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Abstract: This paper investigates the propagation of estimation errors through a common coning,
sculling, and scrolling architecture used in modern-day inertial navigation systems. Coning, sculling,
and scrolling corrections often have an unaccounted for effect on the error statistics of inertial
measurements used to describe the state and uncertainty propagation for position, velocity, and
attitude estimates. Through the development of an error analysis for a set of coning, sculling, and
scrolling algorithms, mappings of the measurement and estimation errors through the correction term
are adaptively generated. Using the developed mappings, an efficient and consistent propagation of
the state and uncertainty, within the multiplicative extended Kalman filter architecture, is achieved.
Monte Carlo analysis is performed, and results show that the developed system has favorable
attributes when compared to the traditional mechanization.
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1. Introduction

Inertial navigation describes the technique whereby the integration of non-gravitational
specific force and total angular rate measurements are used in conjunction with a gravity
model to produce estimates for the vehicle states: i.e., the inertial position, velocity, and
attitude. In combining the modern inertial navigation system (INS) with the extended
Kalman filter (an extension to the Kalman filter [1] for nonlinear systems), estimates for
these states and a measure of uncertainty in each can be maintained. Before the introduc-
tion of strapdown sensors, inertially stabilized platforms (ISPs) were used to maintain
the vehicle’s navigation frame and isolate the necessary sensors from the body’s rotation
and any present vibration. A few examples of ISP mechanizations of the INS include the
Apollo PGNCS [2], which served on both the command module and lunar module, and
those developed for the Minuteman III and Peacekeaper intercontinental ballistic missiles
[3]. Though ISPs were the standard until late in the 20th century, they have been widely
replaced by the strapdown mechanization, where the sensors are instead “strapped down”
or attached directly to the structure of the vehicle [4]. The introduction of strapdown
inertial navigation systems (SINSs) significantly reduced the mass and complexity of the
INS, as compared to the ISPs, by removing auxiliary components required for the housing
and stabilization of ISPs. An early adoption of the SINS for space missions includes the
Apollo Abort Guidance System in 1969 as a backup to the PGNCS, where the added mass of
a second ISP became a significant consideration [5]. Unfortunately, with the adoption of the
SINS, it became necessary to computationally maintain the transformation to the inertially
fixed navigation frame as the SINS is not mechanically isolated from the vehicle rotation.

Since the adoption of SINSs, maintaining an accurate attitude estimate has become
integral to velocity and position estimation. However, when out-of-phase sinusoidal
motion is exhibited about two orthogonal axes, significant error growth is seen [6]—this
is commonly referred to as coning motion because, when the angular velocity magnitude
and frequency of oscillation are constant, the third axis appears to move on the surface of a
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cone. These effects are commonly seen in vibrational environments or when maneuvers are
performed and are of particular interest to many aerospace applications [7]. A significant
portion of SINS development initially focused on generating efficient algorithms capable of
addressing the attitude error growth due to coning [8–11]. The first generation of modern
coning correction algorithms was developed by making basic dynamical assumptions
and utilizing a sequence of high-frequency inertial measurements [12–14], while newer
approaches seek to minimize the error under specific circumstances [15–17]. Errors can
also occur due to sculling and scrolling motions, which are the velocity and position
analogs to coning motion, respectively, though they tend not to have the impact that coning
does [14]. Fortunately, it has also been shown that once an optimal coning algorithm has
been developed, a dual approach for sculling can also be obtained [18,19], extending the
usefulness of the approaches. The development of coning, sculling, and scrolling (CSS)
algorithms has been critical to SINS-aided navigation, mitigating the effects of cascading
attitude errors into the integrated velocity and position. A generalized set of CSS algorithms
presented by Savage in [13,14] and their application to modern inertial navigation systems
are of primary interest in this paper.

The modern INS is comprised of three orthogonal linear accelerometers and gyro-
scopes that measure non-gravitational acceleration and total angular velocity, while a
navigation computer is employed to integrate these measurements. Because measurements
from these sensors help to describe a subset of the vehicle dynamics and are self-contained,
they are often called internal or inertial sensors—this helps to differentiate them from
other critical measurement systems. Before being passed to the navigation computer,
some combination of the CSS corrections is typically applied to the measurements along
the processing chain, either within a high-frequency pre-processor or the manufacturer’s
sensor software [20,21]. The CSS-corrected measurements are passed to the navigation
computer for state propagation. The extended Kalman filter typically serves as the back-
bone of many modern navigation systems—to accurately propagate the uncertainty for
inertial navigation, suitable models for the dynamics and inertial measurements must be
known. Unfortunately, inertial measurements are often corrupted by many parametric
sensor errors that can have a significant impact on navigation performance [22]. Often,
estimates for each of the parametric states are used to correct the inertial measurements
before integrating [23]. Thus, the use of CSS-corrected quantities that have been corrected
for parametric sensor state estimates contribute to the navigation uncertainty, though this
contribution typically goes unaccounted for. By developing and implementing an error
mapping through the algorithms used for CSS corrections, a rigorous treatment of these
errors and their potential effect on the state uncertainty can be realized.

