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Abstract: Gears are a vital component in many complex mechanical systems. In automotive
systems, and in particular vehicle transmissions, we rely on them to function properly on different
types of challenging environments and conditions. However, when a gear is manufactured with a
defect, the gear’s integrity can become compromised and lead to catastrophic failure. The current
inspection process used by an automotive gear manufacturer in Guelph, Ontario, requires human
operators to visually inspect all gear produced. Yet, due to the quantity of gears manufactured, the
diverse array of defects that can arise, the time requirements for inspection, and the reliance on the
operator’s inspection ability, the system suffers from poor scalability, and defects can be missed
during inspection. In this work, we propose a machine vision system for automating the inspection
process for gears with damaged teeth defects. The implemented inspection system uses a faster
R-CNN network to identify the defects, and combines domain knowledge to reduce the manual
inspection of non-defective gears by 66%.

Keywords: automated inspection; automotive gears inspection; gear defect detection; machine vision
inspection.

1. Introduction

Gears play an important role in automotive transmission systems, where they are
used to transfer power from the vehicles motor through to the various wheels. The types
of gears used in these transmissions are typically mass-produced, with different kinds of
gears used in different vehicles, and all manufactured using different dyes and tooling
processes. Due to these conditions, it is possible for a manufactured gear to either directly
or indirectly be produced with a defect(s). Further, while these defects are relatively rare,
due to the importance of the gear within automotive transmission, the defects must be
caught before further downstream use and system assembly.

At an automotive gear manufacturer located in Guelph, Ontario, the current quality
control inspection process requires human operators to manually inspect all gear for the
presence of defects. However, the accuracy of such a system depends on the ability of the
inspector to recognize defects in the gears. As the defects are infrequent and have diverse
profiles, and as the gears themselves have different shapes and material characteristics
(e.g., reflective surfaces), inspection can be a challenging and time-consuming process. All
of these factors contribute to the quantity of parts that can be inspected daily, and as such,
an automated system that can improve the inspection accuracy and speed is required to
further optimize the quality control process.

1.1. Manufactured Gear Profiles

Four different configurations of helical gears are manufactured by this facility for use
in automotive power transmissions. These gears have the same overall shape, but differ in
their corresponding tooth profiles. The four gears share the same total length of 96 mm,
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a tooth length of 54 mm, and the same outer end shaft diameters (i.e., both shaft ends) of
40 mm and 50 mm, respectively. In addition, they have the same tapered inner profile, with
the profile diameter increasing from 25 mm (inner) to 28 mm (outer). Table 1 presents the
characteristics of the four different types of gears, as stated in the seminal work by Hall [1].

Table 1. Characteristics of the four types of gears produced by the factory in Guelph, Ontario [1].
Diameters and angles are in mm and degrees, respectively.

Gear Type Teeth Pitch Diameter Helix Angle Pressure Angle Major Diameter Minor Diameter

A 22 69.57 23.5 22.5 78.5 62
B 22 66.437 22.5 22.5 75.2 59.5
C 26 73.368 21.25 20 82 66.5
D 22 63.953 21.75 22.5 72.4 57.5

1.2. Manufactured Gear Defect Types

There are many different types of defects that can be observed on any of the manufac-
tured gears [1]. These defects occur randomly on different gears, with no specific defects
occurring for any specific gear type. In this work, we focus on detecting one of the most
frequently observed defects, which is known as damaged teeth.

Damaged Teeth

The damaged teeth defect has a distinct profile on the gear, which usually appears as
a laceration or lesion on the surface, and can be recognized by human operators through
visual inspection. This defect can occur in different spots on a gear tooth, and can also
appear on one or more teeth of the same gear. The most common sites where this defect is
found includes the edge of a tooth and along the top land (the topmost surface of the tooth).
When a defect is present on the edge of a gear tooth, the defect can cause a misalignment
between the gears in the gearbox, which can in turn cause damage to the gearbox [2].
Figure 1 presents an example of the damaged teeth defect occurring on a gear “tooth edge”
(top row), and on the “top land” (bottom row).

