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Abstract: Wind energy harvesting technology is one of the most popular power sources for wireless
sensor networks. However, given its irregular nature, wind energy availability experiences significant
variations and, therefore, wind-powered devices need reliable forecasting models to effectively
adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-
constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting
schemes of low complexity for their predictions in order to avoid squandering their scarce power and
computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for
predicting wind speed at short-term horizons. The performance results obtained using real data sets
show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes
due to its potential for achieving accurate enough predictions with very low computational burden
and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to
varying wind conditions and locations without requiring any particular reconfiguration or previous
data training phase for each different scenario.

Keywords: energy harvesting; wind energy; energy management; energy prediction

1. Introduction

Wireless sensor networks (WSNs) are often composed of a large number of self-
sustainable, autonomous sensor nodes that operate under stringent resource restrictions,
such as limited battery, communication, storage, and computing capabilities. Frequently,
sensor nodes use some of the currently available energy harvesting (EH) technologies to
obtain an uninterrupted power supply for all practical purposes [1]. However, EH nodes
must commonly apply an energy management policy to consume the harvested energy
effectively and ensure long-term operation due to the high intermittency and irregular
nature of ambient energy sources, such as sunlight or wind [2].

Wind energy is one of the most popular and valuable ambient energy sources due
to its high power intensity and economic competitiveness. Figure 1 shows the block
diagram of a wind-powered EH node. It includes a wind turbine that converts wind
energy into electrical energy. Most wind turbines usually work in the following manner.
The wind turns the turbine blades, which spin a shaft, thus converting wind energy into
low speed rotational energy. To speed up rotation, the low-speed shaft is connected to a
high-speed one through a gearbox. Because the high-speed shaft is attached to a coil of
copper surrounded by a magnetic field, a current is then induced in the copper coil.

Electrical energy that is generated by the wind turbine can be stored, for example,
in a rechargeable battery or a capacitor. The storage element powers the processing,
sensing and communication units. The sensing unit performs the sensor functionality (not
necessarily wind-related), while the communication unit transmits and receives measures
and control data. The processing unit stores and handles sensed and received data. It also
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implements the energy management scheme required to schedule processing, sensing, and
communication functions optimally from an energy point of view, as shown in the block
diagram [3,4].

Storage
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Memory

Manager

Processing Unit

Unit

Energy

Communication

Wind Turbine

Sensing

Unit

Figure 1. Block diagram of a wind-powered energy harvesting (EH) node. Solid (dotted) lines
represent energy (data) transfer.

Wind speed has a great impact on the amount of energy that is generated by wind
turbines. In fact, the amount of energy that can be theoretically obtained from the wind is
proportional to the cube of wind speed [5], although, in practice, the power output of a
specific wind turbine and the wind speed are usually related following a sigmoid power
curve that is given by the manufacturer [6]. Certainly, wind speed is highly dynamic,
so the energy that is available to a wind-powered device fluctuates significantly, even
within short periods of time. Therefore, the energy management scheme implemented in a
wind-powered node requires an efficient forecasting model that accurately predicts wind
speed in the near future (from a few minutes to a few hours) to effectively adapt energy
consumption to the dynamics of EH and avoid forthcoming energy shortages [7].

Many different wind speed/power forecasting models have been proposed in recent
years [8,9]. According to their forecasting approach, existing models can be classified into
three different categories: physical, statistical, and hybrid models. Physical methods model
wind power while taking into account some physical specifications of wind turbines, local
terrain, and farm layouts, as well as meteorological data that were obtained from numerical
weather prediction (NWP) [10–12]. Because of the high latency and computational cost
of NWP, physical methods have limited utility for short-term predictions, although they
can perform well for long forecasting horizons (greater than 6 h). Different from them,
statistical methods model wind speed/power as a stochastic process formed from the
available time series of historical data [13–35]. These models have lower complexity and
latency than the physical ones, so they are preferred for short-term forecasting horizons.
Finally, hybrid models try to benefit from the best features of both physical and statistical
models combining meteorological conditions forecasts (such as temperature, humidity, or
atmospheric pressure) with available time series [36–38]. However, because hybrid models
also require NWP, they are also inadequate for short-term forecasting.

Wind-powered sensor nodes must work in WSNs with limited hardware capacities
and under severe resource restrictions. Therefore, they require simple and effective forecast-
ing schemes for their short-term wind predictions. In this paper, we present a new efficient
ARIMA-based forecasting model to predict wind speed at short-term horizons (from 10 min
to 1 h). The performance results that were obtained using real data sets confirm that the
proposed ARIMA model can be an excellent choice for resource-constrained sensor devices,
due to its capacity to achieve accurate enough predictions using a very small amount of
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memory and just performing a few straightforward operations. In addition, and different
from the previous ARIMA models, the management and setup of the proposed method
is very simple, since it is able to dynamically adapt to changing wind conditions and
locations without requiring any reconfiguration or previous data training phase for each
different scenario.

