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Abstract: Surface-enhanced Raman spectroscopy (SERS) technology is an attractive method for the
prompt and accurate on-site screening of illicit drugs. As portable Raman systems are available for on-
site screening, the readiness of SERS technology for sensing applications is predominantly dependent
on the accuracy, stability and cost-effectiveness of the SERS strip. An atmospheric-pressure plasma-
assisted chemical deposition process that can deposit an even distribution of nanogold particles in
a one-step process has been developed. The process was used to print a nanogold film on a paper-
based substrate using a HAuCl4 solution precursor. X-ray photoelectron spectroscopy (XPS) analysis
demonstrates that the gold has been fully reduced and that subsequent plasma post-treatment
decreases the carbon content of the film. Results for cocaine detection using this substrate were
compared with two commercial SERS substrates, one based on nanogold on paper and the currently
available best commercial SERS substrate based on an Ag pillar structure. A larger number of
bands associated with cocaine was detected using the plasma-printed substrate than the commercial
substrates across a range of cocaine concentrations from 1 to 5000 ng/mL. A detection limit as low as
1 ng/mL cocaine with high spatial uniformity was demonstrated with the plasma-printed substrate.
It is shown that the plasma-printed substrate can be produced at a much lower cost than the price of
the commercial substrate.

Keywords: cocaine detection; plasma printing; SERS; gold nanoparticles; forensics; illicit drugs;
on-site testing; paper substrate

1. Introduction

With the availability of portable Raman systems, there is an enormous opportunity to
create low-cost, highly sensitive and reliable surface-enhanced Raman spectroscopy (SERS)
strips for on-site testing of trace illicit drugs [1–5] and explosives [6,7]. The inelastic scat-
tering of photons by incident light can be used to determine the vibrational modes of
molecules and thus provide a structural fingerprint of the molecule. Compared to con-
ventional Raman techniques [8], the use of a roughened metal or metal nanoparticle sur-
face in SERS enhances the Raman effect by typically 6–8 orders of magnitude [5] owing
to localised surface plasmonic resonances around the surface protrusions or particles [9].
Fedick et al. developed an undergraduate experiment that incorporated measurements
using a commercial silver-on-paper SERS substrate for the detection of heroin, fentanyl
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and 3,4-methylenedioxymethamphetamine [10]. Inkjet printing methods have allowed the
construction of SERS substrates that can be used for two-dimensional chromatographic sepa-
ration for complex matrix analysis [11]. These inkjet-printed substrates allowed quantification
of 25 ng of heroin mixed with highly fluorescent materials [11]. Silver nanoparticle-soaked fil-
ter paper discs were used by Haddad et al. for the analysis of fentanyl-spiked heroin [1]. The
limit of detection for fentanyl was 100 ng/L when 10 µL of analyte solution was deposited.
Swabbing with these substrates allowed the recovery of fentanyl from surfaces.

Despite the advances in SERS testing, there remains an opportunity to improve the
analyte sensitivity and reduce the complexity in the fabrication of SERS-active substrates.
Optimisation of the shape and size distribution of the nanometals allows enhancement
of the Raman signal from analyte molecules. Sophisticated shapes and combinations of
nanometal particles have been intensively studied, such as nanoflowers [12], nanostars [13],
sea-urchin-shaped nanoparticles [14], as well as different types of core-shell structure [15].
Various fabrication techniques have also been applied, including electron beam lithogra-
phy [16], nanosphere lithography [17] and focused ion beam patterning [18], to achieve high
sensitivity and reproducibility. However, most are elaborate multi-step processes that are
costly and are not amenable for large-scale production and on-site or point-of-care testing.

The choice of substrate and materials deposition technique are two other important
considerations for SERS-based applications. Paper-based substrates are highly attractive as
they are low-cost, disposable and can be readily modified by inkjet printing, drop-casting,
direct writing and soaking with different nanomaterials [19–23]. Moreover, paper-based
substrates are flexible, which could allow for swabbing applications [24,25] within the
forensics field for detection of illicit drugs and explosives.

Inkjet printing [26–28] provides the best control over the uniformity of gold nanoparti-
cle films with microscale precision and is amenable to high-throughput, rapid-prototyping
of SERS substrates. However, the preparation of the ink requires several steps, includ-
ing metal nanoparticle synthesis and filtering [29]; alternatively, commercial nanogold or
nanosilver inks are available but costly. There is also the possibility of interference from
residual chemicals such as reducing or stabilising agents in SERS measurements of low
concentrations of analyte molecules.