The remainder of the paper is summarized as follows: Section 2 reviews the mechanics
of inertial navigation and presents a standard set of algorithms to make second-order CSS
corrections. The primary contribution of the work is contained in Section 3, which outlines
the development of the error propagation and presents the mappings for use within the
linearized uncertainty propagation. Section 4 describes the approaches to be compared, the
lunar descent-to-landing scenario in which the developed methods are examined, and the
performance metrics used in analysis. Monte Carlo simulation results are then examined
in Section 5. Finally, Section 6 briefly summarizes the work and its primary conclusions.

2. Inertial Navigation

Modern CSS algorithms require several operational frequencies, here defined to be the
major, minor, and subminor time intervals illustrated in Figure 1. The subminor interval
[tm−1, tm] describes the time over which the inertial sensors integrate to provide discrete
measurements of the non-gravitational acceleration and total vehicle angular velocity. The
minor interval [t`−1, t`] defines the rate at which the high-speed correction algorithms are
applied, and the major interval [tk−1, tk] defines the navigation rate, or the rate at which
the state propagation is performed. For the algorithms considered throughout this paper,
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the assumption is made that [tm−1, tm] = [t`−1, t`] ⊆ [tk−1, tk], such that the minor and
subminor intervals are equivalent.
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Figure 1. Major, minor, and subminor time intervals considered by the algorithms

The CSS algorithms inspected within this paper generate second-order corrections
for coning, sculling, and scrolling motion and are based upon those discussed by Savage
in References [4,13,14]. These algorithms, along with many other CSS algorithms, were
developed after Bortz presented a differential equation of the orientation vector (also
called the rotation vector), given as [11]

φ̇ = ω +
1
2

φ × ω +
1

φ2

(
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2(1 − cos φ)

)
φ × φ × ω , (1)

where φ is the orientation vector describing the rotation of one frame to another through
an angle, φ = ‖φ‖, about an axis pointing in the direction of φ, and ω is the angular
velocity of the body that is inertially measurable by strapdown angular-rate sensors.
Equation (1) is commonly referred to as the Bortz equation and allows for the integration
of the orientation vector using measurements from strapdown sensors. Many of the con-
ing algorithms originate from the isolation and approximation of the non-commutative
rate vector, α̇, in the Bortz equation,

α̇ =
1
2

φ × ω +
1

φ2

(
1 − φ sin φ

2(1 − cos φ)

)
φ × φ × ω . (2)
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the coefficient of the second term in Eq. (2), such that
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The CSS algorithms inspected within this paper generate second-order corrections for
coning, sculling, and scrolling motion and are based upon those discussed by Savage in
[4,13,14]. These algorithms, along with many other CSS algorithms, were developed after
Bortz presented a differential equation of the orientation vector (also called the rotation
vector), given as [11]

φ̇ = ω +
1
2

φ×ω +
1

φ2

(
1− φ sin φ

2(1− cos φ)

)
φ×φ×ω , (1)

where φ is the orientation vector describing the rotation of one frame to another through an
angle, φ = ‖φ‖, about an axis pointing in the direction of φ, and ω is the angular velocity
of the body that is inertially measurable by strapdown angular-rate sensors. Equation (1) is
commonly referred to as the Bortz equation and allows for the integration of the orientation
vector using measurements from strapdown sensors. Many of the coning algorithms
originate from the isolation and approximation of the non-commutative rate vector, α̇, in
the Bortz equation,

α̇ =
1
2

φ×ω +
1

φ2

(
1− φ sin φ

2(1− cos φ)

)
φ×φ×ω . (2)

A common approximation for Equation (2) is obtained from a power series expansion
for the coefficient of the second term in Equation (2), such that

1
φ2

(
1− φ sin φ

2(1− cos φ)

)
=

1
12

(
1 +

1
60

φ2 + · · ·
)
≈ 1

12
, (3)

which allows Equation (1) to be approximated as

φ̇ ≈ ω +
1
2

φ×ω +
1

12
φ× (φ×ω) . (4)

The use of Equation (4) as an approximation for Equation (1) to compensate for coning
motion in a two-stage algorithm, which generates the correction at a higher frequency
than the state propagation, by Bortz [11] and Jordan [10] laid the foundation for modern
coning algorithms. These two-stage approaches generate high-frequency, low-complexity
corrections, the results of which are fed into a low-frequency algorithm that produces a
state estimate. One of the original two-stage algorithms proposed by Savage in 1966 utilizes
a first-order equation at a higher frequency to recognize high-frequency vibrations and
a second-order attitude update at a lower frequency, providing an efficient and accurate
attitude estimate based upon the corrections made by the high-frequency algorithm [8].
While the two-stage approach was originally introduced because of limited computer capa-
bilities, modern computing capabilities have prompted the desire to return to a single cycle



Sensors 2021, 21, 8457 4 of 32

algorithm [13]. However, the algorithms described for most of the two-stage algorithms
can also be expanded instead to process a batch of sequential measurements to produce an
equivalent, coned measurement at a lower frequency.