The rest of the paper is organized, as follows. Related work is reviewed in Section 2.
Section 3 briefly describes the different forecasting models that have been evaluated in the
paper. In Section 4, we present a novel ARIMA-based model that is specifically designed
to forecast future values of a wind speed time series and in Section 5 we describe how it
can be implemented in a light way. In Section 6, we then compare the performance of the
different forecasting methods in several scenarios while using real data sets. Finally, the
main conclusions are laid out in Section 7.

2. Related Work

As previously explained, statistical methods should be preferred for short-term predic-
tions due to their lower latency and computational cost. These methods use available time
series of historical wind speed and/or power data to make predictions. For example, some
of them approach the forecasting problem while using conventional statistical methods,
including Autoregressive Integrated Moving Average (ARIMA) models [13–18], Bayesian
regression [19–21], or Kalman filtering [22–24].

Differently, most recent statistical methods employ some modern artificial intelligence
and machine learning tools, due to their effectiveness in forecasting non-linear time series.
In particular, quantile regression [25,26], neural networks [27–30], and support vector
machines [31–35] are widely used in this context. It is worth remarking that most of these
prediction schemes decompose the original non-stationary time series into several relatively
stationary components to then apply the most adequate statistical model to each of them.
Eventually, the final prediction is obtained by adding up all of the individual forecasting
results [39].

However, there exist a few drawbacks that should be considered when using machine
learning techniques in WSNs [40]. Firstly, they have to perform a great number of complex
operations to forecast wind data. Specifically, the higher the required accuracy, the higher
the computational burden and, hence, energy consumption. In addition, they require a
large data set of samples to be trained and fit their configuration parameters for a particular
location. Consequently, although these schemes may be a good choice for providing
accurate medium and long-term predictions at wind farms, they are not adequate for
resource-constrained, possibly portable, sensor devices.

A different class of statistical models make predictions carefully combining the latest
measured values with those that were observed at the same times on previous days
(EWMA [7], WCMA [41], QL-SEP [42], LINE-P [43], and D-WCMA [44]) or on the most
similar past days to the current one (UD-WCMA [44] and Pro-Energy [45]). These models
are simpler than those that are based on machine learning tools and they are especially
suited when daily weather patterns are observed.

In this paper, we present a new ARIMA-based forecasting scheme that is especially
suitable for wind-powered sensor devices with limited resources. Contrary to previous
ARIMA models, the proposed method is flexible enough to dynamically adapt to varying
wind conditions and/or locations without requiring any reconfiguration or previous
data training phase for each different scenario. Furthermore, it can be implemented in
a very light way, thus providing accurate enough short-term predictions with minimal
computational load and memory overhead. In order to test its effectiveness, we compared
it with the straightforward persistence model, which is usually used as a benchmark for
wind speed forecasting, and with the D-WCMA and Pro-Energy schemes, due to their
relative simplicity and good performance.
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3. Forecasting Models

In this section, we present the forecasting models that have been evaluated in the
paper. We assume that wind speed observations are available at discrete, equally spaced
intervals of time, forming a wind speed time series {s0, s1, . . . , sn}.

3.1. Persistence Model

The persistence model straightforwardly estimates the wind speed for future times-
lot n + h, with h ∈ {1, 2, . . . }, as the wind speed that was observed during the last times-
lot n:

ŝn+h = sn. (1)

This simple method provides good predictions at short-term horizons and it is com-
monly used as a benchmark model for wind speed forecasting due to the high correlation
between wind speed samples that are close in time. However, the accuracy of this model
decreases considerably with the distance to the forecasting horizon.

3.2. ARIMA Model

The ARIMA (AutoRegressive Integrated Moving Average) model is a generalization
of the ARMA (AutoRegressive Moving Average) model, which is recommended when the
time series show evidence of non-stationarity, as is the case for the wind speed data. An
ARIMA (p, d, q) model for the wind speed time series data is given by

5d sn − ϕ15d sn−1 − · · · − ϕp5d sn−p = εn − θ1εn−1 − · · · − θqεq−1, (2)

where p is the order of the autoregressive (AR) model, q is the order of the moving-
average (MA) model, and d is the degree of differencing, which is the number of times that
consecutive raw values have been subtracted to eliminate the non-stationarity:

51sn = 5sn = sn − sn−1,

5dsn = 5d−1sn −5d−1sn−1, ∀d ≥ 2. (3)

In the ARIMA model, the parameters ϕ1, ϕ2, . . . , ϕp of the corresponding AR model
set how much the previous terms contribute to the current value, while the parameters
θ1, θ2, . . . , θq of the corresponding MA model set how much the error terms, εn, contribute
to the current value. The error terms are assumed to form a white noise process with zero
mean and constant variance. Note that the conventional AR (p), MA (q), and ARMA (p, q)
models are equivalent to ARIMA (p, 0, 0), ARIMA (0, 0, q), and ARIMA (p, 0, q) models,
respectively, and that the persistent model can be characterized as a simple ARIMA (1, 0, 0)
model with ϕ1 = 1.