Alternative methods that can reduce the fabrication complexity of nanogold substrates
are highly desirable. Plasma deposition, especially atmospheric-pressure plasma-assisted
chemical vapour deposition (CVD), has recently been demonstrated as a facile and cost-
effective processing technique for nanogold deposition [30]. The advantage of this technique
is that it is possible to produce and deposit nanogold films directly on the substrate from a
single HAuCl4 solution precursor without additional reducing or stabilising agents. Fur-
thermore, there is no need for multi-step filtration, centrifugation or purification steps that
are commonly employed in nanoparticle synthesis. A plasma jet of high-density electrons
reduces the solution to metallic gold, which is then deposited on the substrate almost in-
stantaneously. Since plasma printing does not require complex and multiple chemical steps,
nor high-end electron or ion beam processing under vacuum, it is a promising alternative
technique to fabricate highly sensitive, low-cost paper-based SERS substrates.

In this study, a paper-based SERS substrate is produced by depositing nano gold on
paper using the plasma-assisted CVD technique. The substrate is applied to the detection
of cocaine. Cocaine, an alkaloid compound, is the second most-consumed stimulant in
Australia [31] with approximately 4.1 tonnes consumed each year [32,33].

The main routes of administration include insufflation, smoking and injection with
the administration route depending on the drug form. In Australia, cocaine hydrochloride
is the most common form [32] and is administered by insufflation or rubbing on the
gums [34,35]. Consumers under the influence of cocaine can exhibit behaviour that is
unpredictable, violent or aggressive, which can be dangerous to both themselves and
others [34,36]. Current on-site testing for cocaine involves colour testing or immunoassay
strips, which then require confirmatory testing [37]. Ideally, a method that can provide
rapid on-site testing is highly desirable.
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The plasma-printed SERS substrates are compared to two commercially available sub-
strates, a paper-based gold SERS substrate and a silver pillar structure on Si that presents the
state-of-the-art for cocaine detection. The plasma-printed SERS substrate shows promise as a
simple and scalable fabrication technique for the highly sensitive detection of cocaine.

2. Materials and Methods
2.1. Chemicals

Whatman No. 1 filter paper and gold(III) chloride trihydrate (HAuCl4·3H2O) were
purchased from Sigma-Aldrich (Macquarie Park, Australia). Cocaine hydrochloride was
purchased from the National Measurement Institute (West Lindfield, Australia). Ultra-pure
Milli-Q water (>18.2 MΩ cm) and ethanol (Wilmar, Yarraville, Australia) were used for
the preparation of solutions. Ar and He gases were purchased from BOC in 99.997% high
purity and 99.999% ultra-high purity grades, respectively.

2.2. SERS Substrate Fabrication

Nanogold was deposited on paper (Whatman filter paper No. 1) from an HAuCl4
precursor solution using the atmospheric-pressure plasma jet. 1% w/v HAuCl4 aqueous
solution was prepared and mixed with ethanol in 1:1 volume ratio to provide improved
atomisation. Using a syringe pump (Harvard PHD 2000), 20 µL/min of the liquid source
was supplied to a parallel-path pneumatic nebuliser (Burgener Research Inc., Ontario,
Canada), which atomised the droplet into a fine vapour through interaction with a fast Ar
gas stream as shown in Figure 1a,b. The plasma jet consisted of a custom-blown glass tube
(Pyrex glass, inner diameter 6 mm, thickness 1.5 mm) and two parallel ring shape electrodes.
It was powered by a high-voltage AC power supply (PVM500) operated typically at 23 kHz
with a peak voltage 7.0 ± 0.5 kV. Using a mass flow controller (SevenStar D08), 0.5 LPM
of Ar and 4 LPM of He were supplied to the active plasma discharge region. The plasma
jet module is situated on a table-top CNC (Computer Numerical Control) machine (High
Z—cncstep.de) in order to deposit and print a specified pattern. The separation between
the glass tube aperture and the substrate was 2 mm.Sensors 2021, 21, x FOR PEER REVIEW 4 of 14 
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The scanning motion of the plasma jet was tested with different scanning times, with
parameters chosen to optimise the film properties for highly sensitive SERS measurement.
In this work, all samples were deposited with six passes, each of 3 mm width at 1 mm/s.
The influence of the number of passes is shown in Figure S1 in the SI.

