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Abstract: The potential benefits of recognising activities of daily living from video for active and
assisted living have yet to be fully untapped. These technologies can be used for behaviour un-
derstanding, and lifelogging for caregivers and end users alike. The recent publication of realistic
datasets for this purpose, such as the Toyota Smarthomes dataset, calls for pushing forward the efforts
to improve action recognition. Using the separable spatio-temporal attention network proposed in the
literature, this paper introduces a view-invariant normalisation of skeletal pose data and full activity
crops for RGB data, which improve the baseline results by 9.5% (on the cross-subject experiments),
outperforming state-of-the-art techniques in this field when using the original unmodified skeletal
data in dataset. Our code and data are available online.

Keywords: active and assisted living; action recognition; computer vision; spatio-temporal attention;
deep learning; inflated convolutional neural networks

1. Introduction

Societies of countries in the organisation for economic co-operation and development
(OECD) are faced with the challenge of increasing older population [1] as reported by
multiple agencies [2–4]. This increase brings associated fears: how to keep welfare and
provide care and health services for such a large population of older people, with ever-
shrinking workforce.

Active and assisted living (AAL) technologies aim at ameliorating the situation by
providing tools to older people, their caregivers, and health practitioners with the goal of
supporting end users to stay independent for longer using information and communication
technologies (ICTs). The European Union and other governmental bodies have recognised
the importance of this field by funding specific calls for research into the development of
related technologies, as noted by Calvaresi et al. [5].

2. Motivation

Action recognition, and more specifically the recognition of activities of daily living
(ADLs) in the context of AAL, is a research field with much potential in terms of applications
that could benefit older and dependent people: from creating a log gathering all activities
that occur during the day for long-term behaviour analysis; or for inspection by caregivers;
or for self-reflection by end users, remembrance, and therapy adherence (“did I take
that pill today?”, “when did this happen?”); to assistance robots and cue-based systems
that intervene when the user hesitates about the next step during the activity, or when
a potentially dangerous activity is detected (not just falling, but intake of pills outside
prescribed hours, leaving appliances running and forgetting about them, etc.).

However, to this day, and despite advances in the last few decades, it is still an ongoing
effort in research to achieve activity recognition under realistic conditions, not only because
more work needs to be carried out on the design and application of machine learning
methods but also due to the lack of large, unconstrained, realistic datasets. Initially, datasets
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were very ‘staged’: actions were recorded showing the side of the body undergoing the
greatest variation (mostly from the side, some frontal actions, such as ‘skip’), such as in
the Weizmann dataset [6] or the KTH dataset [7]. Furthermore, these datasets had few
action classes, and these were very distinctive from one another, and were performed
mostly on a plain background. More recently, with the emergence of RGB-D sensors
(Microsoft Kinect, Asus Xtion, PrimeSense, Orbbec Astra, etc.), several new datasets have
appeared. The reader is referred to Firman [8], who has collected and categorised most
of them. These are, in some cases, more specific to either gaming and sports, such as the
Microsoft Research (MSR) Action 3D dataset [9] or the UTD-MHAD dataset [10]; or also
daily activities recognition with the MSR Daily Activity dataset [11] or RGBD-HuDaAct [12].
However, most of these datasets are limited for data-driven learning, i.e., the most common
approach lately, with the use of ‘deep learning’-based techniques requiring greater amounts
of data. A proof of this is the fact that, for most datasets listed so far, researchers have had
to use evaluation protocols involving leave-one-out cross-validation techniques. Larger
efforts also exist, such as the Cornell activity datasets (CAD-60 and CAD-120) [13], or the
Nortwestern-UCLA (NUCLA) dataset [14]. The largest of such datasets captured from
multiple RGB-D sensors is the NTU dataset by Shahroudy et al. [15], as well as its later
extension [16]. However, one could argue that these datasets, although evolved if compared
to earlier datasets, are still very ‘unnatural’ or ’acted’, as they still have sets of repetitions of
several action classes performed at set angles and captured in laboratory conditions mostly
by young and healthy adults.

For AAL-related tasks, such as ADL recognition, general datasets for action recognition
have too much inter-class variation, i.e., larger class separation, (i.e., recorded activities
differ largely from one another), while having activities usually performed very similarly
in terms of variation among actors (low intra-class variation). This is just the opposite of
what is needed for recognition of ADLs, since there can be very similar classes that need to
be distinguished correctly (e.g., eating, taking pill, drinking water), whereas end-users will
not ‘perform’ homogeneously, but rather each will have very different ways of going about
their daily routines.