Figure 1. Damaged Teeth defect on the Tooth Edge (top row), and Top Land (bottom row).

1.3. Contributions

In this work, we present a novel detection method for detecting damaged teeth defects
that occur on automotive gears. The method is based on using a deep learning frame-
work [3] combined with domain knowledge of a gear scan to provide a 100% scan accuracy
for all gears. It is expected that this method will be used in combination with human
inspection to improve the quality control process for manufactured automotive gears.
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2. Literature Review

Machine learning techniques have a history of being used for manufactured part
inspection [4–6]. However, within the past few years, progress in advanced machine
learning techniques belonging to the field of deep learning, and the transition to an Industry
4.0 enabled environment, has encouraged the development of smarter and more intelligent
inspection protocols.

With respect to vision-based tasks (e.g., such as defect inspection, in this work), one
of the most promising families of deep learning models is known as convolutional neural
network (CNN) [7]. Part of what has enabled this success is captured in the inductive
spatial bias of the network, along with the fact that these networks can learn features of the
data required to solve a task—rather than requiring humans to manually design them in
advance of system deployment. For a complex task, such as gear defect detection, where
defects and gears can have visually diverse and challenging profiles, deep learning is well
positioned to tackle this problem.

Work by Zhou et al. [8] proposed a CNN model capable of learning both low level
features (e.g., edges and corners) and high level features (e.g., objects) to classify surface
defects on hot-rolled steel sheets. Extracting both feature levels enhanced the feature
representation and, consequently, the performance of the classification. In [9], Song et al.
proposed an inspection method based on CNN to classify four types of defects that appear
on metal screws. The model was trained on a dataset of metal screws collected by the
authors and scored an accuracy of 98%, which showed better results when compared to
LeNet-5 [10] and traditional template matching methods.

In [11], Wen et al. proposed an algorithm to inspect the circularity of bearing rollers,
as well as the defects that occurred on them. The Hough transform method [12] was used
to detect the circular contour of the bearing and check for circularity, and a CNN was used
to extract features of the bearing rollers to classify and locate four common defects.

While deep learning models typically require a significant amount of positive and
negative examples (or, e.g., defective and non-defective labels) for training, the nature of
manufacturing tends to shy away from this trend—producing parts that conform to some
pre-defined specs the majority of the time, and only producing defective parts intermittently.
Studies have applied different methods to overcome this problem, such as in [13], where
Yun et al. proposed a data augmentation method (based on a variational autoencoder) to
increase the amount of training data for steel surface defect classification.

Transfer learning is another technique that has been applied to combat issues of the
low-sample label regime. Transfer learning makes use of models trained on one domain,
and then transfers the learned knowledge (i.e., learned features) to a secondary, target
dataset. In the visual domain, ImageNet [14] is a common source dataset used due to its
vast size and sample diversity. In [15], Natarajan et al. applied a pre-trained CNN from
ImageNet to detect metal surface defects. To improve the feature extraction process of
steel surface defects, He et al. [16] added a multilevel feature fusion network (MFN) to
the feature maps extracted from a CNN trained with the NEU-DET defect classification
dataset [17]. This MFN integrates various hierarchical features into one feature, which
contains more information about the location of the defects. A region proposal network
(RPN) was included in this algorithm to generate regions of interest (ROIs). A detector was
then applied to classify and locate defects on these ROIs. Other studies have applied both
data augmentation and transfer learning. Zeng et al. [18] applied both methods to detect
defects on a steel sheet, while Neuhauser [19] applied these methods to inspect the profiles
of extruded aluminum.

3. Description of the Method

To detect the damaged teeth defect on gears, we propose a novel method that is based
on integrating domain knowledge with the faster-RCNN deep learning model [20] trained
using bounding-box annotations of the defect. The output of faster-RCNN includes the
(1) bounding box proposals of areas in an image that look like the defect, and (2) the
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corresponding probability that the area actually contains the given defect. Below, we briefly
discuss the structure of faster-RCNN [20], and then explore how predictions from this
model can be incorporated in an automated inspection system to flag gears with defects. In
particular, we focus on how domain knowledge can be applied to reduce the false-positive
detection rate.

