links for the
same target area and there are different effects between the sets of target links. LFA uses
the best sets of target links most of the time and alternates to the non-best sets of target
links merely for a short period of time. For example, if the attacker arranges to attack the
best set of target links repeatedly for three minutes, and attack the second-best set of target
links in the next 30 s. This attack pattern continues the attack for the target area and shows
LFA have a spatiotemporal attack pattern [2].

This section reviews the theses of defending against LFA and organizes them into
Table 1. The previous works focusing on detecting LFA can be classified into two types:
flow metric threshold [1,3–8] and traceroute packet monitoring [9,10]. Because LFA sends
large-volume traffic, there will be some variation in traffic rate and consumed bandwidth
in links. Therefore, the category of flow metric threshold determines whether LFA happen
according to some flow metrics exceeding their corresponding thresholds. The authors
of [1] propose an attack detection and mitigation scheme called LFAD in SDN. Since the
SDN controller has a globe view, it can easily identify target links by detecting high flow
density links. By dynamically deploying a link congestion monitor at each end of the target
links to capture traffic data and send them to the SDN controller, LFAD can detect target
links whether congested or not. The study in [3] presents SDHoneyNet, an SDN-based
system that exposes fake topology to attackers. The paper finds potential bottleneck links
by computing the consumed bandwidth rate of each link. Then, SDHoneyNet deploys the
honey topology to mimic complex networks. In [4], the authors propose an attack detection
scheme, Woodpecker, upgrading several nodes to SDN switches called SDN-enabled nodes.
When the packets come into the SDN-enabled node 30 s later, the SDN-enabled node
checks the statistical information over the predefined condition threshold to locate the
attack. The research study of [5] proposes an attack detection scheme called RADAR based
on unmodified commercial off-the-shelf SDN switches. The system monitors the change in
the following: flow pattern, link utilization, the number of congestion links and the time of
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congestion to detect the attack. If these metrics change, then the system determines that
the attack has happened. In [6], the authors propose a network defense mechanism, called
LinkScope, based on the features when LFA happen such as packet loss rate, round-trip
time (RTT), and available bandwidth. The defending system runs on the end host (e.g., the
server in a target area) to capture abnormal performance degradation to detect LFA. The
study in [7] proposes a randomized security patrol to defend against LFA. By formulating
the LFA detection problems to a Stackelberg security game, the paper finds a solution to
quantify the attack behavior to detect LFA. In [8], the authors propose an attack detection
scheme, BALANCE, heuristically selecting specific nodes to upgrade to hybrid-SDN to
get traffic of all links. The system monitors the change of nine metrics, like average link
utilization, the standard deviation of bytes sent, and average bytes per packet. If these
metrics change, then the system determines that the attack has happened.

The second is to monitor the traceroute packet. To launch effective attacks on target
links, the attacker first needs to acquire the topology and usually uses the traceroute packet.
Therefore, many traceroute packets will be generated before launching the attacks, so the
category of traceroute packet monitoring observes the growth of the traceroute packets.
In [9], the authors propose an attack detection scheme that analyzes hop count to the
destination to detect LFA. Compared with legitimate users’ destination of traffic distributed
evenly, the destination of traceroute, which is caused by the adversary’s reconnoitering
topology near the target region before the attack, aggregates within several hops from the
target link. The paper therefore periodically observes accessing the target area network
traceroute packet, by using hop count to eliminate the malicious traffic before the attack
occurs. The study in [10] deploys the SDN controller to monitor ICMP (Internet Control
Message Protocol) packets periodically to build the traceroute profile database, due to
traceroute using ICMP packets, to identify the potential target links that can be attacked.
Furthermore, if the number of traceroute packets is over the threshold, the system considers
that there is an attack.

In tradition, detecting LFA can be classified into two types mentioned above. There
are two studies that use deep learning methods to detect LFA [11,12]. There are normal
traffic and anomalous traffic when the attack happens, so this category of deep learning
method classifies two types of traffic by artificial neural networks. In [11], the authors
suggest an LFA attack detection scheme for SDN called Cyberpulse that leverages LFA
traffic flow statistics to train the ANN module and then classifies them as normal and
abnormal flows. The authors of [12] propose an attack detection scheme for SDN called
LF-Shield that also utilizes LFA traffic statistics to train the CNN module and then classifies
them as normal and abnormal flows.

The previous work focusing on mitigating LFA can be classified into two types: traffic
rerouting [1,10] and blacklist [4,5,8,11–13]. When LFA occurs, the target links are congested
continuously. Therefore, the category of traffic rerouting reroutes flows which originally
travel through the target links to relieve their congestions. In [1], the authors use a multiple
path rerouting approach to mitigate the effect of LFA congesting many target links at the
same time. The approach chooses several optional paths and determines how much traffic
should be routed to the optional links. After rerouting, the attacker needs to find a new
target link. In this way, the LFA bots can be found, and then the malicious traffic is dropped
from the LFA bots. The study in [3] deploys moving target defense (MTD) on the SDN
controller. Once the suspicious attack is found, the system sets rules of the SDN switches
to randomize the routes for ICMP packets, which mutates the routing path to make it
difficult for the adversary to launch the attacks. Simultaneously, when the system detects
the congested link, the route mutation mechanism will also be activated.