For this reason, Das et al. [17] presented a dataset for action recognition with the
particularities of ADLs: namely, one that has lower inter-class variation than usual in other
general action recognition datasets, while having greater intra-class variation by different
users. Their dataset consists of 16,115 videos, spanning 31 activity classes taken from
7 different views (not necessarily concurrently, though). More interestingly, their dataset
is captured without giving the actors any cues about the actions to perform, since it is
captured from ‘residents’ of a smart home setup. Furthermore, they do an initial proposal
as to how to perform action recognition using this dataset as their benchmark. Given the
complexity of the low inter-class variability, they propose a neural network architecture
that incorporates the concept of ‘attention’ to focus on the finer details of the action (e.g.,
objects manipulated near the hands) in the spatial, as well as the temporal domains (e.g.
bits of the video clips which are more relevant to determine the action class). They coin this
approach as separable spatio-temporal attention network (separable STA). The architecture
consists of two branches: one processing skeletal data using a three-layer LSTM (long
short-term memory blocks)); and another taking spatio-temporal (XYT) volumes of RGB
information, consisting of an I3D network (inflated 3D convolutional neural network, [18]).
The LSTM branch is then attached to the spatio-temporal attention module, which learns
spatial and temporal weights that are used, separately to modulate (each) the output of the
layer before the global average pooling (GAP) of the I3D model. These modulated feature
maps are then concatenated and passed through a 1 × 1 × 1 convolution and softmaxed to
get the final one-hot output.

Skeletal data can be extracted from diverse sources. Initially, along with the arrival of
RGB-D sensors, the first pose estimation algorithms from depth images were released: these
were mostly based on the use of synthetic depth images to achieve real-time pose estimation
from single depth images [19]. It was then possible to have quite accurate results with
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either 15 or 20 different joints, depending on the system (namely, Microsoft’s or OpenNI
using Nite). More recently, with the advent of neural networks for pose estimation [20–22],
it has been possible to obtain this information directly from RGB images, thus reducing the
cost of the deployed sensors. An additional advantage is that with inference from neural
networks it is possible to use images captured in full sun, as most RGB-D devices fail when
used in presence of ‘interfering’ infrared sources. Either way, the skeletal data obtained
often consists of N joints, and 3D data for each, yielding a 3 × N vector encoding the
skeleton. However, these points represent the person’s pose at the angle from the camera
at which the activity was originally performed, thus creating extra variability between
different samples of the same action class. One way of improving algorithm convergence
during training is to reduce intra-class variability by means of data normalisation or
simplification (dimensionality reduction). Simpler models might be employed, resulting in
faster convergence, less resources needed, and faster inference during deployment. Skeletal
data normalisation has been used in the past [15,23]. For instance, Chaaraoui et al. [23]
propose a method to find the Y-axis rotation of the skeleton’s shoulders with respect to
the sensor. This way, all skeletons will ‘face the camera’ after normalisation. Similarly, in
the NTU dataset by Shahroudy et al. [15], pre-processing of all skeletons is performed to
translate from camera coordinate system to the body coordinate system, with the origin
of coordinates centred in the ‘spine’ joint. This process is then followed by a 3D rotation
to fix the X axis parallel to the 3D vector from ‘right shoulder’ to ‘left shoulder’, and Y
axis towards the 3D vector from ‘spine base’ to ‘spine’. The Z axis is then fixed as the new
X × Y.

There are two main limitations in the STA solution proposed by Das et al. [17]. The
first one has to do with how skeletons are fed into the LSTM branch unchanged, i.e.,
without any rotation-based normalisation. This means there will be unnecessary intra-class
variation due to the angle at which the skeletons have been extracted from the different
capturing devices, making convergence of the networks harder. This paper proposes to
apply a normalisation of the skeletons as a pre-processing step. The second one, has to do
with how their I3D branch uses crops around each detection for each frame. In some cases,
this limits the capability of the model to understand the action taking place, since the action
is better represented by the displacement of the subject in space (e.g., in ‘Walk’ examples).
This spatial displacement of the subject is better visualised by the network when focusing
on the whole area. This paper introduces the idea of a full activity crop (“full crop”), taking
into account the whole bounding box where the activity takes place. This can be better
visualised in Figure 1: a woman is walking behind a kitchen counter (action label ‘Walk’).
The legs are, therefore, occluded. Top row shows the crops around the detected subject at
5 frame intervals. A green point is used to show the centre of the detection bounding box.
Note that there is no apparent movement of the subject (except the background changes).
Bottom row shows the full activity crop for the last frame in the sequence. Green dots
represent the centre of each detection throughout the activity. The trail on the bottom row
image shows that displacement of the subject within the space is more prominent using
this pre-processing for the the RGB XYT volumes.

