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Abstract: We propose an anomaly detection based image quality assessment method which exploits
the correlations between feature maps from a pre-trained Convolutional Neural Network (CNN). The
proposed method encodes the intra-layer correlation through the Gram matrix and then estimates
the quality score combining the average of the correlation and the output from an anomaly detection
method. The latter evaluates the degree of abnormality of an image by computing a correlation
similarity with respect to a dictionary of pristine images. The effectiveness of the method is tested on
different benchmarking datasets (LIVE-itW, KONIQ, and SPAQ).

Keywords: image quality assessment; Gram matrix; convolutional neural network

1. Introduction and Background

The advent of digital photography and the growth of the smartphone industry has
led to an exponential growth of the number of images taken and stored. The easy access
to a camera and the consequent nearly effortless task of taking photos has made shooting
a picture tolerated nearly everywhere and at any time. We took photos to capture every
moment of our lives, from the simplest one like an unexpected event to milestone events
like weddings. Even if cameras and sensors are becoming increasingly sophisticated and
precise, it is not rare to shoot pictures that have a low perceived visual quality. Poor external
conditions, such as low light environment, backlight scenes, or moving objects, alongside
erroneous capturing settings, like exposure, ISO (camera’s sensitivity to light), and aper-
ture, could cause annoying image artifacts and distortions that lead to an unsatisfactory
perceived visual quality. Being able to automatically distinguish good quality images from
the bad ones can help various types of applications to prune the input set of images, like
automatic photo album creation, or even help users to discard bad quality images from
their personal collection to save space and time for revisiting those pictures.

Even if the subjective assessment is the most accurate criterion of an image’s quality,
it is not possible to perform it over big collections of images in a relatively small amount of
time. Without taking into account the expensiveness and the cumbersomeness of manually
evaluate pictures, automatic Image Quality Assessment (IQA) algorithms have been widely
studied in recent years.

The perceptual quality of an image is a subjective measure and it is usually defined as
the mean of the individual ratings of perceived quality assigned by human subjects (Mean
Opinion Score—MOS). Given an image, IQA systems are designed to automatically esti-
mate the quality score. Existing IQA methods can be classified into three major categories:
full-reference image quality assessment (FR-IQA) algorithms, e.g., [1–7], reduced-reference
image quality assessment (RR-IQA) algorithms, e.g., [8–11], and no-reference/blind image
quality assessment (NR-IQA) algorithms, e.g., [12–16]. FR-IQA methods compare the
distorted image with respect to the reference image in order to predict a quality score, and
because of that, they requires both the original image alongside the corrupted one. RR-IQA
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algorithms assess the image quality by exploiting partial information of the corresponding
reference image. The quality prediction is the result of a comparison between features
extracted from the reference and the image under test. NR-IQA algorithms estimate the
image quality solely on the distorted picture without the need of the reference image.

The majority of the existing methods on NR-IQA are designed to be trained on datasets
composed of mean opinion scores in addition to the distorted images. Ye et al. in [17]
proposed an unsupervised feature learning framework named Codebook Representation
for No-Reference Image Assessment (CORNIA). They rely on the use of codebook, a
collection of different type of features which encode the quality of an image. The framework
can be summed by four major steps: local feature extraction, codebook construction, local
feature encoding and feature pooling. In [18], Moorthy et al. present the Distortion
Identification-based Image Verity and INtegrity Evaluation index (DIIVINE), a two-stage
framework for estimating quality, based on the hypothesis that statistical properties of
images change in presence of distortions. These two stages are respectively the distortion
identification followed by distortion-specific quality assessment. The core of the method
uses a Gaussian scale mixture to model neighboring wavelet coefficients to then extract the
statistical description of the distortion in the input image. Lately, most of the works in the
state of the arts focus on the use of deep learning: Bianco et al. in [19] propose DeepBIQ, a
CNN pretrained on the union of ImageNet [20] and Places [21] datasets fine-tuned for the
image quality task. In [22] Celona et al. schematically illustrate building blocks that are
implemented and combined in different ways on CNN-based framework for evaluating
image quality of consumer photographs.

Nevertheless there are in the state of the art methods which further relax the con-
straint posed by the previously introduced NR-IQA algorithms, removing the require-
ment of having human subjective scores, thus leading in two new sub category of the
no-reference image quality assessment algorithms namely opinion-aware and opinion-
unaware/completely-blind.

Since they do not require training samples of distortions nor of human subjective
scores, opinion-unaware methods are usually robust generalization capability. Zhang et al.
in [23] propose ILNIQE, an opinion-unaware no-reference image quality assessment al-
gorithm based on natural scene statistics (NSS). In particular, they learn a multivariate
Gaussian model of image patches from a collection of pristine natural images. They then
compute the overall quality score average pooling the quality of each image patch of a given
image using a Bhattacharyya-like distance over the learned multivariate Gaussian model.