The category of blacklist involves collecting suspicious flows into a blacklist and drop
packets based on this blacklist when the LFA have been detected. In [4], once the LFA are
detected, the centralized traffic engineering is activated. The traffic engineer broadcasts
the “block route message” to all routers. In [5], the authors identify flow as abnormal, if
flow rates of statistic changes correspond to those of aggregated flows delivered on victim
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links. Then, the system drops the traffic based on a blacklist. To avoid falsely dropping
the normal traffic, the system uses max-min fairness packet dropping, which is when most
packets matching the features of the attack traffic are suspected and can be regarded as
the attack traffic if the number exceeds the throttle at each OpenFlow port. The study
in [8] puts suspicious source IP into the bot blacklist, randomly picks 20% of bots from the
blacklist, and discards the packets from them. After classifying benign and malicious traffic,
the authors in [11] forward the consequence to the flood light controller. The controller
uses the null routing method to mitigate LFA, which means if the packets match a null
route, it will be discarded. The authors in [12] drop packets based on the blacklist, and
use a max-min fair bandwidth-limiting mechanism to limit the bandwidths. The study
in [13] manages the throughput via the tail drop technique, which means if the aggregate
flow rate reaches capacity, the gateway buffers the excess data in a queue, waiting to be
transmitted. When the queue is filled to its maximum capacity, the newly arriving flows
will be dropped until there is enough room to accept incoming flows and if the network is
congested, fewer packets will be sent per RTT.

Numerous artificial intelligence (AI) methodologies [11,12,14–25] are introduced to
defend against LFA without any manual intervention [26–30]. The basic idea of the current
AI-based methodology is to screenshot the current network status as the input sample,
then to apply convolution and pooling operations to extract features of the LFA, and finally
to decide the possibility of the current network suffering LFA. However, these AI-based
methods adopt a simple deep learning architecture that can only focus on LFA detection
rather than simultaneously coupling with actions of detecting and mediating the LFA. On
the other hand, they only use one network status at a certain time slice and neglect the fact
that LFA are a continuous attacking action or combination of varying attacking actions,
since LFA are gradually generated, enhanced, and dynamically switched.

Table 1. LFA detection and mitigation comparison table.

No. SDN

Detection Mitigation

Detect Target/All
Links

Flow/Packet
Based Method Time

Series Method Related to
* of TLs

[1] Y Target Flow Measure TL U N 1. Rerouting
2. Drop malicious flows N

[3] Y All Flow Consumed Bandwidth Rate > T N NA N

[4] Y All Flow Traffic rate > T N Broadcast block route
message to all routers N

[5] Y All Flow Rate of link U changes > T N
1. Max-min fairness

packet dropping
2. Drop flows based BL

N

[6] N All Flow Available Bandwidth > T N NA N

[7] N All Packet Randomized Traffic rate > T N NA N

[8] Y All Packet Traffic rate > T N Random dropping N

[9] N All Packet Monitor the traceroute packet N NA N

[10] Y All Packet Monitor the traceroute packet N MTD N

[11] Y All Flow ANN N Null routing N

[12] Y All Flow CNN N
1. Drop packets based BL

2. Max-min fairness
packet dropping

N

[13] N NA NA NA N Tail drop N

[26–30] Y All Flow Stacking based Deep
Learning method Y NA N

* TL: target link, U: utilization, T: threshold, MTD: moving target defense, BL: blacklist, TE: traffic engineering, ANN: artificial
neural network.
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2.2. Deep Learning

Deep learning has been widely applied in many domains including predicting pas-
senger volume for urban rail systems [34], Cardiac Arrhythmia disease classification [35],
and malware analysis [36,37]. The study in [34] applies a long short-term memory model
(LSTM) to forecast short-term outbound passenger volume at urban rail stations. In [35],
the authors adjust LSTM by appending the functionalities of the Principal Components
Analysis and full-connected layers to classify the Cardiac Arrhythmia Disease in order to
solve the overfitting problem. Two other studies [36,37] both apply LSTM to analyze the
sequence of machine codes in order to detect the malware.

This section briefly introduces the core concept of two DNN models, CNN and LSTM
used in this study [16–25].

2.2.1. CNN

CNN is usually used in image processing which includes detecting objects, classifying
images, and recognizing objects by performing feature extraction and mapping through
fast training. Rather than analyzing a whole image at once to find certain features, CNN
can be more effective to look at smaller parts of the image and has a high prediction
accuracy. The main purpose of CNN is to reduce the images into a form that is easier to
operate, without losing features that are critical for getting a good prediction. CNN mainly
includes three layers, namely the convolution layer, pooling layer, and fully connected
layer. Figure 2 shows the architecture of CNN where the final step is the fully connected
layer. The order of convolution and pooling layers and the number of convolution and
pooling layers are decided by the designer, which means there are many combinations
of CNN modules. The input of CNN could be two-dimensional, three-dimensional, and
four-dimensional, and inputs are data. In the convolutional layer, the input is processed
by a moving function called a filter, which selects the feature in the image. In the pooling
layer, the input is sampled to a smaller one. Then, the fully connected layer classifies the
output into one category [16]. The elements of CNN are described as follows.
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A. Convolutional layer

The convolutional layer acts as a kernel role of the CNN and the objective of the layer
is to extract high-level features, such as edges, from the input. The parameters of the
convolutional layer comprise learnable filters. These filters pass through the full input area
by picking up a small region of the input at a time. The filter values are multiplied with the
corresponding pixel values and the sum of the products is computed as the output for that
region. After the filter traverses the whole image space, one feature map will be generated
and then the results are passed into a nonlinear activation function. The length of the filter
movement step, called stride, can be adjusted by the designer. There are many commonly
used activation functions, such as sigmoid, rectified linear unit (ReLU), and hyperbolic
tangent function (tanh). If several filters are used, several feature maps are obtained, which
compose the output of the convolutional layer. Since the full input uses the same filter
at each time, through sharing the weight of characteristics in the filter which generates a
feature map, the convolutional layer can extract the characteristics of input and can use
fewer parameters to reduce the model’s complexity [17].

B. Pooling layer

The aim of the pooling layer is to reduce the dimensions and increase the robustness
of feature extraction for decreasing the computational power required on parsing the data.
The typical pooling operations are average pooling and max pooling, which are designed
to pick up the average value or maximum value, respectively, from the region covered
by the filter, which, as with the convolutional layer, is a small region traverse through
the entire image area. Likewise, the length of the filter movement step, called stride, can
be adjusted by the designer. Max pooling can play the role of de-noising while average
pooling is only for dimension reduction. Therefore, in general, the effect of max pooling is
better than that of average pooling [18,19].