The next section will further introduce the alternative pre-processing techniques that
can be used to achieve better action recognition performance.
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(a) frame at t = 5 (b) frame at t = 10 (c) frame at t = 15

(d) Full crop

Figure 1. Demonstration of the ‘full crop’ concept. Top row (a–c) show the crops of three frames of a
‘Walk’ sequence 5 frames apart (green dots represent centre of detection). Bottom row (d) shows the
full activity crop for the last frame of the same ‘Walk’ sequence (green dots represent centre of each
detection throughout time).

3. Alternative Skeletal and Video Pre-Processing

This section will introduce the main contribution of this paper, namely the alter-
native pre-processing techniques that can be used on the separable STA introduced by
Das et al. [17], which can improve recognition of actions on the Toyota Smarthomes dataset.
On the one hand, skeletal data, which is fed to the LSTM brach, will be normalised, rotating
the skeletons so that they ‘look at’ the camera (rotation among the Y axis). There will also
be a minor rotation on the X axis, to correct for the ‘tilt’ of the camera with respect to the
ground. Additionally, crops around the detected person will be expanded to focus on the
whole space where the activity takes place, i.e., the bounding area of the image comprising
all the detections of the subject.

3.1. Skeletal Pre-Processing

In the Toyota Smarthomes dataset [17], skeletal data is not obtained from an RGB-D
sensor, as done in other activity recognition datasets, such as the NTU dataset [15,16].
Rather, an LCR-Net (Localization-Classification-Regression) neural network [22] is applied
to the RGB video clips for each action, thus obtaining skeletons for each frame. These
skeletons show the rotation of the body as it appears in the image. The skeletal data is
provided both in image pixel coordinates, as well as estimated 3D distances of each joint
to the ‘spine’ centre. Depth information (Z axis) is, therefore, relative to this ‘spine’ joint,
which is sitting on the origin of coordinates (0, 0, 0).

The skeletal data provided has, therefore, one main disadvantage: the same action,
performed from different camera views will look completely different, i.e., the body might
be rotated in a particular way due to the distribution of furniture or appliances necessary
to develop the activity in the home (e.g., ‘washing dishes’ will occur in front of the sink).
This makes the approach too specific to the ‘current’ scenario, rather than pre-processing
the skeletons so that regardless of camera view, the activity is ‘seen’ from a view-neutral
standpoint. Furthermore, the detections of LCR-Net do not seem to correct for the angle of
the camera with respect to the ground; therefore, as shown below (Figure 2), one part of
the body (left or right, again depending on camera view) will be higher up (Y axis) than
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the other side. This might make the skeletons too specific for a camera view and could
potentially reveal this information to the network during training.

(a) Original RGB frame

X

Y

Z

8.4

original

X

Y

Z

8.4

with  rot. only

X

Y

Z

8.4

final: with  rot.

(b) Skeleton plots

Figure 2. Proposed skeleton rotation at different stages. (a) shows the original video frame; (b) left:
original skeleton as detected by LCR-Net, centre: skeleton rotated about the Y axis (intermediate
step), right: skeleton fully rotated also about the Z axis.

With these limitations in mind, two rotations are then applied to the skeletons. The
first one, to rotate all skeletons so that they are introduced to the network ‘facing forward’,
i.e., rotating them about the Y axis, using an angle α, calculated from three skeleton joints
~sl, ~sr, and ~hr, which are the left and right shoulder and the right hip, respectively. These
three joints are considered to conform the plane of the torso, and used to estimate its
rotation with respect to the XY plane of the axes. The average ‘depth’ (z subindices) and
average x values of joints to the left and right are used to calculate α:

α = arctan

(
slz − (srz+hrz)

2

slx − (srx+hrx)
2

)
. (1)

The idea behind this rotation is that it will create a camera-independent view for all
skeletons, therefore normalising them with regards of the view from which the skeleton
was curated. Furthermore, it is worth noting that angle α is only calculated once at the
beginning (at t0), so that body rotations occurring naturally as part of the activity are
not ‘over-corrected’.