3.3. Pro-Energy Model

The Pro-Energy scheme maintains a time series that encompasses those samples that
were obtained during the past D days. Assuming that N observations are available for
each day, the time series is organized as a pool P = {p1, p2, . . . , pD} of D profiles, each
one containing the N values that were measured during each of the timeslots of a given
past day. Note that, therefore, the last sample sn corresponds to the l-th sample, with l = n
mod N, of the current day.

The Pro-Energy model computes the expected value for future timeslot n + h, as

ŝn+h = γh sn + (1− γh) sP
l+h , (4)

where sP
l+h is the average value of the samples that correspond to the (l + h)-th timeslot of

the P most similar profiles of the pool P and γh is the correlation factor that determines
the significance of the last sample sn when making predictions:
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γh =

{
α

(
1− h− 1

G

)}+

, (5)

where α is a weighting factor, 0 ≤ α ≤ 1, and G is a parameter representing the number of
timeslots in the future that presumably show a strong correlation with the value that was
observed during the last timeslot. Clearly, the weight that is associated to the last sample
progressively decreases as predictions go away in time.

In order to compute sP
l+h, the similarity with the current day for each profile pi ∈ P

must first be estimated. This similarity is computed for each profile pi, i = 1, . . . , D, as the
mean absolute error (MAE) over the previous K timeslots of each day:

MAEK(pi) =
K−1

∑
k=0

1
K
|sn−k − spi

l−k| , (6)

where spi
l−k is the (l− k)-th sample in profile pi. Subsequently, if we assume that {p1, p2, . . . , pD}

is the ordered set of profiles based on their similarity with the current day, the weighted
average value sP

l+h is computed as

sP
l+h =

{
sp1

l+h , if P = 1,
1

P−1 ∑P
i=1 wi spi

l+h , if P > 1,
(7)

where P < D is the number of profiles combined and

wi = 1− MAEK(pi)

∑P
j=1 MAEK(pj)

, i = 1, . . . , P . (8)

3.4. D-WCMA Model

As Pro-Energy, the D-WCMA (Dynamic Weather Condition Moving Average)
scheme also maintains the samples obtained during the past D days, organized as
a pool P = {p1, p2, . . . , pD} of D profiles. Again, each profile contains the N values that
were measured during each of the timeslots of the corresponding past day and the last
sample sn corresponds to the l-th sample, with l = n mod N, of the current day. With
D-WCMA, the value that is predicted for future timeslot n + h is computed as

ŝn+h = αl+h sn + (1− αl+h)GAPK sl+h , (9)

where αl+h is the adaptive weight of the last sample in the prediction for timeslot n + h,
GAPK is a factor that scales the disparity of the last samples with respect to those that were
obtained in the previous days over a time window of K timeslots and sl+h is the average
value of the (l + h)-th samples in the previous days:

sl+h =
1
D

D

∑
i=1

spi
l+h , (10)

where spi
l+h is the (l + h)-th sample in profile pi.

The weighting factor αl+h estimates the predictability level of the future value from
the variations in the samples of the previous days. It is dynamically configured as

αl+h =
1
2

σl+h
σl+h + σ′l+h

, (11)

where
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σl+h =

√√√√ 1
D

D

∑
i=1

(
spi

l+h − sl+h

)2
,

σ′l+h =

√√√√ 1
D

D

∑
i=1

(
∆spi

l+h − ∆sl+h

)2
,

∆spi
l+h = spi

l+h − spi
l ,

∆sl+h =
1
D

D

∑
i=1

∆spi
l+h .

(12)

Note that σl+h is the standard deviation of the (l + h)-samples in the preceding days,
whereas σ′l+h is the standard deviation of the variations between the l and (l + h)-samples
on those days. Finally, the GAP factor is computed as a normalized weighted average of
the ratio between the last samples and the average value of the samples in the previous
days along the last K timeslots:

GAPK =
∑K

k=1
k
K

sn−K+k
sl−K+k

∑K
k=1

k
K

=
2

K(K + 1)

K

∑
k=1

k
sn−K+k
sl−K+k

. (13)

4. Forecasting Wind Speed Using an ARIMA Model

We now show how an ARIMA model may be used to forecast future values of wind
speed time series while using the well-known Box–Jenkins method [46].