Unless otherwise noted, the deposited films were plasma post-treated. This was done
by scanning the films twice with the same plasma jet with He gas only at the same input
power conditions (23 kHz, peak voltage 7.0 ± 0.5 kV) and the scanning speed of 1 mm/s.

2.3. Plasma Characterisation

The optical emission spectra were measured using an optical emission spectrometer
(Acton SP2500/Princeton Instrument). The slit width was 10 µm, and the exposure time
was 3 s. A fibre input coupler placed at a radial distance of 20 mm from the plasma jet was
used. Measurements were performed for both the active plasma discharge region at the
same height as the midpoint between the two electrodes, and at a position 2 mm above the
substrate.

2.4. Surface Characterisation

XPS measurements were performed using a Specs150 SAGE instrument with an Mg
Kα X-ray source with energy 1253.6 eV. The resolution for the energy scale is 0.1 eV and
15 scans are accumulated for the elemental analysis.

The surface morphology of the printed nanogold film were characterized using field-
emission scanning electron microscope (FE-SEM.; Zeiss) operated at electron beam energies
of 5 keV with an InLens secondary electron detector.

2.5. Standard Dilutions

A stock solution of cocaine was prepared by dissolving 1 mg of solid cocaine hy-
drochloride powder in 1 mL of MilliQ water. Serial dilutions were performed to produce
standards with concentrations of 5000, 1000, 500, 100, 10 and 1 ng/mL. A 5 µL aliquot was
deposited onto the SERS substrate [38].

2.6. Oral Fluid Extractions

Oral fluid was collected under human ethics approval No: UTS ETH18–2521. Oral
fluid was spiked at concentrations of 10 and 100 ng/mL. Spiked and blank oral fluid
samples (100 µL) were pH adjusted with 100 µL 0.1 M pH 9.2 carbonate buffer and
extracted with 100 µL 9:1 dichloromethane (DCM): isopropyl alcohol (IPA) [38]. The
extraction method was adapted from Clauwaert et al. [39]. A 5 µL aliquot of the organic
phase was deposited onto the plasma-printed substrate.

2.7. Raman Analysis

Raman analysis was conducted using a Renishaw inVia Raman microscope with
785 nm laser and 1200 line/mm grating. The analysis was conducted with a laser power
of 20 mW, over the range of 550–2000 cm−1 with 10 s exposure, single accumulation and
pinhole in. The microscope objective was set to 20× magnification. For the detection of
different concentrations of cocaine, 20 spectra were collected across different points on the
substrate surface [38].

Raman mapping involved constructing a montage of the microscope images across
the entire surface and taking consecutive measurements within a grid. The distribution
of compounds on a surface was determined by picking characteristic bands and having
the image displayed as an intensity heat map. Mapping was set up over the still image
montage of the entire surface of the substrate. The montage was constructed using eight
images in the x-direction and 13 images in the y-direction. Mapping steps were 175 µm
× 175 µm in a grid for a total of 399 spectra collected across the surface. The mapping
review was conducted using the intensity at a point across four common cocaine bands,
1003 cm−1, 1032 cm−1, 1450 cm−1 and 1600 cm−1.
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2.8. Comparison with Commercial SERS Substrates

Commercial gold paper-based SERS substrates (P-SERS) were purchased from Metrohm
Australia Pty Ltd. (Sydney, Australia) and silver-coated silicon pillar substrates were
purchased from JASMAT Optics Corp (Taiwan). Cocaine standard solutions ranging in
concentration from 1–5000 ng/mL were used to compare the SERS spectra of the plasma-
printed and commercial substrates. The visible cocaine vibrational bands were annotated
on the spectra and tabulated.

3. Results
3.1. Plasma Characterisation

The estimated average power density in the plasma was 4.0 ± 0.3 W/cm3, calculated
using an estimated discharge volume of 1.6 cm3. The average electron number density was
calculated to be (1.4 ± 0.2) × 1010 cm−3, as has been previously reported [30]. The optical
emission spectrum was measured to understand the plasma reduction process in the active
discharge zone between the electrodes and near the substrate. The emission spectra from
various excited states of molecules, radicals, ions and atoms were observed, indicating
a highly reactive environment of the plasma discharge with a low gas temperature of
360 ± 30 K. The detailed optical emission measurement results are provided in the SI.
Unlike the high-temperature N2 plasma with a large amount of chloroauric acid on the
surface presented by Wu et al. [40], no excited AuCl molecules were observed. Maguire
et al. [41] suggested the high density of electrons in the plasma discharge may provide a
rapid reduction of HAuCl4. Therefore, AuCl emission may not be observable because the
lifetime of AuCl will be very short in a high-density plasma discharge with finely atomised
vapour.