Then, a second rotation is applied to compensate the angle of the camera with respect
to the ground, which is tilted downwards in most cases in the dataset employed. However,
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because of the time-independent nature of LCR-Net detections, this angle changes slightly
from frame to frame; therefore, this rotation β is calculated at each time frame (t), as:

βt =
βs,t + βh,t

2
, (2)

where βs,· and βh,· are two independent estimations for the angle between the shoulders
(~sl, ~sr) and hips (~hl, ~hr), respectively:

βs = arctan
(

sly − sry

slx − srx

)
and βh = arctan

(
hly − hry

hlx − hrx

)
. (3)

Figure 2 shows the 3D skeleton obtained for a sample of a person as seen from the
side (bottom row, left), estimated via LCR-Net from the RGB image (top row). The skeleton
is then rotated about the Y axis (using the pre-calculated α angle); and also about the Z axis
(on the XY plane), using βt.

3.2. Video Data Pre-Processing

The original paper of Das et al. [17] does video clip pre-processing by cropping the
area around the detection of single shot multi-box detector (SSD) network model [24].
However, this has two disadvantages: first, this is a box detector, rather than a mask
detector; therefore, crops might not be as accurate; and second, this is not a “historical”
cropping, i.e., taking into consideration dynamics of the detected person throughout time.
In this paper, two alternatives to this are presented. One is using Mask-RCNN (mask
region-based convolutional neural network) [25], as an alternative to SSD. The other is to
do a “full crop” of the part of the image where the human action to be recognised happened.
That is, integrating the whole space where all human detections have appeared in the
image throughout history (time). The resulting bounding box for the action is defined by
the top-left (pTL) and bottom-right (pBR) corners (points), which are the minimum x, y, and
maximum x, y coordinates of all detections through time (t), respectively. That is:

~pTL = min
i=1..t

(xi, yi); ~pBR = max
i=1..t

(xi, yi). (4)

This bounding box is shown in purple in Figure 3. Because this bounding box is not
necessarily square, but the I3D network expects a square image as input, a square crop
enclosing the purple bounding box is then used to crop the image (shown in yellow in
Figure 3). To calculate it, the centre of the purple bounding box is found, and the larger side
of it is used as the size of the side of the enclosing square bounding box. When the resulting
bounding box falls partially outside the image canvas, padding is added containing grey
pixels (RGB values of 128).

As opposed to this full activity crop, in the other results obtained, the protocol is to
calculate the square crop around each detection bounding box (shown in green in Figure 3)
separately.

3.3. Experimental Setup

The LSTM branch is trained using Adam optimiser. The implementation used is
that of Das et al. [26,27] which is initialised with a learning rate (LR) of 0.005 (5 × 10−3).
However, in the experiments in this paper (see the ‘Supplementary Materials’ section at the
end for available code and data) the LR is reduced by two orders of magnitude to 5 × 10−5.
This is because class weighing is introduced for training, since the training set is heavily
unbalanced. Training is left for 300 epochs, and the best result for the validation set then
used to run on the test set. Dropout and other parameters are left unchanged.

Learning rate adjustments have also been used in the I3D branch implementation [28],
which uses stochastic gradient descent (SGD). Again, the original LR was set to 10−2 and
reduced by two orders of magnitude to 10−4. Training runs for 50 epochs, proceeding
similarly as above.
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Regarding the separable STA, it has been re-implemented following instructions in
their paper [17]. Again the initial LR for Adam is reduced by two orders of magnitude
from the original value of 0.001 (= 10−3) to 10−5. Since the protocol of Das et al. [17]
establishes that the separable STA layers are trained jointly with the I3D, the layers of the
latter are left as trainable. This is labelled in the results tables as ’jointly’. In a previous
work by Das et al. [29], the authors intialised the STA component with equal values for the
attention weights, and Gaussian for the rest of the layers. Furthermore, they performed a
two-stage training consisting of N1 epochs with trainable branches and N2 epochs with
‘frozen’ weights on the branches. Neither of these is done here, since their paper [17] does
not mention them.