4.1. Data Sets Description

We selected three representative real data sets to identify those ARIMA models that
fit better with wind speed time series, each one covering a one year long period, obtained
from the National Renewable Energy Laboratory (NREL) at three different locations:
the Oak Ridge National Laboratory (ORNL) at Oak Ridge, Tennessee [47], the National
Wind Technology Center (NWTC) at Boulder, Colorado [48], and the Solar Radiation
Research Laboratory (SRRL) at Golden, Colorado [49]. Original data sets contain one
sample per minute of the wind speed at the given location, so we built the wind speed time
series computing the average wind speed at each 10 min interval (the length of prediction
intervals).

4.2. Model Identification

The first task is to identify an appropriate subclass of models from the general ARIMA
family that may be used to represent a wind speed time series, that is, find out suitable
values of p, d and q for this particular class of time series. The autocorrelation function
(ACF) and the partial autocorrelation function (PACF) are the main tools for guessing the
form of the model. The ACF quantifies the similarity between the terms of a time series as
a function of the lag between them, while the PACF gives the partial correlation of a time
series with its own lagged values after removing the effect of any correlations due to the
terms at shorter lags. Figure 2 shows the estimated ACF functions for the three selected
time series without differencing (d = 0) and with a differencing step d = 1. In [46], it is
proven that the degree of differencing that is necessary to achieve stationarity is reached
when the ACF function dies out quickly. The estimated ACF functions without differencing
(d = 0) of all the given time series fall off slowly and almost linearly, so the underlying
stochastic process must be treated as non-stationary, as shown in the figure. However, the
autocorrelation coefficients for d = 1 become rapidly negligible after the first lags. This
suggests that these time series might be well described by an ARIMA (p, 1, q) process.
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Figure 2. Autocorrelation functions (ACFs) for d = 0 and d = 1.

Once deciding what degree of differencing should be chosen, we next use the estimated
ACF and PACF functions of the corresponding differenced series to select the appropriate
orders, p and q, for them. In order to find the order q of the MA term, we can look at the
ACF plots for d = 1. Because only a few of the first lags have significant autocorrelation
values, setting the order q = 1 or q = 2 is reasonable. Additionally, note that most of
the values are close to zero, thus remarking the essentially random nature of these time
series. Similarly, to set the order p of the AR term, we can use the PACF functions that were
estimated for d = 1, as shown in Figure 3. Again, only the first PACF coefficients have
significant values, so the order p should be fixed to a small value (p ≤ 2).

Figure 3. Partial autocorrelation functions (PACFs) for d = 1.

Finally, to determine the most adequate specific ARIMA model for wind speed time
series, we take the relationship between the two first autocorrelation coefficients into
consideration. Clearly, there are only two possible scenarios. If the first autocorrelation
coefficient is much more significant than the second one, as is the case for the ORNL series,
wind speed series might be described by an ARIMA (1, 1, 1) process given by the following
difference equation:

5 sn − ϕ15 sn−1 = εn − θ1εn−1. (14)
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On the contrary, if the second autocorrelation coefficient is more significant than (or
comparable to) the first one, as it happens with both the NWTC and SRRL series, then the
wind speed series might be better described by an ARIMA (0, 1, 2) process that is given by

5 sn = εn − θ1εn−1 − θ2εn−2. (15)

Recall that, in our context, it is important to employ the smallest possible number
of parameters required for adequate representation. Consequently, we consider that an
ARIMA (1, 1, 1) or an ARIMA (0, 1, 2) process might alternatively describe wind speed time
series, depending on the relationship between the two first autocorrelation coefficients. We
have analyzed a lot of wind speed time series from many different locations and found
that they all exhibit similar correlation characteristics to any of the three series described in
the paper.

4.3. Parameters Estimation

Once it is assumed that wind speed time series will be described by an ARIMA (p, 1, q)
process, we then need to estimate the corresponding AR (ϕ1, . . . , ϕp) and MA (θ1, . . . , θq) pa-
rameters. For example, ϕ1 and θ1 must be computed if we were considering an ARIMA (1, 1, 1)
process. As shown in [46], these parameters can be calculated by solving the following
system of two equations and two variables:

ρ2 = ρ1 ϕ1,

ρ1 =
(1− θ1 ϕ1)(ϕ1 − θ1)

1 + θ2
1 − 2ϕ1θ1

, (16)

where ρ1 and ρ2 are the first and second autocorrelation coefficients, respectively. Both of
the parameters, ϕ1 and θ1, must take a value within the range (−1, 1). On the other hand,
if an ARIMA (0, 1, 2) process is considered, then we must compute θ1 and θ2 parameters.
In this case, the required parameters are the solutions to the following system of two
equations:

ρ1 =
−θ1 + θ1θ2

1 + θ2
1 + θ2

2
,

ρ2 =
−θ2

1 + θ2
1 + θ2

2
, (17)

and they must fulfill the following conditions: −1 < θ2 < 1, θ1 + θ2 < 1, and θ2 − θ1 < 1.