3.1. Defect Detection via Faster R-CNN

Faster-RCNN [20] is a CNN-based model that takes an image (e.g., RGB) as input,
and proposes bounding-box localization(s) of target object(s) and corresponding class
probabilities. Faster R-CNN (Figure 2) consists of three different network components:

1. A backbone network for feature extraction;
2. A region proposal network (RPN) [20] that identifies interesting areas of an image;
3. A fast R-CNN [21] for object classification and bounding box regression.

Figure 2. Faster R-CNN deep learning network for defect detection.

Given an input image (in this work we consider RGB images), the backbone network
is used to extract features from the image that can be used for both object localization and
classification further down the network pipeline. These features take the form of spatial
(Width × Height × Depth) feature maps (depth = 256 channels is kept constant across the
extracted layers), which are produced at different scales, depending on the current layer of
the network. The backbone network combines both a feature pyramid network (FPN) [22]
(with bottom-up and top-down pathways), and a residual neural network (ResNet) [23]
with 50 layers.

The region proposal network takes the features maps from the backbone network, and
slides a 3 × 3 convolutional filter over them to output a number of bounding boxes along
with their probability scores of being an object (i.e., here, being a damaged teeth defect).
At each sliding window position, anchors are generated with different scales and aspect
ratios, to be considered as either a foreground or a background class. To have a balanced
dataset, the network randomly selects labels from the background class and reduces the
number of its labels to be equal to the foreground class.

Finally, the Fast R-CNN component takes both the output feature maps from the FPN
and the predicted objects from the RPN, and performs both bounding box classification
and bounding box regression. The network classifies the predicted object as being either a
damaged teeth defect or a background class, and also outputs the four coordinates of the
bounding box that contains the object.
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3.2. Applying Domain Knowledge to Reduce False Positive Detections

Using the combined bounding box and class probability predictions from faster-RCNN
(Section 3.1), a naïve gear inspection method could be designed to flag gear for further
review if, e.g., a certain number of defect detections are made, or a certain classification
threshold is reached. We should note that these predictions are made over individual
images of the gear. Regardless of how confident the network may be in its predictions,
such an approach could have a propensity for detecting false-positives, as, e.g., surface
reflectance, dust, or defect profiles remain high. In turn, as more false-positives are
predicted, a larger number of gears would be flagged for further manual review, and
negatively impact the performance of the system.

Instead we propose incorporating domain knowledge about the inspection process.
We require the defect to be detected across multiple, sequential images of the gear scan. If
a defect is detected on one tooth of the gear, the same defect should still remain visible if
the gear is rotated slightly, albeit in a slightly different location. Figure 3 highlights this
observation using four consecutive images with the same defect.

Figure 3. The same damaged teeth defect remains visible to the camera as the gear is rotated during
inspection starting from the left most image to the right most image.

By combining the defect prediction probability (e.g., 75%, 80%, 85%) with the number
of sequential images, we expect to see the defect in (e.g., 1, 2, or 3 sequential images), we
can devise a heuristic that allows us calibrate the inspection system to reduce the number
of false positive, gear-level predictions made by the system. We explore this setting further
in Section 5.3.

4. Data Collection and Experimental Setup

Data were collected at the facility in Guelph, Ontario, over a period of several months.
Quality control inspectors first identified gears that had one or more defects, and then
set them aside for our team to scan and label further using a specially designed data
acquisition system. The inspectors also set aside random gears without any defect.

4.1. Data Acquisition System

Hall [1] and Cole Tarry developed a visual data acquisition system that could capture
images of defective and non-defective gears inspected at this manufacturing facility. The
system is equipped with two cameras installed at opposite ends of the inspection chamber,
which together are able to capture the full extent of the gear to be inspected. A rotating
gripper within the cell is used to hold the gear and rotate it such that every gear tooth
can be imaged. We refer to the process of imaging every gear tooth as a full “gear scan”.
Figure 4 shows the basic gear scanning and data collection setup.