3.2. Surface Characterisation

SEM images, shown in Figure S2 in the SI, revealed uniform deposition of nanogold
particles along the intrinsic matrix of the paper substrate. However, due to the charg-
ing problem, it was not possible to investigate the detailed structure and shape at high
magnification. The performance of the deposited nanogold film as a SERS substrate was
greatly improved by plasma post-treatment. Only plasma post-treated substrates were able
to detect cocaine. They also showed significantly improved sensitivity in detecting low
concentrations of Rhodamine B, as shown in Figures S3 and S4 in the SI. The improvement
is attributed to the reduction of amorphous carbon content in the nanogold films. The
carbon introduced by ethanol dissolved in the precursor solution. As we described in
Section 2.2, the plasma post-treatment was done using a He plasma jet at atmospheric pres-
sure. Because it is operated under ambient conditions, it can interact with the molecules in
the surrounding air and generate reactive radicals. It is expected to introduce new func-
tional groups and modify the surface properties, as is commonly reported for many plasma
processes at atmospheric pressure. A decreased C-C bond and newly introduced oxygen
functional groups are commonly observed when vacuum plasmas containing oxygen or
ambient-air-exposed atmospheric-pressure plasmas are used to treat carbon-based organic
materials such as fibres or polymeric substances [42,43]. Figure 2 shows the XPS spectra
of Au4 f, C1s, O1s and Cl2p for the nanogold film before and after plasma post-treatment.
The post-treatment causes a 0.4 eV shift in the Au4f peak and a clear increase in the O1 s
peak intensity. The atomic composition of the nanogold film, obtained using SpecsLab
analysis software, is given in Table 1, where the instrumental error, including variation of
X-ray intensity, analyser pass energy, aperture settings, etc., is known to be at most. 1%
for C or O, and is significantly lower for elements such as Au and Cl. The content of Cl
was below the detection limit before and after post-treatment, indicating a high level of
reduction of the ionic gold in the precursor. As shown in Figure 2, the oxygen content was
increased, and the carbon content decreased, by the plasma post-treatment.
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Table 1. Atomic composition of nanogold film deposited on paper, measured by XPS.

C [at %] O [at %] Au [at %] Cl [at %]

As deposited 63.9 34.1 2.0 0.0

Post-treated 59.6 38.3 2.1 0.0

Table 2 shows a comparison of the components of the C1 s peak for as-deposited and
post-treated nanogold films with the components of the peak for the paper-based substrate
without deposited gold. Casa XPS software was used to deconvolute the peaks with max.
0.5% error. The results indicate that plasma post-treatment has removed the amorphous
carbon layer and increased mainly the amount of O-C=O bonds.

Table 2. Influence of plasma post-treatment on deposited nanogold XPS signals: comparison of
components of C1s peak.

C1s.
Binding Energy [eV]/Composition [%]

C-C C-O C=O O-C=O

Paper base 285.0 eV (21.1%) 286.7 eV (4.0%) 288.5 eV (65.5%) 290.2 eV (9.4%)
As deposited 284.8 eV (35.2%) 286.5 eV (5.7%) 288.6 eV (49.1%) 290.1 eV (10.1%)
Post-treated 284.8 eV (32.0%) 286.7 eV (2.8%) 288.7 eV (49.1%) 290.3 eV (16.1%)

3.3. Cocaine Analysis

Figure 3 shows the visible cocaine vibrational bands when tested on the plasma-
deposited nanogold substrate after post-treatment, with increasing cocaine standard con-
centrations. It shows that the plasma-printed SERS substrate allows the detection of six to
nine characteristic cocaine vibration bands. The bands and the corresponding vibration
modes are listed in Table 3. Five bands, at 1003 cm−1, 1032 cm−1, 1164 cm−1, 1450 cm−1

and 1600 cm−1, were consistently enhanced across the concentrations tested. These bands
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correspond to the symmetric and asymmetric ring breathing, C-N stretching, asymmetric
-CH3 deformation and C=C aromatic ring stretching, respectively. Furthermore, at least
one of the three C-C tropane ring stretching bands between 848–900 cm−1 was observed
for each concentration. The band at 1200 cm−1, corresponding to the other C-N stretching
band, was observed at concentrations of 1, 100, 500 and 5000 ng/mL.
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Table 3. Cocaine bands detected in cocaine standards on plasma-printed substrate.