4.4. Making Predictions

Once the model is fitted to actual data, we can then forecast a future ŝn+h value at
timeslot n in terms of the difference Equations (14) and (15). From them, it follows that{

5̂sn+h = ϕ15 sn+h−1 − θ1εn+h−1 + εn+h, with an ARIMA (1, 1, 1) model,

5̂sn+h = −θ1εn+h−1 − θ2εn+h−2 + εn+h, with an ARIMA (0, 1, 2) model,
(18)

and, since5sn+h = sn+h − sn+h−1, we get{
ŝn+h = (1 + ϕ1)sn+h−1 − ϕ1sn+h−2 − θ1εn+h−1, with an ARIMA (1, 1, 1) model,

ŝn+h = sn+h−1 − θ1εn+h−1 − θ2εn+h−2, with an ARIMA (0, 1, 2) model.
(19)

Note that, for prediction horizons h > 1, these models require samples sn+j, with
j ≥ 1, which have not yet been observed, so they are replaced by their respective forecasts
ŝn+j. Consequently, εn+j = 5sn+j − 5̂sn+j, for j ≥ 1, are replaced by zeroes.
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5. Adaptive ARIMA Implementation

In order to forecast future wind speed observations using the proposed ARIMA mod-
els, we must solve the system of Equation (16) or (17) to obtain estimates of the correspond-
ing AR and MA parameters, as explained in Section 4.3. Recall that both of the systems
depend on ρ1 and ρ2, the first and second autocorrelation coefficients, so these coefficients
must be previously estimated. Given our finite time series5s1,5s2, . . . ,5sn of n observa-
tions, it is well known that the most straightforward estimate of the k-th autocorrelation
coefficient ρk is

ρ̂k =
γ̂k
γ̂0

, (20)

where

γ̂k =
1
n

n−k

∑
i=1

(5si −5s)(5si+k −5s), k = 0, 1, 2, . . . , (21)

is the estimate of the autocovariance at lag k and 5s is the mean of the time series [50].
Fortunately, because5s = 0, the computation of the autocovariance coefficients γ̂k of the
differenced time series can be greatly simplified:

γ̂k =
1
n

n−k

∑
i=1
5si5 si+k, k = 0, 1, 2, . . . , (22)

and, therefore, the autocorrelation coefficient ρk can be easily estimated as

ρ̂k =
∑n−k

i=1 5si · 5si+k

∑n
i=15s2

i
, k = 0, 1, 2, . . . (23)

5.1. Parameters Estimation

In Section 4.2 we found that wind speed time series can be alternatively described
by an ARIMA (1, 1, 1) or an ARIMA (0, 1, 2) process. The selection of the most adequate
model for a given series is driven by the relative weight of its two first autocorrelation
coefficients. Thus, if |ρ̂1| > |ρ̂2|, i.e., if |γ̂1| > |γ̂2|, then the ARIMA (1, 1, 1) model must
be selected and the corresponding ϕ1 and θ1 parameters must be computed solving the
equation system (16). From the first equation in this system and (20), we get that the
ϕ1 parameter can be easily estimated as

ϕ̂1 =
ρ̂2

ρ̂1
=

γ̂2/γ̂0

γ̂1/γ̂0
=

γ̂2

γ̂1
, (24)

and, then, θ̂1 can be determined just solving the second equation in system (16). However,
if ρ1 (and, therefore, ρ2) takes a small value, as is the case with wind speed time series (see
Figure 2), the solution to this equation can be well approximated as θ̂1 ≈ ϕ̂1 − ρ̂1.

Conversely, when |ρ̂1| < |ρ̂2|, i.e., |γ̂1| < |γ̂2|, the ARIMA (0, 1, 2) model is more
adequate, so, in this case, the equation system (17) must be solved in order to estimate
the corresponding θ1 and θ2 parameters. Fortunately, solving this system again becomes
straightforward when both ρ1 and ρ2 coefficients take small values. Under these conditions,
it can be proved that the valid solutions to system (17) can be well approximated as
θ̂1 ≈ −ρ̂1 and θ̂2 ≈ −ρ̂2. Therefore, the predictor must just perform the following simple
operations to estimate the ARIMA parameters:

• if |γ̂1| > |γ̂2| then ARIMA (1, 1, 1)

1. ϕ̂1 = γ̂2/γ̂1

2. −θ̂1 = γ̂1/γ̂0 − ϕ̂1

• else ARIMA (0, 1, 2)

1. −θ̂1 = γ̂1/γ̂0
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2. −θ̂2 = γ̂2/γ̂0

In practice, the ARIMA parameters do not have to be updated with every new value.
In fact, if new observations are obtained at intervals of 10 min, we propose updating the
ARIMA parameters every 36 new samples, i.e., just every six hours (shorter updating
intervals have shown negligible improvements in performance). Finally, at the initial
system setup, the predictor can be initialized to perform as the persistence scheme during
the first operating period, i.e., as an ARIMA (1, 1, 1) model with ϕ̂1 = θ̂1 = 0, or as an
ARIMA (0, 1, 2) model with θ̂1 = θ̂2 = 0. Certainly, this implies that early forecasts will
presumably be less accurate, so the energy management scheme should be more cautious
during the first operating periods.