In our work, we specifically focus on the no-reference opinion-unaware image quality
assessment. Driven by the need of being able to distinguish good quality images from
the bad ones, rather than predict a score that best correlate to the mean opinion score, we
decide to tackle the problem by an anomaly detection approach. It is well known that
convolutional neural networks have the capability of intrinsically encode quality of the
images in their deep visual representation [24,25]. In [26], Gatys et al. represent textures by
the correlations between feature maps in several layers of a convolutional neural network,
and show that across layers the texture representations increasingly capture the statistical
properties of natural images. Then in [27] they exploit this correlations between feature
maps to create a loss function that measures the difference in style between two images.
Other studies reveals how this kind of correlations can be used to classify style of the
images [28,29]. In this work, we use for the first time the correlations between feature maps
to the task of no-reference opinion-unaware image quality assessment.

The main contributions of this paper are the following:

• We propose an anomaly detection no-reference opinion-unaware image quality as-
sessment by exploiting the correlations between feature maps extracted by means of a
convolutional neural network.

• We demonstrate the effectiveness of our method with respect to one no-reference
opinion-unaware image quality assessment and two opinion-aware methods, on three
databases containing real distorted images.
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• We propose a different way to evaluate NR-IQA methods based on their capabilities
to discriminate good quality images from the bad ones.

• We show the advantages of combining the correlations between feature maps with an
anomaly detection method.

The rest of the paper is organized as follows. In Section 2 we describe in detail the
proposed method. Section 3 presents the databases taken into account for the experiments
and the metrics used for the evaluation of the proposed method. In Section 4 we report the
experimental results, concluding with the Section 5.

2. Proposed Method

The aim of the proposed method is to estimate the quality score of a given picture
exploiting the correlations between the feature maps coming from a VGG16 [30] trained on
the Imagenet dataset [20]. In particular, we combine the arithmetic mean of this correlations,
and a score resulting from an anomaly detection method, on the intra-layer correlation
represented by the Gram matrix. The final image quality score is given by the sum of these
two metrics after applying min-max scaling to them. A brief overview of the method is
depicted in Figure 1.

Figure 1. Schematic view of the proposed method. The intra-layer correlation is computed by the Gram matrix over the
activation volumes of a Convolutional Neural Network (CNN). Then the abnormality and the average of the correlation are
computed before applying the min-max scaling on both of them. In the end, the two metrics are summed resulting in the
predicted image quality score.

2.1. Intra-Layer Correlation

The intra-layer correlation has been firstly introduced by Li et al. [26] as representative
of the texture, and since then it has been used in several other studies: as a loss [27,31] for
style transfer, or to classify the style of the images [28,29]. This property can be defined as
the correlation between the feature maps in a given layer and it can be done by calculating
the Gram matrix of the feature maps, which is defined as all possible inner products of
the feature maps. The Gram matrix has also been used in several other domains and
applications: from computing linear independence of a set of vectors to represents kernel
functions as in [32].

Given an input image I and a neural network Ne made of e hidden layers which can
be interpreted as the functional composition of e functions Lj followed by a final mapping
L that depends on the task: Ne = L ◦ Le ◦ ... ◦ L1. Let Nj(I) be the feature maps of the
j-th layer of the network Ne for the input I, with j ≤ e, which can be seen as a matrix of
shape Cj × Hj ×Wj resulted from the application of the functional composition of the first
j functions L1, · · · , Lj of the network Ne such that Nj = Lj ◦ ... ◦ L1. For the layer j-th the
Gram matrix GNj can be defined as a matrix of shape Cj × Cj whose elements are given by:

G
Nj
c,c′ =

1
Cj HjWj

Hj

∑
h=1

Wj

∑
w=1

Nj(I)c,h,wNj(I)c′ ,h,w (1)

where c and c′ are the indices of the Gram matrix, and both vary in the range [1, Cj]. We
report in the Figure 2 an illustration of how the Gram matrix is computed from a feature
maps Nj(I).
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(a)

(b)
Figure 2. Schematic view of Gram matrix computation. In (a) is reported the feature maps of the j-th layer. (b) illustrate,
for some of the indices of the Gram matrix, how they are computed. With the symbol ◦ we refer to the element-wise
matrix product.

GNj captures which features tend to activate together, therefore we expect GNj to be a
symmetric matrix with a negligible diagonal representing the correlation between a filter
and itself. For our purpose we can consider only the lower triangular matrix of GNj , which
once flattened results in a feature vector xj of size 1× [(Cj(Cj + 1)/2)− Cj]. For each layer
j of the VGG16, in the Table 1 we report the resulting feature vector dimension representing
the intra-layer correlation.