Bands Listed in Ref. [3] Plasma-Printed Substrate

Vibration Mode Cocaine
HCl Salt

Cocaine
HCl Salt

5000
ng/mL

1000
ng/mL

500
ng/mL

100
ng/mL

10
ng/mL

1
ng/mL

(C-C) stretching (tropane ring)
848
874
898

853
870
897

874
898

850
874
901

850
873
899

852

898

855
872
900

Symmetric stretching-aromatic ring
breathing 1004 1001 1004 1005 1003 1004 1005 1004

Asymmetric stretching-aromatic ring
breathing 1026 1027 1028 1027 1029 1026 1028 1027

C-N stretching 1165 1164 1168 1168 1164 1168 1170 1169
C-N stretching 1207 1205 1201 - 1208 1203 - 1202
Asymmetric CH3 deformation 1462 1459 1455 1458 1454 1460 1455 1458

C=C stretching-aromatic ring 1596,
1601 1599 1595 1600 1601 1602 1599 1600

C=O symmetric stretching-carbonyl 1716 1717 - - - - - -
C=O asymmetric stretching-carbonyl 1735 - - - - - - -

3.4. Spatial Distribution

The consistency of the enhancement across the plasma-printed substrate was deter-
mined using Raman mapping with four common cocaine band intensities. The intensity
heat maps shown in Figure 4 have a good correlation of the intensities across the four
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bands. The distribution across the entire surface of the substrate was found to be consistent
except along the edges where the deposited surface was no longer visible. The intensity
across these four bands allows one to conclude that the hotspots were distributed across
the surface resulting in surface-wide detection.
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3.5. Comparison with Commercial SERS Platform

The commercial substrates compared to the developed plasma printed substrate were
a paper-based SERS (P-SERS) substrate with the gold SERS active metal deposited through
inkjet printing and a silicon pillar-based substrate coated in silver (JASMAT Ag). These
substrates were chosen for comparison as the P-SERS had a similar composition to the
plasma-printed substrate and the JASMAT Ag had previously been shown to be effective
for cocaine analysis [38].

Figure 5 shows Raman spectra measured on commercial P-SERS substrate with increas-
ing cocaine standard concentrations. Only two Raman bands were consistently enhanced
on the commercial substrate at ~1000 cm−1 and ~1027 cm−1 in the presence of cocaine.
These correspond to the symmetric and asymmetric stretching of the aromatic ring. The
band at ~1600 cm−1 from C=C aromatic stretching was observed for all the concentrations
except the 10 ng/mL standard. The tropane and carbonyl bands were not observed in
any of the samples. The C-N stretching band at ~1162 cm−1 was only observed once at
10 ng/mL concentration, while the second C-N stretching band at ~1198 cm−1 was only
observed at a concentration of 1000 ng/mL and the asymmetric -CH3 deformation band
at ~1446 cm−1 was observed at 5000 ng/mL. When compared to the developed plasma
deposited substrate results, this commercial substrate enhanced fewer cocaine vibrational
bands at each concentration. Furthermore, only two bands were enhanced across the
tested concentrations compared to five consistent bands on the developed substrate. For
the detailed information on each different vibrational band detected on P-SERS substrate,
see Table S1.

The commercial P-SERS substrate did have a more intense peak at both of the con-
sistently enhanced bands. However, these bands are common among the drugs tested as
they correspond to aromatic ring breathing bands. Therefore, vibrational bands need to be
consistently enhanced to produce a characteristic fingerprint of the analyte. The analyte
can only be confirmed if enough of the characteristic bands are visible.

The three substrates were compared using the number of bands enhanced at a concen-
tration of 100 ng/mL as shown in Figure 6, and the number of bands consistently enhanced
across the six concentrations, presented in the SI. The plasma-printed substrate enhanced
between six and nine bands for each concentration. Five of these bands were consistently
enhanced across all of the concentrations. The commercial P-SERS only enhanced three or
four bands, with only two consistently enhanced. The commercial JASMAT Ag substrate
enhanced between five and seven bands for cocaine, with four being consistently enhanced
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as shown in Figure S8 and Table S2 of SI. At the concentration of 100 ng/mL, shown in
Figure 6, the plasma-printed substrate enhanced nine cocaine bands. The commercial
P-SERS and JASMAT Ag substrates enhanced three and five bands, respectively. The
cocaine bands tend to be more intense for the commercial substrates. The plasma-printed
substrate outperformed the two commercial substrates for the analysis of cocaine based on
both the number of enhanced bands and number of consistently enhanced bands.
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3.6. Application to Oral Fluid