5.2. Making Predictions

From (18), and assuming that the ARIMA (0, 1, 2) model is applied (|γ̂1| < |γ̂2|), it
easily follows that the next value of the wind speed time series, ŝn+1, can be forecasted at
timeslot n just performing the following simple operations:

1. sn ← last observed wind speed value
2. 5sn = sn − sn−1

3. 5̂sn+1 = −θ̂1 · (5sn − 5̂sn)− θ̂2 · (5sn−1 − 5̂sn−1)

4. ŝn+1 = sn + 5̂sn+1

5. 5̂sn−1 ← 5̂sn

6. 5̂sn ← 5̂sn+1
7. γ̂0 += 5sn · 5sn
8. γ̂1 += 5sn · 5sn−1
9. γ̂2 += 5sn · 5sn−2
10. 5sn−2 ← 5sn−1
11. 5sn−1 ← 5sn
12. sn−1 ← sn

Note that the prediction is obtained in step 4. In the next steps, we just update the
state variables that are required for making predictions and estimating ARIMA parameters.

In the case that the ARIMA (1, 1, 1) model must be applied, the same operations will
be performed just replacing the third one by the following one:

3. 5̂sn+1 = ϕ̂1 · 5sn − θ̂1 · (5sn − 5̂sn)

Additionally, note that, to compute predictions for more distant horizons, these
operations must be repeated several times just replacing the required, but not yet observed,
samples by their respective forecasts.

Finally, it should be noted that, in the case that the sensor provides invalid wind
speed measures, this model could continue making predictions just replacing the corrupted
samples by their respective forecasts. If sensor errors occur occasionally, their effects will
be negligible, since, as we will show in the following section, this model provides accurate
enough predictions in the short term.

6. Evaluation

The persistence, Pro-Energy, D-WCMA, and ARIMA models have been applied to
the three wind speed traces that are described in Section 4.1 using an open-source in-
house simulator [51]. We evaluated the accuracy of these forecasting models for prediction
horizons from h = 1 to 6 (from 10 min to 60 min) in terms of the mean absolute error (MAE)
of their predictions:

MAE =
∑ |sn+h − ŝn+h|

number of predictions
. (25)

Note that, contrary to the proposed ARIMA model, the computational overhead that
is introduced by Pro-Energy and D-WCMA models (and, consequently, the precision of
their forecasts) depends on how their main parameters are configured. We configured
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both of the models with three different overhead levels, as shown in Table 1. For Pro-
Energy, recall that D is the number of previous days stored in the pool, K is the number
of previous samples used to estimate similarity between profiles, and P is the amount
of profiles that are combined to obtain the average value at the future timeslot. When
computing the correlation factor γ, G was set to 15 (2.5 h), while the weighting factor α was
configured with the optimal value for each simulated scenario, thus avoiding any eventual
bias towards the proposed model. Regarding D-WCMA, D, again, is the amount of stored
profiles and K is the number of past samples considered when computing the GAP factor.

Table 1. Pro-Energy and Dynamic Weather Condition Moving Average (D-WCMA) settings.

Pro-Energy D-WCMA

Overhead D K P D K

Low 30 2 1 10 2
Medium 60 3 2 20 3

High 90 5 5 40 5

6.1. Performance Comparison

Figure 4 shows the relative difference between the MAE that was obtained with each
of the models and that obtained with the persistence one for each of the wind speed traces:

Relative MAE Difference =
MAEmodel −MAEpersistence

MAEpersistence
. (26)
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Figure 4. Relative mean absolute error (MAE) difference (persistence model used as baseline).

As expected, Pro-Energy and D-WCMA obtain more accurate predictions, as they
are configured with higher overhead settings. In addition, their accuracy with respect
to the persistence model increases with the distance to the prediction horizon. On the
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other hand, for the shortest prediction horizons (10–20 min), the proposed ARIMA model
is able to achieve the most precise estimations in both the ORNL and NWTC traces, and
only in the SRRL trace Pro-Energy with the highest overhead is able to provide slightly
more accurate predictions. For the most distant horizons, the ARIMA model still provides
satisfactory predictions and only Pro-Energy and D-WCMA achieve better predictions
consistently when configured with the highest overhead settings. Therefore, we can affirm
that the ARIMA-based model is a good alternative for wind speed forecasting in resource-
constrained EH devices, since it is able to obtain predictions with an accuracy that is
comparable to those obtained by Pro-Energy or D-WCMA at their highest overhead settings,
but with a much lower computational burden. Finally, note that all of the forecasting
schemes obtain their best performance with the ORNL trace, since, as it can be inferred from
the ACF and PACF functions (see Figures 2 and 3), this is the series with less randomness.