The smallest defect targeted by the system has a size of 0.42 mm. The spatial resolution
of the two cameras was previously calculated to be 2048 × 1536 and 2448 × 2048 pixels for
the first and second cameras, respectively, corresponding to a size of 0.05 mm/pixel. In
addition, light panels were installed inside the chamber to ensure that the defects could
be seen.
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Figure 4. Inspection cell and sample camera images. Left: inspection cell, Top Right: image from the
first camera, Bottom Right: image from the second camera.

4.2. Gear Scanning and Ground Truthing Procedure

As mentioned, every gear was first manually inspected by quality control personnel
at the manufacturing facility to ensure label correctness. The inspector indicated on the
gear whether a defect was present, and if so, the type of defect and general area it could be
found. Information on the type of gear (Table 1) was also recorded prior to the gear scan.

After this information was recorded, the inspected gear was mounted on the rotating
gripper, and the two cameras collected an image of the top-most gear tooth. The images
were saved in a database, and then the gripper rotated such that the next tooth was aligned
with the cameras. This process repeated for all 22 or 26 teeth before the system reset back to
the start, and the next gear was scanned. We generally observed the scanning procedure to
take around 90 s per gear, though note that the current system has not been optimized for
speed, which is left for future work. We expect that optimizing the computing hardware
and using continuous scanning will cut this time to around 20 s per gear.

A total of 193 gears with a damaged teeth defect, and 100 gears without a defect, were
scanned by the system. All scanned gears were picked randomly from the manufacturing
process without any bias to a specific outcome. The COCO annotator [24] was used to
generate bounding-boxes around the scanned damaged teeth defects. From these scans,
1711 images were found to have a defect, and a total of 3172 defects were labeled. The
labeled defects had sizes ranging from 0.55 to 10.45 mm, and an average of 2.04 mm. All
sizes were measured using the largest side of the defect. During the data collection process,
we did not notice any instances where multiple types of defects were present on the gear at
the same time.

4.3. Training Parameters

Our faster-RCNN model was built using Facebook’s Detectron2 python library [3].
For training the network, we considered only one foreground class (i.e., damaged teeth
defects), and used a batch size of four images. We fine-tuned a faster R-CNN using a
pre-trained ResNet-50 backbone, and SGD optimizer. We used a learning rate of 0.01, and
trained the network for 10,000 iterations.

5. Evaluation

To evaluate our model, we tested how well it could (1) detect defects on images;
(2) detect defects on different gears; and (3) flag gears for further, manual inspection in an
industrial setting.

5.1. Cross Validation on Images with Defects

To evaluate the general ability of our model to detect the damaged teeth defect, we
trained the model using a 10-fold cross validation strategy and the dataset of 1711 defect
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images. In each fold, 90% of the images were used for training and 10% of the images were
used for testing. Figure 5 shows the average precision and recall results.

Figure 5. Average precision and recall of the 10-folds for the damaged teeth defects.

As shown in Figure 5, the model performed well in terms of both precision and recall
among the various confidence thresholds. When a classification threshold of 75% was used
(i.e., at ≥ 75% probability of being a damaged tooth defect), the model was able to detect
86% of the defects (recall) and maintain a precision of 87%. As the prediction threshold was
increased, the model began to miss some defects (lower recall), but also began to eliminate
more false positives.

5.2. Evaluation on Images with Defects on 30 Gears

Thirty (30) gears were randomly selected from the set of 193 gears to form an inde-
pendent test set to evaluate our model gear inspection performance. We note that this
test set was preserved only for testing the model and it was not included in any stages of
training or validation of the model. In this test set, there are 306 images with damaged
teeth defects, and a total of 554 defects labeled. The remaining 163 gears were used as a
training set, and included 1405 images with a defect. Figure 6 shows the model precision
and recall performance on the test, after re-training on the data split. When a prediction
threshold of 75% was chosen, the model achieved a precision and recall score of 88% and
86%, respectively. The model also showed good precision and recall percentages when the
prediction score was increased.