The plasma-printed substrate was tested with cocaine extracted from oral fluid spiked
at cocaine concentrations of 10 ng/mL and 100 ng/mL. The results are presented in Figure 7.
At 100 ng/mL, there were three visible cocaine bands. These correspond to (C-C) stretching
of the tropane ring, symmetric aromatic ring breathing and C-N stretching. The lower
concentration of 10 ng/mL revealed five cocaine bands. The enhanced bands corresponded
to the (C-C) stretching of the tropane ring at 850 cm−1 and 897 cm−1, symmetric aromatic
ring breathing at 1003 cm−1, and C-N stretching at 1164 cm−1 and 1205 cm−1. Due to
the possible interference from many other compounds and proteins in oral fluid, a lower
number of enhanced bands was visible than in the standard of the same concentration.
However, it is an important result to demonstrate the possible application of the plasma
printed SERS strip in real application of on-site illicit drug testing.
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3.7. Cost Comparison

To demonstrate the cost-effectiveness of the plasma process, the production cost of the
plasma-printed nanogold SERS substrate is estimated and compared to the price of the two
commercial strips in Table S3 in the SI. The costs of electricity, gas, liquid precursor, filter
paper and depreciation of the equipment such as power supply, liquid pump, mass flow
meters and nebuliser are included based on the assumption of a five-year lifetime. The
labour cost or other possible indirect expenses are not included. The total estimated cost
to produce a single SERS substrate using the current plasma system is 0.107 AUD. This is
doubled to take into account possible errors or interruptions in processing. The details of
the cost estimation are given in Table S4 of the SI. For the cost calculation, the active area is
presumed to be the same as that of the commercial JASMAT Ag substrate. However, the
plasma-printing process enables continuous processing, unlike batch processes such as
e-beam evaporation or sputtering, which also require an expensive high vacuum system.
For large-scale processing, the current single jet system could be redesigned into an array
or slit jet to cover a large area at the same time. With that modification, a further decrease
in cost can be expected because liquid pumps and gas flow meters can be shared.
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4. Discussion

Plasma-printed nanogold on a paper based was demonstrated to be a highly sensitive
and cost-effective SERS substrate for cocaine detection. The plasma-printed substrate was
able to detect between six and nine characteristic Raman peaks of cocaine at concentrations
from 1 to 5000 ng/mL, whereas a commercial SERS gold on a paper-based substrate en-
hanced only three to four bands. In addition, the plasma-printed SERS substrate provided
better consistency than the commercial SERS substrate with Ag pillar structure, which is
currently favoured due to its high sensitivity. It is likely that the direct plasma deposition
of nanogold from a solution precursor provides desirable surface conditions without in-
terference from residual chemicals, such as reducing or stabilising agents. The additional
plasma post-treatment step removed the organic carbon layer, which may have formed
as a result of the ethyl alcohol used as a diluting solvent to improve the atomisation of
the precursor. The paper-based plasma-printed SERS substrate has the potential to be a
practical, economical solution for on-site screening or point-of-care applications, such as
illicit drug detection, when used in combination with a portable Raman system.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424
-8220/21/3/810/s1, Figure S1: Influence of the number of nanogold deposition passes on SERS
performance, Figure S2: SEM images of plasma printed nanogold film on paper substrate for SERS
measurement, Figure S3: Comparison of SERS spectra of nanogold substrates with and without
post-treatment, Figure S4: Comparison of SERS spectra of nanogold substrates with and without post-
treatment using 10−6 M of Rhodamine B aqueous solution, Figure S5: Optical emission spectra in the
range of 200–800 nm, Figure S6: Optical emission from different species in the active discharge region,
Figure S7: Optical emission from different species near the substrate and Figure S8: Comparison of
SERS spectra acquired from standard cocaine solutions with decreasing concentrations deposited onto
commercial JASMAT Ag; Table S1: Cocaine bands detected in cocaine standards on the commercial
P-SERS substrate, Table S2: Cocaine bands detected in cocaine standards on the JASMAT Ag substrate,
Table S3: Comparison of SERS substrates showing nanoparticle type, backing substrate, deposition
technique, particle size, size of active area and cost per substrate and Table S4: Estimated cost of
SERS strip printing using plasma jet based on current lab-scale system.
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