We also applied the UD-WCMA model [44], an enhanced yet more complex variant of
D-WCMA, to the three selected wind speed traces. We found that, despite its considerably
higher overhead, it provides very similar results to those that were obtained with D-WCMA
at the shortest prediction horizons (10–40 min). Only for prediction horizons of 50–60 min,
UD-WCMA is able to obtain slightly better predictions than D-WCMA, with improvements
of around 0.5% in the relative MAE difference. Therefore, we decided not to include these
results in the article, so as not to excessively clutter the graphs.

6.2. Optimistic Forecasting

As previously stated in the introduction, the main mission of the forecasting scheme
in resource-constrained EH nodes is to help the energy management policy to effectively
adapt energy consumption to the dynamics of EH, thus avoiding forthcoming energy
shortages. However, the risk of suffering an energy shortage can be seriously increased if
the forecasting scheme overestimates future energy availability, since EH nodes may then
be allowed to spend more energy than they will really have at their disposal.

In this section, we check whether the selected forecasting schemes tend to overestimate
(or underestimate) future wind speed. Clearly, if the actual wind speed in a given timeslot
is lower than the estimated one, then the prediction was too optimistic and the energy
manager could have overestimated future energy availability, thus increasing the risk of
suffering an energy shortage. Conversely, if the actual wind speed is higher than the
predicted one, then the prediction was excessively pessimistic and the available energy at
the EH node would have been underestimated. Figure 5 shows the percentage of optimistic
predictions that were obtained with each model and wind speed trace. Noticeably, all of the
forecasting schemes, except the persistence one, are moderately optimistic. Additionally,
note that Pro-Energy and D-WCMA schemes both tend to be more optimistic when they
are configured with higher overhead settings.
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We have also separately evaluated the accuracy of optimistic and pessimistic predic-
tions. Table 2 shows the MAE for both optimistic and pessimistic predictions that were
obtained with the persistent model and with those models more inclined to be optimistic
(the ARIMA-based one and Pro-Energy and D-WCMA with high overload). Note that,
although the persistent model tends to underestimate future wind speed, its optimistic
predictions for the ORNL and SRRL traces are quite less accurate than the pessimistic
ones. On the contrary, the rather optimistic Pro-Energy, D-WCMA, and ARIMA models
provide optimistic predictions that are significantly more precise than the pessimistic ones.
Consequently, the possibility of suffering an energy shortage is reduced when using one of
these models.

Table 2. MAE for optimistic and pessimistic predictions (in m/s).

ORNL NWTC SRRL

Model Horizon Opt-MAE Pes-MAE Opt-MAE Pes-MAE Opt-MAE Pes-MAE

Persistent

10 0.2308 0.1907 0.4813 0.4966 0.5053 0.4876
20 0.2722 0.2309 0.6531 0.6671 0.6926 0.6697
30 0.2977 0.2543 0.7644 0.7791 0.8039 0.7809
40 0.3185 0.2714 0.8496 0.8620 0.9001 0.8599
50 0.3354 0.2883 0.9193 0.9296 0.9720 0.9341
60 0.3515 0.3009 0.9802 0.9852 1.0358 0.9917

Pro-Energy (High)

10 0.1773 0.2320 0.4597 0.5112 0.4616 0.5231
20 0.2059 0.2786 0.5989 0.6938 0.6148 0.7178
30 0.2246 0.3050 0.6865 0.8068 0.7093 0.8275
40 0.2383 0.3268 0.7483 0.8936 0.7799 0.9128
50 0.2495 0.3447 0.7939 0.9621 0.8343 0.9859
60 0.2616 0.3576 0.8303 1.0249 0.8839 1.0353

D-WCMA (High)

10 0.1863 0.2200 0.5068 0.5319 0.5279 0.5319
20 0.2207 0.2545 0.6519 0.6818 0.6859 0.6824
30 0.2433 0.2765 0.7501 0.7821 0.7876 0.7819
40 0.2607 0.2944 0.8261 0.8603 0.8709 0.8591
50 0.2763 0.3089 0.8932 0.9225 0.9403 0.9228
60 0.2897 0.3228 0.9501 0.9762 0.9995 0.9748