Table 1. Summary of the VGG16 [30] architecture alongside the resulting feature vector dimension with respect to the
intra-layer correlation.

Block Layer (Name) Layer (Type) Kernel Size # Filters Feature Vector Dimension

1
conv1_1 Convolutional 3× 3 64 2016
conv1_2 Convolutional 3× 3 64 2016

Max_Pooling Pooling - - -

2
conv2_1 Convolutional 3× 3 128 8128
conv2_2 Convolutional 3× 3 128 8128

Max_Pooling Pooling - - -

3

conv3_1 Convolutional 3× 3 256 32,640
conv3_2 Convolutional 3× 3 256 32,640
conv3_3 Convolutional 3× 3 256 32,640

Max_Pooling Pooling - - -

4

conv4_1 Convolutional 3× 3 512 130,816
conv4_2 Convolutional 3× 3 512 130,816
conv4_3 Convolutional 3× 3 512 130,816

Max_Pooling Pooling - - -

5

conv5_1 Convolutional 3× 3 512 130,816
conv5_2 Convolutional 3× 3 512 130,816
conv5_3 Convolutional 3× 3 512 130,816

Max_Pooling Pooling - - -

6 fc6 Dense
7 fc7 Dense
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The Gram matrix is invariant with respect to the size of the input image I since its
dimension depends only on the number of filter Cj of the j-th layer, and it can be computed
efficiently if Nj(I) is reshaped into a matrix A of size Cj × (Hj ×Wj) so that we achieve
GNj = AAT/Cj HjWj. We report in Figure 3a schematic overview of the Gram matrix
efficient computation.

(a)

(b)
Figure 3. Visual overview of the Gram matrix efficient computation and feature vector extrapolation. In (a) is shown how
the activation volume is reshaped to efficiently compute the Gram matrix in (b) to finally compute the feature vector that
represents the intra-layer correlation.

2.2. Anomaly Detection

Our anomaly detection technique is inspired by the approach presented in [33]. The
degree of abnormality, that is the presence of distortions in the input image, is computed by
measuring the similarity between the aforementioned intra-layer correlation representation
of a given image, and a reference dictionaryW of Gram matrices computed from a database
of pristine images. The similarity is measured through the Euclidean distances between
the feature vector x extracted from a given image I and the feature vectors of the dictionary
W . The final abnormality score is the sum of the average distances and α times the standard
deviation of the distances. It is defined as follow:

Abnormality score =
1
D

D

∑
d=1

dist(x, wd)+ α

√√√√ 1
D

D

∑
d=1

(
dist(x, wd)−

1
D

D

∑
d=1

dist(x, wd)

)
(2)

where D is the number of words in the reference dictionary W = {w1, ..., wD}, and
dist(x, wd) is the Euclidean distance between the feature vector x representing the input
image I and the words of the dictionary wd.

The dictionary is built from a subset of pristine images P = {I1, ..., ID}: for each
image Id we compute the Gram matrix respect a given jth layer of the network Ne and
keep only the flattened lower triangular matrix of GNj of shape (Cj(Cj + 1)/2)− Cj. We
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then reduce the dimension of the feature vector to M with M < (Cj(Cj + 1)/2)− Cj by
applying the Principal Component Analysis (PCA) [34] to all the feature vector computed
from P . M represents the number of principal components such that a given percentage of
the data variance is retained.

Finally, we group all the reduced features vectors of P into clusters using Mean
Shift [35], a centroid-based algorithm which use kernel density estimation to iteratively
move the sample to the nearest local maxima of the probability density with respect to the
input samples. It only has a parameter named bandwidth which represents the width of the
kernel, and the output are the best k clusters corresponding to k centroids. The advantage
of using Mean Shift as clustering algorithm is that it does not require to explicitly define the
number of clusters k in advance. The number of clusters is instead variable and depends
solely on the data and the width of the kernel chosen. A centroid is the most representative
point within the cluster, and in this case, is the mean position of all the elements of the
cluster. Our dictionaryW is therefore composed by the coordinates of the center of each
cluster found.

A schematic view of the dictionary creation pipeline is presented in the Figure 4.

Figure 4. Overview of the creation of the dictionary for the degree of abnormality computation. The activation volumes of a
given CNN are extracted and then the Gram matrix is computed to get the intra-layer correlation for a subset of pristine
images. Subsequently dimensionality reduction is applied through Principal Component Analysis (PCA). Finally Mean
Shift algorithm is performed to compute clusters on which centroids are then extracted as entry of the dictionary.

2.3. Combining Method

The final quality score is the combination of factors: (1) the arithmetic mean of the
CNNs correlations and (2) the abnormality score.