C. Fully Connected layer

The purpose of the fully connected layer is to take the output of the convolutional layer
or pooling layer and use them to output a one-dimensional array. The array contains the
probability of each label option. The total probability of all options is one. This probability
is used to provide a basis for selection. The results of convolution/pooling layers are
flattened into a one-dimensional vector of values where each value represents a probability
that a certain feature pertains to a label. One or more fully connected layers are appended
at the end of the CNN which takes all neurons from the previous layer and connects it
to all neurons in the current layer. Each neuron obtains weights that prioritizes the most
suitable label [20].

2.2.2. LSTM

LSTM is a model of DNN and evolved from the Recurrent Neural Network (RNN). In
contrast to other DNN architectures, the inputs and outputs are one fixed vector; therefore,
RNN is able to input and output sequences of vectors, which is why RNN is adept at
solving time series problems. The reason to develop LSTM is that LSTM has the superiority
of conquering the vanishing and exploding gradient problems that RNN suffers from. This
is because LSTM improves RNN with memory cells, a stored unit, simplifying the learning
of temporal relationships over long time scales [21]. LSTM has a function of removing and
adding information from a memory cell, which is controlled by structures called gates. The
role of gates is to decide how much of the overall proportion of information to let through.
Gates are composed of a sigmoid neural net layer and a pointwise multiplication operation.
By outputting value between zero to one, the sigmoid neural net layer regulates the degree
of information that should be let through in each component. If the value of the sigmoid
neural net layer is zero, it means let nothing through. If the value of the sigmoid neural net
layer is one, it means let everything through. As shown in Figure 3, the green square is
a network, and LSTM has multiple flows of this network. LSTM commonly consists of a
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memory cell, forget gate, input gate, and output gate to control how to update the value by
contrasting the inner memory when new information arrives.
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A. Memory cell

A memory cell is a key to LSTM which stores a computing value (or state) for a defined
period. It is the horizontal line running through the top of Figure 3. Removing and adding
information from a memory cell is regulated by gates.

B. Forget gate

The forget gate regulates the proportion of an input value that stays in the memory
cell, which means to determine what information we are going to throw away from the
memory cell. Forget gate activation function is a sigmoid layer. In Figure 3, input Xt, which
is also the output of the last cycle, goes through a sigmoid layer and outputs a number
between zero to one for every number in the memory cell Ct−1. A value of zero stands for
totally remember the number while a value of one stands for totally forgetting the number.

C. Input gate

The input gate regulates the proportion of an input value that is allowed to flow into
the memory cell, which means to determine what new information we are going to store
in the memory cell. As illustrated in Figure 3, there are two parts in the input gate. First,
a sigmoid layer called the input gate layer determines which values LSTM will update.
Next, a tanh layer creates a vector of new candidate values, Ct’, that could be added to the
memory cell. Then, we will combine these two values to create an updated value to the
memory cell. Third, LSTM will update the old memory cell, Ct−1, into the new memory
cell Ct. We multiply the old state by f t, forgetting the things we decided to forget earlier in
the forget gate, and then we add it × Ct−1. These are the new candidate values, scaled by
the degree to which we decided to update every state value.
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D. Output gate

The Output gate regulates how much of the value in the cell is used to calculate the
output of the LSTM unit, which means to determine what we are going to output, as
illustrated in Figure 2. First, we run a sigmoid layer which determines what parts of the
memory cell we are going to output. Then, we put the memory cell through tanh (to push
the values to be between minus one and one) and multiply the value by the output of the
sigmoid gate, Ot, and then output ht. Therefore, LSTM only outputs the parts we decided
to output.

3. Problem Statement

Table 3 summarizes the notations used in this study and their corresponding meanings
while Figure 4 illustrates the overall system model architecture. Assume the input of SCL
is composed of z nodes. Therefore, the dimension of network capacity matric, C, is z × z,
where the element ci,j is the link capacity from node i to j. The network traffic matric at
time t, denoted as St, also has the dimeson of z × z, where the element si,j is the amount
of traffic from node i to j at time t. SDN controller gets the total data of the Internet from
the switch. We run SCL in the SDN controller after getting the data of switch and then we
send computing results to the switch.
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First, the system gets the information of NC, NSt, and TA, and then SCL detects
whether LFA happen and the target area is given; all links that get into the target area are
target links. If SCL detects that LFA happen, SCL will determine dropping probabilities in
some links and drop some packets according to these values to mitigate the congestions in
these links. Finally, the output of our problem is dropping probabilities in each target link.
Our objective is to maximize MA, which is the accuracy of deciding whether the system
should drop packets or not. Therefore, the problem statement is defined as below.

Given:C, TA, M, maxt, mint, K, ε, and D
Output: dropping probabilities in target links at time t: Pt

Objective: maximize MAt
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Table 2. Used notations.

Notations Descriptions Property

C

Network capacity matrix

C =

 c1,1 . . . c1,z
...

. . .
...

cz,1 . . . cz,z

,

where the ci,j is the link capacity from node i to j

Input

TA Target area Input

M Number of target links in the topology Input

maxt Maximum threshold of link utilization at time t Input

mint Minimum threshold of link utilization at time t Input

K Number of continuous inputs for deep learning Input

ε
When detection accuracy less than ε for several times, the training ends. Specifically,(

DAt − DAt−1 ≤ ε
)

and
(

DAt−1 − DAt−2 ≤ ε
)

and . . .
(

DAt−D+1 − DAt−D ≤ ε
)
,

the training of System Detector ends
Input

D The accumulated times reaches D when (DAt − DAt−1 ≤ ε), the training of System Detector ends Input

St

Network traffic matrix

St =


st

1,1 . . . st
1,z

...
. . .