Figure 6. Precision and recall values for 306 images of damaged teeth defects.
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5.3. Whole Gear Inspection and Industrial Validation

The evaluations in Sections 5.1 and 5.2 were performed on individual images of gears
that had damaged teeth defects, and was used to evaluate how well the faster-RCNN
model was able to detect them. However, in an industrial setting, using only the prediction
confidence and detection for a single image could possibly send a large number of gears
for manual inspection due to the potential for detecting false-positives. In this experiment,
we applied our faster-RCNN model (Section 5.2) to the entire gear scan of both defective
and non-defective gears, and evaluated the model performance on identifying defective
gears when the consecutive image constraint was applied.

First, we evaluated our model (faster R-CNN and the consecutive image constraints)
on gears without a defect, to understand how many gears would be detected as a false
positive. Table 2 shows the results of our model when applied to the set of 100 defect-free
gears collected in Section 4.2. Note that as these gears were manufactured without a defect,
any predictions satisfying these constrains would correspond to a “defect-free” gear that
would have to undergo further, manual human inspection.

Table 2. False positive percentages when testing the system on 100 non-defective gear scans.
“Images = X” represents the number of sequential images of the gear scan where a defect was pre-
dicted with a probably greater than the corresponding prediction confidence.

Prediction Confidence Images = 1 Images = 2 Images = 3 Images = 4

75% 94% 69% 49% 34%
80% 91% 60% 44% 32%
85% 83% 57% 40% 28%
90% 78% 48% 34% 24%
95% 57% 36% 24% 14%

From Table 2, it can be seen that, as the number of consecutive image requirements
increased, the number of gears that were flagged as having a defect would decrease
accordingly. Compared to the case when only one image was used, the results show that
using the multiple consecutive image constraints resulted in a significant decrease in false
positives reaching almost 50% reduction with three images and 66% reduction with four
images. Intuitively, this means that for gears without a defect, the model would have to
make one or more false-positive detections across multiple sequential images, in order
for the gear to be flagged as having a defect. This could be seen from Figure 7, where an
example of a false positive was not picked as a defect when a threshold of three consecutive
images and a prediction confidence of 90% were applied. Thus, as long as the system has an
ability to detect defects on a gear (e.g., Figure 6), we can further improve the false-positive
detection performance by requiring defects to be predicted across multiple, sequential
images of the gear. We do not present results beyond four consecutive images due to two
factors. Some defects (which appear on the “top land” of the tooth) will not be visible unless
they are close to the centre of the image. Moreover, lenses suffer from optical distortions
away from the optical center.

When tightening the constraints on the number of consecutive images and prediction
confidence, from Figure 6, we expect the model to also miss detecting some gears with a
defect. That is, because we require predictions with strong confidence to be made across
multiple images, if a gear has a defect, but these requirements are not met, then the system
would fail to flag the gear for manual inspection. Table 3 presents the false-negative
prediction results, when applying our model and constraints on the test set of 30 defective
gears (Section 5.2).
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Figure 7. A false positive was not considered a defect since it was detected by the algorithm only on
the first and second images (surrounded by blue and yellow bounding boxes), and was not detected
on the third image (red circle).

Table 3. False negative percentages with consecutive image constraints on 30 defective-gear scans.
“Images = X” represents the number of sequential images of the gear scan where a defect was
predicted, probably greater than the corresponding prediction confidence.