To make these two factors comparable we scale them [36]. Moreover, we flip the
correlation of the abnormality score by computing 1—abnormality score. Then, with the
purpose of having better interpretability, we divide by 2 and multiply by 100 the final score
in order to have values that ideally range between 0 and 100 as the MOS.

Since the anomaly detection method relies on the concept of distance from a dictionary
of pristine images, it implies that the closer the input image is to this dictionary, the less
abnormal is the considered picture. On the contrary, the farther the input representation is
from the dictionary, the higher is the abnormality score. The output of the anomaly detection
method is therefore negatively correlated with the Mean Opinion Scores.

On the other hand, it is reasonable to believe that a quality artefact in an input image
of a CNN, may alter the activation maps, hence it affects negatively the average intra-layer
correlation: the more corrupted (less qualitative appealing) is the input image, the less
correlated are the layers of the network. It reflects that the average of the intra-layer
correlation is positively correlated with the Mean Opinion Scores.

3. Experiments

In this section, we start describing the databases taken into account for the exper-
iments, followed by the metrics used for the evaluation of our approach and then the
implementation details of the proposed method.
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3.1. Database for Image Quality Assessment with Real Distorted Images

There are several databases for image quality assessment with real distorted images.
For our experiments we take into account one of the most used dataset in the field of IQA
which is the LIVE in the Wild Image Quality Challenge Database [37] (LIVE-itW) alongside
with two recently presented large scale IQA databases namely: Smartphone Photography
Attribute and Quality database (SPAQ) [38] and the KonIQ-10k [39] (KONIQ).

The task of gathering opinion scores on the perceived quality of images is highly
subjective and subtle, for all the previously mentioned databases, therefore, every worker
was first provided with detailed instructions to help them assimilate the task. Since LIVE-
itW and KonIQ-10 rely on crowdsourcing frameworks, a selection of participants based on
the worker’s reliability was applied. Also, during and after the process of data annotation
several filtering steps were implemented to ensure an acceptable level of quality for the
resulting Mean Opinion Scores. To further validate the credibility of the collected scores,
the authors of the three databases, also reports the mean inter-group agreement as the
mean agreement between the MOS values of non-overlapping random groups of users
in terms of Spearman’s rank ordered correlation. In particular, the LIVE-itW database
reaches a value of 0.9896 while KonIQ-10 and SPAQ measure a correlation of 0.973 and
0.923 respectively.

The LIVE-itW database [37] is a collection of 1162 authentically distorted images
captured from many diverse mobile devices. The images have been evaluated by over
8100 unique human observers through amazon mechanical turk and each image has been
viewed and rated on a continuous quality scale by an average of 175 unique subjects. The
Mean opinion scores ranges from 0 to 100.

The KONIQ database [39] contains 10,073 images selected from the Yahoo Flickr
Creative Commons 100 Million dataset (YFCC100M) [40]. Each image has a total of
120 reliable quality ratings obtained by crowd-sourcing, performed by 1459 subjects. The
collected values of the Mean Opinion scores belongs to the interval [0, 5], for readability, in
this paper, we scale them in the range [0, 100] to be coherent with the other datasets.

Finally, the SPAQ database [38] consists of 11,125 pictures taken by 66 smartphones.
The images have been labeled through a subjective test, in a well-controlled laboratory
environment, with a total o 600 subjects. Each image has been rated at least 15 times. The
MOS varies between 0 and 100.

The datasets for image quality assessment with real distorted images are divided into
good quality images and bad quality images according to the MOS. As a threshold, for
each dataset, we decided to take the 75th percentile with respect to the MOS distribution.
Therefore, we label images having a MOS over the 75th percentile as good quality images,
while we labeled as poor quality images the remaining ones. These thresholds are 71.71
and 71.74 for the KONIQ and LIVE-itW respectively while for the SPAQ the 75th percentile
respect the MOS is 68.82.

In the Figure 5 we report the distributions of the Mean Opinion Scores of the three
datasets where it can be seen that KONIQ and LIVE-itW seam to distribute similarly with
unimodal behaviour, while the SPAQ’s distribution of the MOS appear to be bimodal. An
overview of database properties is provided in Table 2 and samples images alongside MOS
are in Figure 6.

Table 2. Overview of databases used for image quality assessment with real distorted images.

Database Year No. of
Images

Rating per
Images Environment Inter-Group

Agreement
MOS 75th
Percentile

LIVE-itW [37] 2015 1162 175 crowd-sourcing 0.9896 71.74
KONIQ [39] 2018 10,073 120 crowd-sourcing 0.9730 71.71
SPAQ [38] 2020 11,125 15 lab 0.9230 68.82
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(a) (b) (c)
Figure 5. Estimated density distribution of Mean Opinion Scores for the three datasets: (a) LIVE in the Wild Image Quality
Challenge Database (LIVE-itW), (b) KonIQ-10k (KONIQ), and (c) Smartphone Photography Attribute and Quality database
(SPAQ). The bars represents the normalized histogram, the blue line is the estimated density distribution while in red line is
the 75th percentile respect the Mean Opinion Score (MOS).