...
st

z,1 . . . st
z,z

,

where the si,j is the amount of traffic from node i to j at time t

Variable

Ut

Network utilization matrix

Ut =


Ut

1,1 . . . Ut
1,z

...
. . .

...
Ut

z,1 . . . Ut
z,z

,

where the Ui,j is the link utilization from node i to j. Specifically, Ui,j =
si,j

ci,j

Variable

Bt The vector of target links under attack or not at time t. Specifically, Bt =
[
bt

1, bt
2, bt

3, . . . , bt
M
]
, where bt

i is
under attack or not in the i-th target link at time t Variable

Nt Number of attacked target links at time t. The total number of attacked target links in Bt Variable

PATt
The probability of attacked target links at time t. Specifically, PATt =

Nt

M
Variable

DTPt The number of true positive in detection, which means the number of identified attacks
and actual attacks Variable

DTNt The number of true negative in detection, which means the number of identified non-attacks
and actual non-attacks Variable

DFPt The number of false positive in detection, which means the number of identified attacks
but actual non-attacks Variable

DFNt The number of false negative in detection, which means the number of identified non-attacks
but actual attacks Variable

DAt
Detection accuracy of system under attack or not, which is the performance of System Detector.

Specifically, DAt =
DTPt + DTNt

DTPt + DFPt + DFNt + DTNt

Variable

MTPt The number of true positive in mitigation, which means the number of flows should be blocked and
actually be blocked Variable

MTNt The number of true negative in mitigation, which means the number of flows should not be blocked
and actually not be blocked Variable

MFPt The number of false positive in mitigation, which means the number of flows should be blocked but
actually not be blocked Variable
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Table 3. Used notations.

Notations Descriptions Property

MFNt The number of false negative in mitigation, which means the number of flows should not be blocked
but actually be blocked Variable

MAt
Mitigation accuracy of successfully blocking LFA, which is the performance of LFA Mitigator module.

Specifically, MAt =
MTPt + MTNt

MTPt + MFPt + MFNt + MTNt

Variable

NT Number of training times Variable

ET The time that deep learning spends in each training time Variable

OTT The overall training time in deep learning. Specifically, OTT = NT × ET Variable

A2O The measure of the relationship between DAt and OTT. Specifically, A2O = (DAt)
2/OTT Variable

FRR
False rejection rate of system under attack or not, which means it should be recognized as non-attack,

but it is determine as an attack. Specifically, FRR =
DFNt

DTPt + DFNt

Variable

FAR
False acceptance rate of system under attack or not, which means it should be recognized as an attack,

but it is determine as non-attack. Specifically, FAR =
DFPt

DFPt + DTNt

Variable

Pt The vector of dropping probability of target links at time t. Specifically, Pt =
[
pt

1, pt
2, pt

3, . . . , pt
M
]
,

where pt
i is the dropping probability in the i-th target link at time t

Output

4. Stacking-Based CNN and STM(SCL)

In this chapter, we first show the concept and the overall architecture of SCL, and then
explain the embedded modules in detail.

4.1. SCL Overall Architecture

SCL stacks two DNN models, CNN and LSTM, to defend against LFA. SCL can learn
how to detect LFA automatically and alleviate attacks according to the ratio of attacked
target links. SCL exploits the CNN model because it can extract features and reduce
dimensions, so it can be trained in a short time. SCL uses the LSTM model, which has a
time–space concept, so it is very suitable for detecting LFA, which has a spatiotemporal
attack pattern. Finally, SCL mitigates LFA based on the ratio of attacked target links because
the number of attacked target links is related to the seriousness under attack.

The whole SCL framework is shown in Figure 5a. SCL applies ensemble learning
architecture which consists of two AI layers: the first layer is the System Detector module
and the second one is the LFA Mitigator module. System Detector is responsible for
detecting if the system is under attack and the LFA Mitigator module is designed to
mitigate the LFA when the module determines the attack has reached the level to be
mitigated. Both two modules are composed of CNN and LSTM algorithms. Once the
LFA Mitigator module finds the network incident happening, the LFA Mitigator module
will locate the attack and heuristically calculate the packet dropping rate according to the
seriousness of the attack after determining that the attack has upgraded to network attack
from network incident. The strengths and the novelty of SCL in adopting two layers of
AI modules can obtain better predictive performance than could be obtained from any of
the constituent learning algorithms alone. Just like the military operations, the System
Detector plays a role of scout to explore an area to gain information about network flow
features. Once the System Detector detects an unusual flow, it then raises the alarm by
amplifying the network flow features. Then, each link uses its own mediator to evaluate its
link is under LFA by using current network status and the detection result as an amplifier.



Sensors 2021, 21, 1027 13 of 29

Sensors 2021, 21, x FOR PEER REVIEW 13 of 29 
 

 

the link utilization is normal. Therefore, SCL needs LSTM, which has a time series concept, 

to predict which period is most likely for the attack to happen based on the flow pattern. 

On the other hand, the reason why LFA Mitigator module uses LSTM is that LFA dynam-

ically change a subset of target links to attack, meaning that the attack keeps taking turns 

to attack different target links in different periods. Therefore, we utilize historic time-or-

der data, as shown in Figure 5b, to predict the next period in which the attacker will attack 

and the corresponding set of target links, which is very suitable for LSTM. 

 

(a) Design of SCL 

Figure 5. Cont.



Sensors 2021, 21, 1027 14 of 29Sensors 2021, 21, x FOR PEER REVIEW 14 of 29 
 

 

 

(b) Input Screenshot st 

Figure 5. Architecture of CNN-LSTM (SCL). 