Figure 3. Frame from a ‘Walk’ sequence showing the full crop concept: a crop involving the full area
where the activity takes place (bounding box in purple). The yellow bounding box shows the square
area of the final image crop. Bounding boxes of each separate detection shown in green. For visibility,
only one in every 10 detections (green bounding boxes) is shown.

4. Results and Discussion

This section will introduce the results for the cross-subject (CS) and cross-view (CV2) ex-
periments. Additionally, a comparison with other state-of-the-art techniques is also presented.

4.1. Cross-Subject Evaluation

Table 1 shows the results for the cross-subject experiment. Train, validation, and test
subsets follow the same protocol as Das et al. [17]. Mean per-class accuracies (MPCA)
and classification accuracies are provided. ‘Baseline’ refers to the result of re-running
the original experiments, or in the case of I3D, using crops from Mask-RCNN (since the
SSD crops were not provided originally with the dataset). Each component (branch) of
the network has been trained separately for classification and then used (frozen) in the
separable STA.

Regarding the LSTM results, it is worth noting that the original paper presenting the
dataset [17] does not provide MPCA results of the implemented 3-layer LSTM architecture,
but rather that of Mahasseni and Todorovic [30]. The baseline result is lower than the
provided result (30.7% vs. 42.5%), but the rotation applied improves results (34.5%).
Additionally, given the results, another experiment adding hand-to-hand and hand-to-
head distances (3 values in total) to the skeletal data feature vector further improve the
results (labelled as ‘Rot. + Ds’: 36.7%). This shows that further feature engineering might
be beneficial in some cases.
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Table 1. Results for the cross-subject evaluation (CS). ‘Both’ refers to rotation with no distances and
full crop (jointly-trained, i.e., leaving I3D branch layers as trainable). Results provided in mean
per-class accuracy (MPCA) and overall classification accuracy. Best result in bold.

Component Variant MPCA (in %) Accuracy (%)

LSTM

Das et al. [17] 42.5 [30] —
Baseline 30.7 53.4
Rotation 34.5 54.5 (59.0) *
Rot. + Ds 36.7 54.1

I3D
Das et al. [17] 53.4 —

Baseline 58.4 73.0
Full crop 63.4 74.3

Separable STA

Das et al. [17] 54.2 75.3
Baseline 54.6 71.1
Rot. + Ds 62.8 74.0
Rotation 63.7 76.5

Both, jointly 63.5 77.1

* without class-weighing.

Regarding classification accuracies, it is worth mentioning that the introduction of
class weighing during training might reduce the accuracy while keeping the same MPCA,
showing how very unbalanced results favouring more common classes results in much
higher accuracies that artificially inflate the results. This is shown in an extra experiment
(row 3 in Table 1), in which class weighing is removed, obtaining 59% (vs. 54.5%) accuracy.

When looking at the results for the I3D branch in isolation, it can be observed that the
re-run of the original experiment with Mask-RCNN crops yields better results (58.4% vs.
53.4%). This can be attributed to the more accurate bounding boxes of the method (i.e.,
‘tighter fit’), or the fact that Mask-RCNN can detect partially occluded people better than
the SSD used by Das et al. [17], therefore having more frames with detected subjects than
in their work. When adding the full activity crop pre-processing (‘Full crop’ on the table),
results further improve to 63.4%, thus being even better than the result reported on their
paper for the separable STA (54.2%). It needs be said that the improvement of separable
STA with respect to the I3D branch in their paper is only 0.8%, i.e., the attention mechanism
does not seem to provide much improvement in terms of MPCA.

Finally, when taking the pre-trained branches, and feeding their outputs into the
separable STA, results improve with respect to the reported values by 0.2% (54.6%) when
using a ‘Baseline’ approach (note: using Mask-RCNN crops instead of SSD); or further to
62.8% when using rotated skeletons and the distances described above (‘Rot. + Ds’); and
even further when using just rotation to 63.7% or 63.5% when using ‘Both’ rotation and
full activity crops. Similarly to the results reported by Das et al. [17], improvement over
the I3D branch is marginal (0.1–0.3%), which seems to indicate that the attention network
is not contributing much to improve the end result. Please also note that, all MPCA scores
for the separable STA are higher than those reported by Das et al. [17], regardless of the
overall recognition accuracy, meaning the presented results are better for a variety of classes
(e.g., ‘Drink from cup’, ‘Eat at table’, or those between ‘Enter’ and ’Make tea, insert tea
bag’), not just over-represented ones (e.g., ‘Walk’). There is also less confusion around
cooking-related activities (e.g., ‘Cook.Stir’) (Figure 4).
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Figure 4. Confusion matrix (in %) for the best cross-subject separable STA result (‘Rotation’).