(a) (b) (c)

(d) (e) (f)
Figure 6. Sample images form the three Image Quality Assessment (IQA) databases: (a) and (d) images from the LIVE-itW
with a MOS of 78.81 and 43.67 respectively, (b) and (e) KONIQ’s pictures with a MOS of 71.46 and 43.36; finally (c) and (f)
photos form SPAQ whit a MOS of 75.43 and 33.0 respectively.

3.2. Database for Image Quality Assessment with Real Synthetic Distortion

As our pristine collection of images, we decide to take into account a large scale
database for image quality assessment with synthetic distortion named Konstanz Artifi-
cially Distorted Image quality Set (KADIS700k) [41]. For our purpose, we consider only
the non-distorted pictures. The dataset is composed of 140,000 pristine images collected
from Pixabay.com, a website for sharing photos and videos. According to the image
quality guidelines of Pixabay.com, users must upload pictures that have a well defined
subject, clear focus, and compelling colours. Also, images with chromatic aberration, JPEG
compression artefacts, image noise, and unintentional blurriness are not accepted. More-
over, authors of KADIS700k have collected up to twenty independent votes by Pixabay
users claiming that the quality rating process provides a reasonable indication that the
released images are pristine. After selecting 654,706 images with resolutions higher than
1500× 1200 they randomly sampled 140,000 images as pristine reference images. Under the
aforementioned conditions is our belief that KADIS700k can model the concept of pristine

Pixabay.com
Pixabay.com
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images necessary to build our system. An example of the pictures present in the dataset is
reported in Figure 7.

(a) (b) (c)
Figure 7. Sample images form the KADIS700k databases. (a–c) random photos from KADIS700k.

3.3. Experimental Setup

The most commonly used metrics to evaluate the performance of no-reference image
quality assessment methods are respectively the Pearson’s Linear Correlation Coefficient
(PLCC) and the Spearman’s Rank-order Correlation Coefficient (SROCC). Both are used to
compare the scores predicted by the models and the subjective opinion scores provided by
the dataset. The PLCC correlation evaluates the linear relationship between two continuous
variables while the SROCC evaluates the monotonic relationship between two continuous
or ordinal variables. Both indexes are used to evaluate correlation between variables.
However, according to [42], the Spearman’s index is more suitable to evaluate relationships
involving ordinal variables than the Pearson’s index. The aim of the automatic image
quality assessment methods is to predict a quality index of the image which simulates
the Mean Opinion Score achieved thanks to subjective evaluation of users. Since both the
quality index and the MOS are continuous and ordinal variables, the SROCC is the most
reliable evaluation metric for IQA methods.

The PLCC is a statistic that captures the linear correlation between the predicted scores
and MOS; it ranges between +1 and −1, where a value of +1 or −1 reflects a total positive,
or negative respectively, linear correlation, and a value of 0 is no linear correlation. Given
n as the number of the considered samples, xi and yi the sample points indexed with i, x̄
and ȳ the means of each sample distribution; we can define the PLCC as follows:

PLCC =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

. (3)

Instead, the SROCC operates on the rank of the data points ignoring the relative
distances between them, hence assesses the monotonic relationships between the actual
and predicted scores. As the PLCC, it varies in the interval [+1,−1] and for n considered
samples it is defined as follow:

SROCC = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
, (4)

where di = (rank(xi)− rank(yi)) is the difference between the two ranks of each sample.
To measure the capability of the methods of being able to discriminate good quality

images from the bad one, we decided to take into account the area under a receiver operat-
ing characteristic (ROC) curve, abbreviated as AUC, and the area under the precision-recall
curve (AUPR). In particular the AUC measures the overall performance of a binary classifier,
and it ranges between 0.5 and 1.0, where the minimum value corresponds to the perfor-
mance of a random classifier while the maximum value represents the oracle. Meanwhile,
the AUPR reflects the trade-off between precision and recall as the threshold varies.
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3.4. Implementation Details

The proposed method is trained and tested using Python. The training process consists
of extracting the information of intra-layer correlation, from a subset of pristine images of
KADIS700k [41], and compute the dictionaryW of k centroids trough Mean Shift. Then the
average intra-layer correlation and the degree of abnormality is computed from a different
subset of pristine images of KADIS700k [41] in order to save the minimum and maximum
value of both to lately perform min-max scaling in order to merge them. The parameter α
for the anomaly detection method has been chosen performing a parameter tuning over a
subset of synthetically distorted images for KADIS700k, resulting in a value of 2.