4.2. System Detector Module 

System Detector module inputs St, which is traffic status at time t, and the final out-

put is At, which is system is under attack or not. The architecture of System Detector mod-

ule is shown in Figure 6. First, System Detector module screenshots each time of link traf-

fic St, and normalizes St to Ut through 𝑠𝑧,𝑧
𝑡 , each element in St, divided by 𝑐𝑧,𝑧, each ele-

ment in C, to calculate 𝑢𝑧,𝑧
𝑡 , each element in Ut. Then, in the third step, System Detector 

module combines consecutive K sheets of Ut into a three-dimensional array according to 

time, which is 𝑢𝑧,𝑧,𝐾
𝑡 , and it is a sample of combination LFA for the following fourth step 

of CNN. The reason for the third step is that combining consecutive input as a three-di-

mensional array makes the input a chronological relationship. Therefore, SCL can predict 

the flow pattern according to the time sequence. The fourth step is CNN, which is com-

posed of convolution, pooling, and fully connected layers, and we use ReLU as our acti-

vation function in CNN; the reason why we use ReLU as our activation function will be 

explained in Section 5.2.4. After convolution and pooling layers remove unnecessary noise 

and reduce the array dimensions, the fully connected layer flattens the sample into a one-

dimensional array; the array contains the probability of each label option, and the array is 

the input of the following fifth step of LSTM. Finally, when the gap of DA (Detection Ac-

curacy of system under attack) with last time is less than a specific value ε for D times, the 

training of System Detector module ends. 

The input sequence of CNN is Ut-K+1, Ut−2, Ut−1, Ut at the first time, and the input se-

quence of the next time is Ut-K+2, Ut−1, Ut, Ut+1. That means SCL removes the first position, 

Ut-K+1, adds the new one, Ut+1, and the second, third, and fourth positions overlap with the 

previous time. For example, if CNN inputs the first, second, third, and fourth second of 

Ut for the first time, the input of next time will be the second, third, fourth, and fifth second 

of Ut. As for output, when CNN input Ut-K+1, Ut−2, Ut−1, Ut, the output will be At. That is, the 

input of continual four seconds of network traffic changing plot corresponds to the output 

of the last second that the action decision should be taken in. For example, if CNN inputs 

the first, second, third and fourth seconds, the output will be the prediction of system 

under attack or not of the fourth second. 

Figure 5. Architecture of CNN-LSTM (SCL).

Both System Detector module and LFA Mitigator module use deep learning, that is,
they are composed of CNN and LSTM. The reason why both of these two modules use
CNN is because the parameters in the sample are still very large and cannot converge.
Therefore, CNN is needed to remove unnecessary noise data and reduce the dimensions to
increase the operation speed in the following step. System Detector utilizes LSTM because
when LFA launch an attack in a short time, there are a lot of periods during which the
link utilization is normal. Therefore, SCL needs LSTM, which has a time series concept, to
predict which period is most likely for the attack to happen based on the flow pattern. On
the other hand, the reason why LFA Mitigator module uses LSTM is that LFA dynamically
change a subset of target links to attack, meaning that the attack keeps taking turns to
attack different target links in different periods. Therefore, we utilize historic time-order
data, as shown in Figure 5b, to predict the next period in which the attacker will attack and
the corresponding set of target links, which is very suitable for LSTM.

4.2. System Detector Module

System Detector module inputs St, which is traffic status at time t, and the final output
is At, which is system is under attack or not. The architecture of System Detector module is
shown in Figure 6. First, System Detector module screenshots each time of link traffic St,
and normalizes St to Ut through st

z,z, each element in St, divided by cz,z, each element in
C, to calculate ut

z,z, each element in Ut. Then, in the third step, System Detector module
combines consecutive K sheets of Ut into a three-dimensional array according to time,
which is ut

z,z,K, and it is a sample of combination LFA for the following fourth step of CNN.
The reason for the third step is that combining consecutive input as a three-dimensional
array makes the input a chronological relationship. Therefore, SCL can predict the flow
pattern according to the time sequence. The fourth step is CNN, which is composed of
convolution, pooling, and fully connected layers, and we use ReLU as our activation
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function in CNN; the reason why we use ReLU as our activation function will be explained
in Section 5.2.4. After convolution and pooling layers remove unnecessary noise and reduce
the array dimensions, the fully connected layer flattens the sample into a one-dimensional
array; the array contains the probability of each label option, and the array is the input
of the following fifth step of LSTM. Finally, when the gap of DA (Detection Accuracy of
system under attack) with last time is less than a specific value ε for D times, the training
of System Detector module ends.
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Figure 6. Architecture of System Detector module.

The input sequence of CNN is Ut-K+1, Ut−2, Ut−1, Ut at the first time, and the input
sequence of the next time is Ut-K+2, Ut−1, Ut, Ut+1. That means SCL removes the first
position, Ut-K+1, adds the new one, Ut+1, and the second, third, and fourth positions
overlap with the previous time. For example, if CNN inputs the first, second, third, and
fourth second of Ut for the first time, the input of next time will be the second, third, fourth,
and fifth second of Ut. As for output, when CNN input Ut-K+1, Ut−2, Ut−1, Ut, the output
will be At. That is, the input of continual four seconds of network traffic changing plot
corresponds to the output of the last second that the action decision should be taken in.
For example, if CNN inputs the first, second, third and fourth seconds, the output will be
the prediction of system under attack or not of the fourth second.