Prediction Confidence Images = 1 Images = 2 Images = 3 Images = 4

75% 0 0 0 6.70%
80% 0 0 0 10%
85% 0 0 0 10%
90% 0 0 0 13.30%
95% 0 0 3.30% 23.30%

Table 3 indicates that, when we set a classification threshold of ≥ 90% and required
a defect to be detected in three images, the model was able to successfully detect 100%
of the defective gears (i.e., 0% false negatives). When the number of consecutive images
was set higher however (e.g., requiring four images to have a predicted defect), some of
the defective gears were missed by the model. Together, Tables 2 and 3 suggest that, at
a consecutive image constraint of images = 3, and a confidence threshold of ≥ 90%, the
model would be able to detect 100% of the gears with a defect (Table 3), while also reducing
the manual inspection of the non-defective gears to 34% (Table 2).

6. Discussion and Conclusions

The proposed deep learning model for damaged teeth defect inspection performed
well when the domain knowledge constraint was added. The best results came about by
setting the prediction threshold to 90% and the number of consecutive defective images
that needed to contain a defect to three images. In addition, only 34 of the 100 non-defective
gears were classified as defective. This result indicates that, rather than manually inspecting
all 100 gears, the number of gears requiring manual inspection could be reduced by a total
of 66%. Adding the domain knowledge constraint of requiring sequential images to contain
a defect adds only minimal complexity to the inspection systems.

In this work, we focused on training a single model to detect a single defect. When
applied in a real-world industrial setting, there are several benefits to this kind of ap-
proach: from the obvious ability allowing a model to specialize to detect a single type of
defect (damaged teeth defect), to the lesser obvious, but still important aspects of model
maintenance. Adding a new type of defect to the detection pipeline would require a new
model to be trained—rather then performing the time-consuming and laborious process of
re-updating the current model, again, for every defect. In addition, credit assignment and
blame becomes more straightforward for management personnel in these situations.

With these considerations in mind, in future work, we seek to capture more defects
that can occur on the gears, and evaluate the performance of a single unified defect
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detection model. We also plan to evaluate the model performance when more labeled data
are available.

Author Contributions: Conceptualization, M.M.; methodology, M.M., M.V. and A.A.; software,
A.A., C.T. and M.V.; validation, A.A. and C.T.; investigation, A.A., M.M., C.T. and M.V.; resources,
M.M.; data curation, C.T.; writing—original draft preparation, A.A.; writing—review and editing,
A.A., M.M. and M.V.; visualization, A.A.; supervision, M.M.; project administration, M.M.; funding
acquisition, M.M. All authors have read and agreed to the published version of the manuscript

Funding: This research was funded by a Collaborative Research and Development Grant from the
Natural Science and Engineering Research Council of Canada (NSERC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of data used in this paper. Data
was obtained from an industrial partner and are available from the authors with the permission of
the industrial partner.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hall, G. A Data Collection System for Future Automation Applications. Master’s Thesis, College of Engineering, University of

Guelph, Guelph, ON, Canada, 2020. Available online: http://hdl.handle.net/10214/17892 (accessed on 25 October 2021).
2. Panwar, V.; Mogal, S. A Case Study on Various Defects Found in a Gear System. Int. Res. J. Eng. Technol. 2015, 3, 425–429.
3. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. Available online: https://github.com/facebookresearch/

detectron2 (accessed on 25 October 2021).
4. Shi, T.; Kong, J.Y.; Wang, X.D.; Liu, Z.; Zheng, G. Improved Sobel algorithm for defect detection of rail surfaces with enhanced

efficiency and accuracy. J. Cent. South Univ. 2016, 23, 2867–2875. [CrossRef]
5. Wang, Y.; Xia, H.; Yuan, X.; Li, L.; Sun, B. Distributed defect recognition on steel surfaces using an improved random forest

algorithm with optimal multi-feature-set fusion. Multimed. Tools Appl. 2018, 77, 16741–16770. [CrossRef]
6. Wu, G.; Zhang, H.; Sun, X.; Xu, J.; Xu, K. A bran-new feature extraction method and its application to surface defect recognition

of hot rolled strips. In Proceedings of 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 18–21
August 2007; pp. 2069–2074.

7. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
8. Zhou, S.; Chen, Y.; Zhang, D.; Xie, J.; Zhou, Y. Classification of Surface Defects on Steel Sheet Using Convolutional Neural

Networks. Mater. Technol. 2017, 51, 123–131. [CrossRef]
9. Song, L.; Li, X.; Yang, Y.; Zhu, X.; Guo, Q.; Yang, H. Detection of Micro-Defects on Metal Screw Surfaces Based on Deep

Convolutional Neural Networks. Sensors 2018, 18, 3709. [CrossRef] [PubMed]
10. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. IEEE 1998, 86, 2278–2324.

[CrossRef]
11. Wen, S.; Chen, Z.; Li, C. Vision-Based Surface Inspection System for Bearing Rollers Using Convolutional Neural Networks. Appl.

Sci. 2018, 8, 2565. [CrossRef]
12. Hough, P.V. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962.
13. Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated Defect Inspection System for Metal Surfaces Based on Deep

Learning and Data Augmentation. J. Manuf. Syst. 2020, 55, 317–324. [CrossRef]
14. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai Li.; Li Fei-Fei. ImageNet: A Large-scale Hierarchical Image Database. In Proceedings

of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

15. Natarajan, V.; Hung, T.Y.; Vaikundam, S.; Chia, L.T. Convolutional Networks for Voting-based Anomaly Classification in Metal
Surface Inspection. In Proceedings of 2017 the IEEE International Conference on Industrial Technology (ICIT), Toronto, ON,
Canada, 22–25 March 2017; pp. 986–991. [CrossRef]

16. He, Y.; Song, K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical
Features. IEEE 2020, 69, 1493–1504. [CrossRef]

17. Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl.
Surf. Sci. 2013, 285, 858–864. doi:10.1016/j.apsusc.2013.09.002. [CrossRef]

18. Zeng, W.; You, Z.; Huang, M.; Kong, Z.; Yu, Y.; Le, X. Steel Sheet Defect Detection Based on Deep Learning Method. In
Proceedings of the 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh,
Morocco, 14–19 December 2019; pp. 152–157. [CrossRef]

http://hdl.handle.net/10214/17892
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://doi.org/10.1007/s11771-016-3350-3
http://dx.doi.org/10.1007/s11042-017-5238-0
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.17222/mit.2015.335
http://dx.doi.org/10.3390/s18113709
http://www.ncbi.nlm.nih.gov/pubmed/30384497
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/app8122565
http://dx.doi.org/10.1016/j.jmsy.2020.03.009
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/ICIT.2017.7915495
http://dx.doi.org/10.1109/TIM.2019.2915404
http://dx.doi.org/10.1016/j.apsusc.2013.09.002
http://dx.doi.org/10.1109/ICICIP47338.2019.9012199


Sensors 2021, 21, 8480 11 of 11

19. Neuhauser, F.M.; Bachmann, G.; Hora, P. Surface Defect Classification and Detection on Extruded Aluminum Profiles Using
Convolutional Neural Networks. Int. J. Mater. Form. 2020, 13, 591–603. [CrossRef]

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2016, arXiv:1506.01497.

21. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.
22. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. arXiv 2017,

arXiv:1612.03144.
23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
24. Brooks, J. COCO Annotator. Available online: https://github.com/jsbroks/coco-annotator (accessed on 25 October 2021).

http://dx.doi.org/10.1007/s12289-019-01496-1
http://dx.doi.org/10.1109/CVPR.2016.90
https://github.com/jsbroks/coco-annotator

	Introduction
	Manufactured Gear Profiles
	Manufactured Gear Defect Types
	Contributions

	Literature Review
	Description of the Method
	Defect Detection via Faster R-CNN
	Applying Domain Knowledge to Reduce False Positive Detections

	Data Collection and Experimental Setup
	Data Acquisition System
	Gear Scanning and Ground Truthing Procedure
	Training Parameters

	Evaluation
	Cross Validation on Images with Defects
	Evaluation on Images with Defects on 30 Gears
	Whole Gear Inspection and Industrial Validation

	Discussion and Conclusions
	References