For the intra-layer correlation, we use the ImageNet [20] pre-trained VGG16 provided
by the Torchvision package of the PyTorch framework [43]. The model was trained scaling
the input images into the range of [0, 1] and then normalized using mean [0.485, 0.456, 0.406]
and standard deviation [0.229, 0.224, 0.225]. As preprocessing images were first cropped
such that the resulting size was evenly distributed between 8% and 100% of the original
image area and then a random aspect ratio between 3/4 and 4/3 of the original aspect
ratio was applied. The resulting crops were finally resized to 224 × 224. As layer for
our representation, we rely on the output of the first convolutional layer of the second
convolutional stage (conv2_1) of the VGG16, which consists of 128 filters, resulting in a
feature vector of shape 8192. Moreover, the input of the VGG16 images are scaled so
the smaller edge results of 512 pixels and normalized according to the mean value and
standard deviation of ImageNet.

For the training phase, we randomly selected 10,000 pristine images from KADIS700k,
and we compute the Gram matrix for each image. Subsequently, we apply the PCA with a
percentage of retained variance of 97%. Finally, we use the Mean Shift algorithm with a flat
kernel to find the representative centroids and build the dictionary for the computation of
the abnormality score. The bandwidth for the Mean Shift was empirically estimated as the
average pairwise distance between the samples that are in the same cluster applying the
Nearest Neighbors algorithm. The resulting bandwidth is 1.804.

To perform the min-max scaling on both the abnormality score and the average value
of the intra-layer correlation, we randomly select 1000 pristine images from KADIS700k
different from the previous ones and we collect the minimum and maximum values for the
two metrics.

The proposed method is compared against three different no-reference benchmark
algorithms for the IQA, one opinion unaware, which does not require MOS during the
training phase named ILNIQE [23] and two opinion aware methods which require the
mean opinion scores of the images on which they are trained, namely CORNIA [17] and
DIIVINE [18]. For these methods, we took their original implementations alongside the
saved models released from the authors. For this reason, these methods are executed a
single time.

4. Results

In this section, we compare the average performance in terms of SROCC, PLCC,
AUC, and AUPR on the three considered databases (LIVE-itW, KONIQ, and SPAQ) across
100 iterations. We first present the average performance across all the three datasets and
then we present the performance on each dataset separately.

4.1. Average Performance

Table 3 reports the average performance over the three databases of our opinion-
unware method and state-of the-art methods, both opnion unware and opinion aware. This
table permits to have a quick look of the best performing method whatever is the database
considered. Our proposal is on average the first in terms of SROCC, AUC and AUPR
against all the methods. In terms of PLCC, our method is the second best opinion-unware
method. We believe that the PLCC gap is caused by the fact that the proposed method is not
trained using Mean Opinion Score hence it is not forced to have a linear relationship with
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the target distribution. Moreover, as discussed in Section 3.3, SROCC is a more suitable
metric than PLCC for the evaluation of ordinal variables.

Table 3. Pearson’s Linear Correlation Coefficient (PLCC), Spearman’s Rank-order Correlation Co-
efficient (SROCC) area under the receiver operating characteristic curve (AUC) and the area under
the precision-recall curve (AUPR) of the proposed solution respect the three state of the art methods
(ILNIQUE, CORNIA, DIIVINE). In each column, the best values are marked in boldface.

Method SROCC PLCC AUC AUPR

ILNIQUE † [23] 0.5596 ± 0.0000 0.5489 ± 0.0000 0.7327 ± 0.0000 0.4507 ± 0.0000
CORNIA * [17] 0.5638 ± 0.0000 0.5859 ± 0.0000 0.7329 ± 0.0000 0.4336 ± 0.0000
DIIVINE * [18] 0.5109 ± 0.0000 0.4870 ± 0.0000 0.7431 ± 0.0000 0.4501 ± 0.0000
Our † 0.5989 ± 0.0021 0.4823 ± 0.0036 0.7659 ± 0.0009 0.4710 ± 0.0006

† opinion-unaware methods, * opinion-aware methods.

In terms of correlation, DIIVINE appears to be the least correlated according to both
SROCC and PLCC. ILNIQE and CORNIA are very close in terms of SROCC but they
perform worse with respect to our method, while on the PLCC, CORNIA results to be the
most effective method, followed by ILNIQE.

Regarding the capability of the methods to discriminate good quality images from the
bad one, in terms of AUC, the CORNIA, and ILNIQE methods have similar performance,
followed by the DIIVINE method which performs slightly better, and finally, by our method
that achieves the best performance. Regarding the AUPR, the behavior is very similar to
the AUC excepts for the DIIVINE method which results to be better than CORNIA.