4.2. Cross-View

Table 2 shows the results for the cross-view (CV2) experiment. Again, split of se-
quences into train, validation, and test follow the protocol of Das et al. [17]. As in the CS
experiment, ‘Baseline’ represents the re-run of the experiments, but using Mask-RCNN
crops for the I3D branch.

Table 2. Results for the cross-view evaluation protocol (CV2). ‘Both’ refers to rotation with no
distances and full crop, either ‘jointly’-trained (i.e. I3D layers as trainable) or with ‘frozen’ branches.
Results in mean per-class accuracy (MPCA) and overall classification accuracy. Best result in bold.

Component Variant MPCA (in %) Accuracy (%)

LSTM Das et al. [17] 17.2 [30] —
Rotation 30.1 46.3

I3D
Das et al. [17] 45.1 —

Baseline 40.0 53.4
Full crop 48.2 63.1

Separable STA

Das et al. [17] 50.3 68.2
Rotation 40.9 53.0

Both, frozen 50.3 65.7
Both, jointly 53.6 65.6
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Starting with the LSTM results, it can be seen that, for this experiment in particular,
skeleton rotation proves very useful, as results almost double from 17.2% to 30.1%. This
can be explained by the fact that rotating skeletons so that they are viewed from a camera-
neutral standpoint clearly benefits the training process by reducing the intra-class variations
that occur when trying to learn the same activity class as seen from different views.

With regards to I3D, however, in this case, the ‘Baseline’ re-run of the experiment
provides a lower score (40.0%). The full activity crop, however, improves results to 48.2%,
which is 3.1% above the result of 45.1% reported by Das et al. [17].

For the separable STA joint network, as in the CS experiment, the results mostly
replicate those of the I3D branch. For instance, the ‘Rotation’ result is almost the same
(40.9%). This is preoccupying, since it leads to believe that the attention network is not
leading to improvement. When using the full crop variant of I3D (48.2%), it then increases
to 50.3%, which is comparable to the results by Das et al. [17]. Finally, if the I3D branch is
left as trainable (thawed), results further improve to 53.6% (3.3% improvement). Figure 5
shows the confusion matrix for this case, with improvements for some classes with respect
to results reported by Das et al. [17], e.g., ‘Get up’, ’Leave’.
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Figure 5. Confusion matrix (in %) for the best cross-view separable STA result (‘Both, jointly’).
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4.3. Comparison to Other Methods

Finally, Table 3 shows the results when comparing the proposed pre-processing
techniques on separable STA to other methods in the literature.

Table 3. Comparison to state-of-the-art methods. Mean per-class accuracy (in %).

Method CS CV1 CV2

separable STA [17] 54.2 35.2 50.3
VPN [31] 60.8 43.8 53.5
AssembleNet++ [32] 63.6 — —
2s-AGCN [33,34] 57.1 22.1 49.7
2s-AGCN+PRS [34] 60.9 22.5 53.5
5C-AGCN+PRS [34] 62.1 22.8 54.0
VPN+PRS [34] 65.2 — 54.1

Proposed (best values) 63.7 — 53.6

The Video-Pose Network (VPN) model of Das et al. [31] focuses on a shortfall of
separable STA, which is that the pose and RGB information are not coupled: The LSTM
branch is used to assist the attention block, to modulate the I3D output spatially and
temporally, and these two modulated outputs are then concatenated and fed to the final
classifier. However, there is no embedding (i.e., spatial correspondence, or coupling)
between pose data, and RGB data. The VPN network focuses on this need, and consists
of two main elements: an spatial embedding module to calculate joint to image-region
correspondences, and an attention network of similar nature than that used in separable
STA [17]. The results show that VPN outperforms separable STA (60.8% vs. 54.2% on CS;
and 53.5% vs. 50.3% on CV2). Nonetheless, keeping the separable STA architecture, using
proposed pre-processing methods, results improve further to 63.7% (on CS, with rotation),
or 53.6% for CV2 using both.