4.3. LFA Mitigator Module

LFA Mitigator module inputs St, and the final output is Pt which denotes the dropping
probability of each target link. The architecture of LFA Mitigator module is shown in
Figure 7. In mitigating LFA, we must first know where the target links are. In SCL, similar
to the previous work, we use a simple approach to select the border links in the target
area as target links. Note there are M LFA Mitigator modules where M is the number
of target links because one LFA Mitigator module exists for each target link. The main
reason is that each target link has two prediction results, attack or not attack. In the
SCL method, it is more accurate to predict by single-choice questions, which is M LFA
Mitigator modules and each of them outputs one bit. If SCL predicts by multiple-choice
questions, which is only one LFA Mitigator module, and outputs eight bits, it will be
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not that accurate. Then the i-th LFA Mitigator outputs one bit to indicate whether its
corresponding target link is under attack or not. That is, after the deep learning methods
are finished, a vector Bt =

[
bt

1, bt
2, bt

3, . . . , bt
M
]

is obtained. Finally, LFA Mitigator obtains
this vector and understands the seriousness of the attack, and calculates the vector Pt

which denotes the dropping probability of each target link.
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Consequently, the more target links are under attack, the more serious the attack is,
and, thus, the higher the probability of dropping the packets. Therefore, LFA Mitigator
module integrates information of whether all target links are under attack or not to calculate
the probability of attacked target links, PATt, which is the number of attacked target links,
Nt, divided by the number of target links, M. We design a mechanism to determine the
probability of packets dropping, Pt, based on the maxt and mint, which are maximum and
minimum thresholds of link utilization at time t. The lower maxt and mint are, the earlier
the system begins to drop packets, which means less link utilization. Consequently, maxt

and mint are multiplied by
(
1 − PATt) and then new thresholds are sent to switch in the

target links. The switch in each target link will compute Pt based on maxt and mint. Maxt

and mint and Pt are linear relationships, which means maxt corresponds to Pt equal to
one and maxt corresponds to Pt equal to zero. When the link utilization exceeds maxt the
system drops all packets and when the link utilization is below mint, the system does not
drop packets. Moreover, when the utilization is between maxt and mint, the Pt is calculated
based on linear relationship. The formula of Pt is given in Equation (1).

Pt =
Ut

z,z − maxt

maxt − mint , Pt [0, 1] (1)

5. Evaluation

The detailed environment settings and the experiment results are demonstrated in the
following section.

5.1. Scenario and Parameter Setting

In this section, we will explain how to set up the scenarios and parameters, all
experiment scenarios, evaluate the detection performance metrics, and the methods to
be compared.

5.1.1. Scenarios Setting

The topology of this experiment contains 80 switches and varying devices including
bots as shown in Figure 8. The pink part on the graph is the target area we are given, which
indicates that the devices in this area shall be protected. The attack scenario parameter
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settings are shown in Table 4. All links that get into the target area are target links that
are shown in blue lines of link in Figure 8. Each link capacity is 60 Mbps, and the routing
method we use is the shortest path. As for normal traffic, we generate 1 to 50 flows each
time, and source and destination are random nodes in the topology. The flow traffic is 1 to
60 Mbps, the time of each normal traffic is randomly decided, and we launch normal traffic
every one second.
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Table 4. Default values for simulation.

Parameter Default Value

Number of nodes 80

The way to decide target links All links get into TA

Link capacity 60 Mbps

Routing method Shortest path

Normal Default Value

Number of traffic 1–50

Source and destination Node -> Node

Flow traffic 1–60 Mbps

Lasted time All the time

Launch interval Random

Attack Default Value

Number of bots 10

Source and destination Bot -> Decoy server

Flow traffic 4 Kbps per flow

Launch interval 3 min

Considering that the current learning/testing dataset has an imbalance in class distri-
bution, the performance and the comparison between methods will be miss-interpreted.
For example, if 99% of samples in a dataset belong to one class, the testing model will
always achieve an accuracy of 99%. This study randomly generates LFA attacking and nor-
mal traffic (50% vs. 50%) based on a fuzzy testing methodology to ensure all experiments
in this section have sufficient samples/scenarios regarding the LFA attacking and normal
traffic for training and testing. There are 10 bots randomly dispersed outside the pink area.
All bots randomly launch attacks by sending flows that go through the blue links, which
are the target links, to get into the pink area and go out of the pink area which is in order to
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paralyze the service in the target area. Each bot randomly generates multiple flows that are
capable of paralyzing the target links, and each flow contains 4 kbps of attack traffic.

5.1.2. SCL Parameter Setting

The details of System Detector module and LFA Mitigator module and CNN parameter
setting are demonstrated in Tables 5 and 6. In this case study, the two-dimensional network
capacity of C is five hops away from target links (75 × 75) and K is four, which means every
continuous four Ut are combined as the input of CNN. Therefore, the dimension of CNN
input is 75 × 75 × 4. The final output of CNN is a one-dimensional array (1 × 512). In this
experiment of CNN part, SCL adopts three convolution layers and one pooling layer. The
reason for setting parameters in the above will be explained in Sections 5.2 and 5.3.

Table 5. SCL parameter setting.

Parameter Default Value

Network capacity matrix (C) Five-hop (75 × 75)

Target area (TA) Area in the
Figure 8

Number of target links (M) 6

Maximum thresholds of link utilization at time t (maxt) 0.6

Minimum thresholds of link utilization at time t (mint) 0.3

Number of continuous inputs for deep learning (K) 4

When detection accuracy less than ε for several times, the training ends (ε) 002

The accumulated times which (DAt − DAt−1 ≤ ε), the training of System
Detector ends (D)

15

Table 6. CNN parameter setting.

Parameter Default Value

1st Convolution Layer 32 filters (shape 8 × 8 × 4), with stride = 4 and ReLU
(Rectified Linear Unit) function.

2nd Convolution Layer 64 filters (shape 4 × 4 × 32), with stride = 2 and ReLU function

3rd Convolution Layer 64 filters (shape 3 × 3 × 64), with stride = 2 and ReLU function

Pooling Layer Max pool function, with stride = 2

Fully Connected layer Flatten and transform to one-dimension vector (1 × 512)

Convolutions order Convolution -> Pooling -> Convolution -> Convolution ->
Fully Connected

5.1.3. Performance Evaluation Metric

We use four metrics for performance evaluation, they are detection accuracy (DAt),
mitigation accuracy (MAt), overall training time (OTT), the relationship between DAt and
OTT (A2O), FRR (False Acceptance Rate), and FAR (False Acceptance Rate). First, DAt is
detection accuracy, which is used to evaluate System Detector, and its calculation method
is given in Equation (2). Second, MAt is mitigation accuracy, which is used to evaluate LFA
Mitigator, and its calculation method is given in Equation (3).