4.2. Single Dataset Performance

The average results obtained on the three datasets show the generalization skills
of the proposed algorithm. In Table 4 we report the performance of the methods under
examination for each dataset.

Table 4. SROCC, PLCC, AUC, and AUPR of the proposed solution respect the three from state of the art methods (ILNIQUE,
CORNIA, DIIVINE) for each datasets taken into account (LIVE-itW, KONIQ, and SPAQ). For each database, in each column,
the best values are marked in boldface.

Evaluation Dataset Method SROCC PLCC AUC AUPR

LIVE-itW

ILNIQUE † 0.4516 ± 0.0000 0.4968 ± 0.0000 0.6610 ± 0.0000 0.3501 ± 0.0000
CORNIA * 0.4307 ± 0.0000 0.4819 ± 0.0000 0.6598 ± 0.0000 0.3710 ± 0.0000
DIIVINE * 0.4599 ± 0.0000 0.4504 ± 0.0000 0.7127 ± 0.0000 0.4140 ± 0.0000
Our † 0.4933 ± 0.0018 0.4058 ± 0.0028 0.7031 ± 0.0012 0.4112 ± 0.0007

KONIQ

ILNIQUE † 0.5130 ± 0.0000 0.5026 ± 0.0000 0.7214 ± 0.0000 0.4480 ± 0.0000
CORNIA * 0.5510 ± 0.0000 0.5654 ± 0.0000 0.7294 ± 0.0000 0.4218 ± 0.0000
DIIVINE * 0.4734 ± 0.0000 0.4322 ± 0.0000 0.7177 ± 0.0000 0.4329 ± 0.0000
Our † 0.5741 ± 0.0042 0.4256 ± 0.0042 0.7446 ± 0.0011 0.4049 ± 0.0007

SPAQ

ILNIQUE † 0.7142 ± 0.0000 0.6473 ± 0.0000 0.8156 ± 0.0000 0.5539 ± 0.0000
CORNIA * 0.7096 ± 0.0000 0.7103 ± 0.0000 0.8094 ± 0.0000 0.5080 ± 0.0000
DIIVINE * 0.5993 ± 0.0000 0.5784 ± 0.0000 0.7989 ± 0.0000 0.5035 ± 0.0000
Our † 0.7292 ± 0.0002 0.6155 ± 0.0038 0.8501 ± 0.0003 0.5970 ± 0.0003

† opinion-unaware methods, * opinion-aware methods.

On the LIVE-itW database the performance highlights that our method performs
better in terms of SROCC with respect to all methods, while it is the best in terms of AUC
and AUPR against all the opnion-unware methods but the second best (with a negligible
difference of about 0.006 on average) with respect to the DIIVINE, which is an opinion-
aware method. In terms of PLCC, ILNIQE is the best then followed by CORNIA, DIIVINE
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and our method. The LIVE-itW is the database on which all the methods perform worse
with respect to the others datasets. This can be caused by the dimension of the dataset,
which is one-tenth of the others.

On the KONIQ database, our method performs better in terms of SROCC and AUC
with respect to all methods. Surprisingly, ILNIQE reaches the top performance on AUPR
even if on the other measures is not highly competitive. The best in terms of PLCC is
the CORNIA. Even in this case, performance of all methods, regardless the metric, are
quite low.

Finally, on the SPAQ database, the overall behavior follows the one presented in the
average performance (cf. Table 3): our method is the best in terms of SROCC, AUC, and
AUPR while is not competitive in terms of PLCC.

Summing up, our method is first in terms or SROCC against all the methods over the
three considered databases. It is the best opinion-unaware method in terms of AUC while
it is the second best against an opinion-aware method only on the LIVE-itW dataset with a
difference of 0.096. Since our method does not force any kind of linear relationship between
the output and the data distribution, it is not competitive in terms of PLCC: it is the lowest
performing method except for the SPAQ database were it is placed third. Considering the
AUPR metric, except for the KONIQ database, we are the best of all methods on SPAQ and
the second best on the LIVE-itW database of a small amount (0.0028).

In Figure 8 we report, for each of the databases, the predicted quality score distribu-
tions with respect to the ground truth MOS. While in the Figure 9 are reported two pictures
from the three dataset LIVE-itW, KONIQ, and SPAQ, alongside the predicted image quality
scores and the mean opinion scores.

(a) (b) (c)
Figure 8. Scatter plots of the predicted quality scores respect MOS for the three considered datasets: (a) LIVE-itW, (b) KONIQ,
and (c) SPAQ. In red is depicted the second-order interpolation line. The points in blue belongs to the bad quality images
(MOS < 75◦ percentile of the MOS distribution for that dataset) while the orange ones refer to the good quality images.