ARIMA

10 0.1732 0.2321 0.4678 0.4991 0.4685 0.5191
20 0.2077 0.2703 0.6258 0.6647 0.6367 0.7061
30 0.2296 0.2956 0.7266 0.7727 0.7430 0.8174
40 0.2485 0.3137 0.8068 0.8488 0.8309 0.9003
50 0.2646 0.3312 0.8708 0.9134 0.9012 0.9742
60 0.2786 0.3470 0.9262 0.9655 0.9617 1.0323

6.3. Computational and Memory Overhead

The proposed ARIMA model is able to compute the predicted value just performing
a few simple operations, as shown in Section 5.2. In particular, the forecast involves
performing one subtraction to compute the last differenced value (step 2), three subtractions
and two multiplications to compute the predicted differenced value for the ARIMA (0, 1, 2)
model (step 3), or two subtractions and two multiplications for the ARIMA (1, 1, 1) model,
and one final sum to obtain the predicted wind speed value (step 4). In addition, this
model requires updating several state variables (steps 5–12), including the estimations of
the first three autocovariance coefficients (steps 7–9), with each one involving one sum and
one multiplication.

On the other hand, recall that the ARIMA parameters must be updated every six
hours (just four times a day). Each update only requires performing two divisions for the
ARIMA (0, 1, 2) model or two divisions and one subtraction for the ARIMA (1, 1, 1) one, as
shown in Section 5.1.

Regarding the memory requirements, note that the ARIMA model just needs to store
the last two wind speed samples (sn, sn−1), the last three differences (5sn,5sn−1,5sn−2),
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the last three predicted differences (5̂sn+1, 5̂sn, 5̂sn−1), the estimations of the first three
autocovariance coefficients (γ̂0, γ̂1, γ̂2), and the estimated ARIMA parameters (ϕ̂1, θ̂1, θ̂2).

We have also calculated the amount of operations per forecast and memory require-
ments for both the Pro-Energy and D-WCMA models with the different overhead settings.
Recall that, for each prediction, Pro-Energy demands computing the similarity of the
current day with each of the profiles being stored in the pool using (6) and the average
value that was observed at the future timeslot result of combining the most similar profiles
using (7) and (8). Moreover, although not being taken into account when estimating the
amount of operations, recall that Pro-Energy must also sort the profiles of the pool by
their similarity with the current day, which involves some additional operations for each
forecast. On the other hand, D-WCMA requires computing the weighting factor α and GAP
parameter using (11) and (13), respectively, which involves computing several standard
deviations (see Equation (12)). Some square roots must be performed to compute these
standard deviations, but we assumed that the time complexity for computing a square root
is comparable to that of a multiplication, thus preventing any eventual bias in favor of
our proposal. Additionally, both of the techniques must also update their pool of profiles
everyday.

Respecting their memory requirements, both of the techniques must store the pool
of profiles, each one comprising the wind speed that was observed during each of the
timeslots of the corresponding past day, and the wind speed that was observed during the
timeslots of the current day. Table 3 resumes the amount of operations and memory usage
estimated for each forecasting model. It is assumed that the float numbers are saved as
32 bit values. Definitely, the proposed ARIMA model provides accurate enough short-term
forecasts with a very low memory usage and performing much less operations.

Table 3. Number of operations and memory overhead (in bytes).

Op. per Day Op. per Prediction

Model Add/Sub Mul/Div Add/Sub Mul/Div Memory

ARIMA (1, 1, 1) 4 8 7 5 56
ARIMA (0, 1, 2) 0 8 8 5 56

Pro-Low 121 32 17,856
Pro-Med Profiles Pool Update 367 67 35,136
Pro-High 916 103 52,416

DWCMA-Low 95 37 6336
DWCMA-Med Profiles Pool Update 206 60 12,096
DWCMA-High 488 106 23,616

7. Conclusions

This paper presents a new ARIMA-based forecasting model to predict wind speed
at short-term horizons (from 10 min to 1 h) especially tailored for resource-constrained
devices with limited hardware capacities, such as the nodes of a WSN. In particular, we
found that the wind speed time series can be alternatively well described by either an
ARIMA (1, 1, 1) or an ARIMA (0, 1, 2) process, depending on the relative weight of their
two first autocorrelation coefficients. Consequently, the proposed model estimates these
coefficients and selects the most adequate ARIMA model and ARIMA coefficients for a
given wind speed series periodically.

The performance results obtained using real data sets show that the proposed ARIMA
model provides accurate forecasts in all of the considered scenarios using a very small
amount of memory and just performing a few low complexity operations. Moreover,
the management and setup of the proposed model is very simple since, unlike most of
the forecasting models that require the careful configuration of several parameters to
guarantee acceptable wind speed predictions, it is able to dynamically adapt to changing
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wind conditions and/or locations without requiring any particular reconfiguration for each
different scenario.
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