Ryoo et al. [32] present AssembleNet++, an improvement on AssembleNet [35] that
uses a multi-stream architecture with self- and peer- attention mechanisms. Their model
uses three different modalities as inputs, namely: RGB data and optical flow, as well as
object segmentation model trained pre-trained with the ADE-20K dataset. Their model is
otherwise trained from scratch and achieves an overall classification accuracy of 80.6%,
with a MPCA of 63.6%. This demonstrates that object segmentation, i.e., information about
objects present in the scene helps improve recognition of activities, specially when those
are very similar (e.g., ‘drink from cup’ v. ‘drink from glass’). Regardless, the proposed pre-
processing techniques suffice on the separable STA model to achieve comparable results:
63.5% when using rotation of skeletons and full activity crops; or 63.7% when using rotation
of skeletons only.

Finally, a very recent paper by Yang et al. [34] proposes a pose aggregation and refine-
ment system, consisting on the use of several pose estimation algorithms (LCR-Net++ [22],
AlphaPose [36], and OpenPose [37]), and a selective spatio-temporal aggregation (SSTA)
mechanism that will select the best combination of skeletal data available. The resulting
skeletons are more stable along time and regressed from a series of pre-clustered ‘an-
chor’ poses (similar to ‘key poses’ of Chaaraoui et al. [38]). With these refined poses, a
weakly-supervised algorithm (pose refinement system, or PRS) is used to improve the
results of LCR-Net++, so that not all pose estimators have to be used at every frame. As a
consequence, the skeletons employed after applying PRS are a different set of skeletons to
that used in this paper, and the others reviewed so far. This makes comparison of results
difficult, since it would be necessary to re-run all other algorithms with this new set of
skeletons for fair comparison (for this reason, the results using PRS appear greyed out in
Table 3).

Two different approaches are tried by Yang et al. [34]: one using only pose-based
information and using Adaptive Graph Convolutional Networks (AGCNs). They compare
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two-stream AGCN (2s-AGCN, from Shi et al. [33]) with and without PRS-improved skele-
tons, as well as expanding it to 5 channels (‘5C-AGCN’ results), which further improves
their results on pose data only; the other, uses the VPN network proposed by Das et al.
[31], adding PRS skeletal data. The latter achieves an MPCA of 65.2% for CS, and 54.1%
for CV2. Nonetheless, the proposed pre-processing mechanisms still show the second best
results, when compared to VPN with PRS (only 1.5%, and 0.5% below, respectively), at
63.7%, and 53.6%.

5. Conclusions

When looking at non-PRS results, the proposed methodology results in improved
results for the Toyota Smarthome dataset, using the model proposed along with its publica-
tion, i.e., separable STA. This is better than other models that do not use pose information,
but use seemingly very informative data, such as object segmentations, as done in As-
sembleNet++ [32]. Moreover, results are better for CS and comparative for CV2 when
compared to VPN [31], which uses pose-to-image to couple both modalities. Improvement
over the baseline separable STA [17] is of 9.5% for CS, and 3.3% for CV2.

Future work involves using PRS-enhanced skeletal data, to assess the improvement
provided by the proposed method. Given that, particularly for CV2, pose-based recognition
is improved almost two-fold (×1.75). Furthermore, it is very likely that the pre-processing
techniques employed in this paper would benefit the results reported by Yang et al. [34]
even further.

Additionally, and regarding privacy-aware algorithms for action recognition, it would
be interesting as future work to replace all humans in RGB images by body-part labelled
avatars (e.g., using DensePose [20]), thus simplifying (i.e., reducing intra-class variation)
the particularities of each individual. This could be done by impainting the person in the
RGB image, and using a multi-stream network with the dense poses as a separate stream,
or directly by ‘drawing’ them on the RGB space. Studying how a dense pose (i.e., mesh-like
structure) compares to a sparse one (joint-only pose) for action recognition is also interesting
in that regard. This might lead to privacy-preserving AAL applications that improve end
user acceptance of these technologies in ageing societies needing them the most.

Supplementary Materials: The code, data, and results (along with additional confusion matrices)
are available online at https://github.com/DAIGroup/improved_HAR_on_Toyota.
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