4.3. Ablation Study

In this section we focus on the contribution given by the anomaly detection method to
the solely average of the intra-layer correlation. From Table 5 we can see that the intra-layer
correlation achieves competitive results in terms of SROCC, AUC, and AUPR while is
weaker with respect to the PLCC. On the other hand, the output from the anomaly detection
method tends to be less effective on the four metrics. Although, the abnormality score tends
to be more competitive on the PLCC except on the KONIQ database on which the PLCC
scores is very low.

Even if the average intra-layer correlation alone shows interesting performance, com-
bined with the abnormality score results in an increase of the PLCC while maintaining similar
performance on the other metrics.
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(a)
QS: 67.94 MOS: 75.69

(b)
QS: 63.91 MOS: 71.27

(c)
QS: 73.37 MOS: 82.67

(d)
QS 42.71 MOS: 16.13

(e)
QS: 44.33 MOS: 52.64

(f)
QS: 42.79 MOS: 42.79

Figure 9. Examples of predicted quality score (QS) alongside the mean opinion score (MOS). First column images (a,d)
belong to LIVE-itW database, second column picures (b,e) are from KONIQ dataset while the last column photos (c,f)
belong to the SPAQ collection.

Table 5. SROCC, PLCC, AUC and AUPR of the proposed solution alongside the average intra-layer correlation (MEAN_GM)
and the abnormality score for the databases LIVE-itW, KONIQ and SPAQ. For each database, in each column, the best values
are marked in boldface.

Dataset Method SROCC PLCC AUC AUPR

LIVE-itW
MEAN_GM 0.4930 ± 0.0000 0.3520 ± 0.0000 0.7043 ± 0.0000 0.4068 ± 0.0000
ABNORMALITY SCORE 0.4599 ± 0.0075 0.3609 ± 0.0266 0.6826 ± 0.0045 0.3966 ± 0.0035
Our 0.4933 ± 0.0018 0.4058 ± 0.0028 0.7031 ± 0.0012 0.4112 ± 0.0007

KONIQ
MEAN_GM 0.5512 ± 0.0000 0.3050 ± 0.0000 0.7379 ± 0.0000 0.3998 ± 0.0000
ABNORMALITY SCORE 0.4873 ± 0.0220 0.1343 ± 0.0335 0.7169 ± 0.0102 0.4380 ± 0.0082
Our 0.5741 ± 0.0042 0.4256 ± 0.0042 0.7446 ± 0.0011 0.4049 ± 0.0007

SPAQ
MEAN_GM 0.7281 ± 0.0000 0.5227 ± 0.0000 0.8505 ± 0.0000 0.5934 ± 0.0000
ABNORMALITY SCORE 0.6590 ± 0.0152 0.4387 ± 0.0526 0.8037 ± 0.0104 0.5525 ± 0.0100
Our 0.7292 ± 0.0002 0.6155 ± 0.0038 0.8501 ± 0.0003 0.5970 ± 0.0003

AVERAGE
MEAN_GM 0.5908 ± 0.0000 0.3932 ± 0.0000 0.7642 ± 0.0000 0.4667 ± 0.0000
ABNORMALITY SCORE 0.5354 ± 0.0149 0.3113 ± 0.0376 0.7344 ± 0.0084 0.4624 ± 0.0072
Our 0.5989 ± 0.0021 0.4823 ± 0.0036 0.7659 ± 0.0009 0.4710 ± 0.0006

5. Conclusions

In this work, we have introduced a novel and completely blind image quality assess-
ment method based on anomaly detection techniques. We have designed a model that
classifies good and the bad quality pictures by exploiting the information deep encoded in
CNN pre-trained on ImageNet, using only a subset of artifact-less images. To this end, we
have developed a pipeline that relays on the Gram matrix computed over the activation
volumes of a CNN to encode the intra-layer correlation. We then use this information in an
anomaly detection fashion to improve the performance with respect to the only average
of intra-layer correlation. Experimental results on three different datasets containing real
distorted images demonstrated the effectiveness of the proposed approach. Moreover,
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cross-dataset results highlighted the robustness and generalization skills of the approach
in comparison to other algorithms in the literature.

As future works, we would like to further investigate why the considered methods
on certain databases, like SPAQ, perform on average better than on the others datasets. In
view of the fact that our proposed algorithm lacks mainly concerning the PLCC, we are
interested in improving such metric simultaneously with the others. To better compare
our method with respect to the state of the art, we will take into account more recent
approaches of no-reference opinion-unaware image quality assessment like the one by
Mukherjee et al. [44]. Finally, to better prove the capability of the proposed method to
discriminate good quality images with respect to bad quality ones, a possible alternative
to the AUC and AUPR could be to take into account frameworks to stress image quality
assessment methods [45].
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