DAt =
DTPt + DTNt

DTPt + DFPt + DFNt + DTNt (2)

MAt =
MTPt + MTNt

MTPt + MFPt + MFNt + MTNt (3)
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Third, OTT is the measure of the overall training time in the deep learning method,
which is a factor of evaluating the best deep learning parameter in Section 5.2 architecture
investigation. The System Detector ends when the gap of DAt with last time is less than
0.2% for 15 times, so that DAt corresponds to the number of training times, NT; we calculate
how many hours of deep learning is spent in each training time, which is ET. OTT is the
value of NT multiplied by ET. The formula of OTT is given in Equation (4).

OTT = NT × ET (4)
Fourth, A2O is the measure of the relationship between DAt and OTT to select the

best deep learning parameter in Section 5.2 architecture investigation. The formula of A2O
is given in Equation (5). A2O is the value of DAt squared divided by OTT. Because DAt

is the accuracy of determining if system under attack or not, which is the most important
factor to determine how accurately to drop packets in LFA Mitigator, therefore, DAt will be
squared to determine the best parameter for deep learning architecture investigation. OTT
is the overall training time of a deep learning system, which is also an important factor to
determine the efficiency of the deep learning method. Furthermore, the more the OTT is,
the more cost the system spends. Therefore, DAt squared is divided by OTT.

A2O = (DAt)
2/OTT. (5)

Finally, FRR and FAR are used to evaluate System Detector, and their calculation
methods are given in Equations (6) and (7).

FRR =
DFNt

DTPt + DFNt (6)

FAR =
DFPt

DFPt + DTNt (7)

5.2. Architecture Investigation

In this section, we will explain how to set up the architecture of CNN, the experiment
of the number of convolution layers, the number of pooling layers, the order of convolution
layers and pooling layers, and the activation function to be compared are described.

5.2.1. The Effects of the Number of Convolution Layers

The system ends when the gap of DAt with last time is less than 0.2% for 15 times. We
calculate the average of the last five times, which are (DAt−4, DAt−3, DAt−2, DAt−1, DAt),
as the final DAt. Figure 9a shows the comparison of the number of convolution layers for
DAt and OTT. When the number of convolution layers is ranging from zero to five, DAt

and OTT are irregular. The reason is deep learning has its way of training.
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DAt of one convolution layers is 94.38%, which is the highest, but OTT of one con-
volution layer is not the lowest. Thus, we need a comparison of A2O to choose the best
parameter. Figure 9b shows the comparison of the number of convolution layers for A2O.
When convolution layers equal to three, A2O is higher than any other number of convolu-
tion layers, which shows that three convolution layers have better performance. Therefore,
we chose three layers of convolution.

Figure 10 is FRR and FAR of selected parameters for three Convolution layers. As
time goes by, FRR and FAR become lower and lower, and finally, they are 8.01% and
2.20%, respectively. The other sections do not show this figure again, since the results are
the same.
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Figure 10. FRR and FAR of three convolution layers.

5.2.2. The Effects of the Number of Pooling Layers

Figure 11a shows the comparison of the number of pooling layers for DAt and OTT.
When the number of pooling layers is ranging from zero to five, DAt and OTT are irregular.
Figure 11b shows the comparison of the number of pooling layers for A2O. When pooling
layers equal to one, A2O is higher than any other number of pooling layers. One layer of
pooling is the highest A2O, so we chose one layer of pooling.
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5.2.3. The Effects of Different Orders of Pooling in CNN

Figure 12a shows the comparison of different orders of pooling in CNN for DAt and
OTT. The four types of orders are shown in the below. In the order type of pooling in four
types, DAt and OTT is irregular.

(1) Pooling -> Convolution -> Convolution -> Convolution -> Fully Connected;
(2) Convolution -> Pooling -> Convolution -> Convolution -> Fully Connected;
(3) Convolution -> Convolution -> Pooling -> Convolution -> Fully Connected;
(4) Convolution -> Convolution -> Convolution -> Pooling -> Fully Connected.

Figure 12b shows the comparison of different orders of pooling in CNN for A2O. When
the order of type is the second type, A2O is higher than any other order type. Since the
second type of pooling order is the highest A2O, we chose the second type of pooling order.
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5.2.4. The Effects of Different Activation Functions in CNN

Figure 13a shows the comparison of different activation functions in CNN for DAt

and OTT. When the activation function is ReLU, DAt is the highest and OTT is irregular.
Figure 13b shows the comparison of different activation functions in CNN for A2O. When
the activation function is ReLU, A2O is the highest. Thus, we chose ReLU as our activation
function. The reason is when x is smaller than zero, all the values of y are zero in ReLU
function. Therefore, ReLU function can remove the negative value, and can more extract
the feature of the object.

5.2.5. Performance of SCL

Figure 14 shows the comparison of training and testing. Section 5.2.1, Section 5.2.2,
Section 5.2.3, Section 5.2.4 are performances of training. As time goes by, training and
testing become higher and higher. The DAt of training starts from relatively low (52.92%),
and the DAt of testing starts from relatively high (92.43%). Finally, DAt of testing ends with
higher DAt of training, which is 99.28%. The reason is because testing is based on training
results, and so testing performs better.
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5.3. Parameter Investigation

In this section, we investigate the effects of some important parameters and our obser-
vations; we compare the performance of our methods with LFAD [1] with the performance
of mitigation accuracy MAt. Notably, there are eight previous works that concern defense
against LFA for both detection and mitigation [1,4,5,8,10–13], while others [3,6,7,9] only
deal with detection. Overall, the study of [1] performs best in terms of defending against
LFA with SDN among the eight previous works cited. Therefore, we selected [1] to compare
with our method.

5.3.1. The Effects of Time Series

Time series is the number of consecutive sheets of Ut as input of CNN. Figure 15
shows a comparison of different time series. Except for when the time series is one, when
the time series is ranging from two to seven, SCL can maintain a level above 90.64%. As
for LFAD, when the time series is ranging from one to seven, LFAD is all the same. Since
LFAD does not have the parameter of time series, the MAt values of LFAD are all the same.
In default value (time series = 4), SCL performs better than LFAD by 60.81%.
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The reason for SCL’s better performance is because when the time series is one, there
is no time series order concept, and MAt is the lowest. As for when the time series is two to
seven, since there is a time series order concept to predict LFA, MAt values are relatively
similar. The highest MAt is time series equals four, for which the level is 92.95%, so we
chose four time series as our parameter.

5.3.2. The effects of the Number of Target Links

The number of target links is how many numbers of target links the LFA are about to
attack. Figure 16 shows a comparison of the number of target links. When the number of
target links is ranging from four to eight, SCL can maintain a level above 88.87%, which is
more stable than LFAD. As for LFAD, when the number of target links is ranging from four
to eight, LFAD increases from 9.68 to 60.53%. Therefore, when the number of target links is
ranging from four to eight, the gap between SCL and LFAD is less. In default value (target
links = 6), SCL performs better than LFAD by 60.81%.
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The reason for SCL performing better is because SCL is predicted by a deep learning
method, the deep learning determines if an attack happens according to link utilization Ut

to learn the attack flow pattern. The attack flow pattern of the different number of target
links directly reflects on Ut, so there is only the small effect for SCL in the different number
of target links. On the other hand, the reason for LFAD’s lower performance is that LFAD
is to set identify rules on target links, which is to put a sensor on the target links to predict
the abnormal situations. The more target links there are, the more sensors there will be and
the more accurate LFAD will be. The highest MAt is six target links, which is 92.95%, so we
chose six target links as our parameter.

5.3.3. The Effects of the Number of Input Nodes

The number of input nodes is the input dimensions. For example, if the number
of input nodes is the two-hop, that means the input nodes of Ut are 32 × 32. The hop
means, with the target link as the center, the number of hops outward. Two-hop is to make
target links as a center and go out according to a distance of two-hop links. As shown
in Figure 17, there are five types of input nodes, and the number on each x-axis denotes
the number of nodes in Ut. Therefore, the input dimensions of each of them are 32 × 32,
51 × 51, 66 × 66, 75 × 75, and 80 × 80, respectively. When the number of input nodes is
ranging from two-hop to all nodes, SCL can maintain a level above 90.51%, which is more
stable than LFAD. As for LFAD, when the number of input nodes is ranging from two-hop
to all nodes, LFAD increases from 21.88 to 33.42%. Therefore, when the number of input
nodes is ranging from two-hop to all nodes, the gap between SCL and LFAD is less.

The reason for this is that SCL learns from Ut; the higher the input nodes are, the more
data SCL can get, and the earlier SCL can detect when there is an attack flow from the
outer hop. However, the category of fewer input nodes, like two-hop, spends more time on
training, and can still achieve the same performance with the types of higher input nodes,
like all nodes. As for LFAD, the reason is the more the input nodes are, the more link data
LFAD gets to predict if there is an attack. The highest MAt is five-hop, which maintains a
level of 92.95%, so we chose five-hop as our parameter.
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5.3.4. The Effects of the Number of Bots

The number of bots is how many bots are used to launch LFA at the same time.
Figure 18 shows a comparison of the number of bots. When the number of bots is ranging
from 6 to 14, SCL can maintain a level above 88.17%, which is more stable than LFAD. As
for LFAD, when the number of bots is ranging from 6 to 14, LFAD increases from 24.87 to
38.99%. Therefore, when the number of bots is ranging from 4 to 16, the gap between SCL
and LFAD is less.
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The reason for SCL’s better performance is quite the same as Section 5.3.2. Because
SCL is predicted by the deep learning method, the deep learning determines if attacks
happen according to link utilization Ut to learn the attack flow pattern. The attack flow
pattern of the different number of bots directly reflects on Ut, so there is only the small
effect for SCL in the different number of bots. As for LFAD, since the more the number
of bots is, the more flow traffic there will be, LFAD can thus detect attack easily. The
highest MAt is ten bots, which is equivalent to a level of 92.95%, so we chose ten bots as
our parameter.
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6. Conclusions and Future Work

This study identifies that LFA are difficult to defend against due to (1) the indistin-
guishability of the changing LFA characteristics and (2) the spatiotemporal attack pattern,
leading to the rising attention on developing varying LFA defense methodologies. In light
of the previous works that do not provide sufficient performance when addressing these
two issues, we propose stacking-based CNN and LSTM deep learning modules to defend
against LFA.

The novelties of SCL are: (a) combining continuous network status as an input to
represent “continuous/combination attacking action” and to help CNN operation to extract
features of time series attack pattern, (b) applying LSTM to periodically review the current
evolved LFA patterns and drop the obsolete ones to ensure the decision accuracy and
confidence, (c) stacking System Detector and LFA Mitigator module instead of only one
module to couple with LFA detection and mediation at the same time.

The simulation results show that the accuracy of SCL to determine a system under
attack or not is 94.38%% and the accuracy of successfully blocking LFA is 92.95%. The
accuracy of successfully blocking LFA of SCL is 60.81% higher than that for LFAD. SCL can
maintain a level above 88.17% in the different time series, the different numbers of target
links, input nodes, and bots, which is more stable than LFAD.

In the future, we will extend our work in the real world to ensure our work still has
the expected effectiveness. On the other hand, we will evaluate the performance of new AI
architecture, such as seq2seq models [38], and integrate these ideas into our work.
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