The algorithms considered within this paper represent a generalized form of the
corrections, assuming that the quantities vary linearly over the minor interval. Additionally,
the algorithms examined here are made using only two measurements such that the
subminor and minor intervals are the same. Many modern coning correction algorithms
have been optimized for error minimization, dependent upon the expected environment or
intended number of measurements [12,15,24,25]. It is also important to realize that sculling
and scrolling algorithm design has seen much less research and development, leading to a
significantly smaller body of literature examining their use. By performing an analysis of
the error propagation through unoptimized algorithms, the foundation for analyzing and
developing an error propagation architecture for other CSS algorithms used for inertial
navigation is established. A detailed derivation of the algorithms is provided by Savage
in [4,13,14] and will not be provided within this paper.

2.1. Attitude Integration (Coning) Algorithm

The coning algorithm generates a second-order approximation for the coning motion,
where the incremental angle vector produced by the inertial measurement unit (IMU)
gyroscopes is

∆θc
m =

∫ tm

tm−1

ωc
c/i(τ)dτ , (5)

where ωc
c/i is the angular velocity vector of the IMU case frame (denoted by c) with respect

to the inertial frame (denoted by i). This incremental angle vector describes the rotation of
the IMU case frame from tm−1 to tm, where the superscript c denotes the expression of the
vector in the IMU case frame. The frame designation will be implied for the coning elements
from here on, as the frames will be consistent throughout the remainder of the paper.

Accumulations for the measurements and corrections made at the end of every minor
interval, contained within the major interval, are defined as a function of the incremental
angle measurements and used to produce the coned rotation vector. The measurement
accumulation is given by

θ` = θ`−1 + ∆θ` =
`

∑
i=1

∆θi . (6)

The accumulation of the coning corrections is expressed similarly to Equation (6) as

β` = β`−1 + ∆β` =
`

∑
i=1

∆βi , (7)

where ∆βi is the coning correction generated at ti under the assumption of a linearly
varying angular velocity; i.e.,

∆βi =
1
2

[
θi−1 +

1
6

∆θi−1

]
× ∆θi .

Given the accumulations in Equations (6) and (7), the coned rotation vector ∆φk is the
sum of the two accumulations, or

∆φk = θ` + β` , (8)

where θ` describes the sensed change in the attitude over the [tk−1, tk] interval and β`

accounts for the non-commutative and unmeasured components due to the changing
angular velocity vector. The k subscript denotes that this is the coned rotation vector
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describing the rotation from tk−1 to tk, while the ` subscript describes the number of
measurements and corrections accumulated within the major interval.

At the initialization of the algorithm for any given major interval, the terms from
the previous time-step must be zero (∆θ0 = 0 and ∆β0 = 0 at t0 = tk−1). Note that any
number of measurements can be processed between the attitude predictions, but when
[t`−1, t`] = [tk−1, tk], or just a single measurement is processed for the prediction, the
algorithm becomes identical to traditional methods of dead-reckoning [26], where only
a single IMU measurement is processed for the attitude propagation at each step; this
statement can be proven by recognizing that with the initialization of the accumulation
variables to zero, the correction will also be zero. Finally, if the angular velocity vector is
constant in direction, there is no coning motion, the cross product will be zero, and the
coning correction in each measurement will thus be zero.

2.2. Velocity Integration (Sculling) Algorithm

The velocity integration algorithms correct for errors incurred by IMU frame and
velocity vector rotations. The algorithm uses the incremental velocity measurement from
the IMU, a quantification of the non-gravitational specific forces acting on the vehicle,
given by

∆vc
m =

∫ tm

tm−1

ac
ng(τ)dτ ,

where ac
ng is the non-gravitational specific force experienced by the strapdown IMU. Note

that the superscript c denotes the expression of the incremental velocity in the case frame
of the IMU; this subscript will also be implied for the sculling elements for the remainder
of the paper.

Similar to the accumulation of the measurements in Equation (6), the incremental
velocity measurements must also be accumulated, such that

v` = v`−1 + ∆v` =
`

∑
i=1

∆vi . (9)

The sculling-corrected incremental velocity, describing the change in velocity due
to the non-gravitational specific forces acting on the vehicle from tk−1 to tk, can then be
separated into three components,

∆vng,k = v` + ∆vscul,` + ∆vrot,` , (10)

where ∆vscul,` is the sculling correction and ∆vrot,` is the compensation for the rotation
of the velocity vector. The k and ` subscripts describe the dependency of the sculled
non-gravitational change in velocity upon the ` inertial measurements obtained over the
major interval. The sculling correction can be modeled as an accumulation

∆vscul,` = ∆vscul,`−1 + δvscul,` =
`

∑
i=1

δvscul,i , (11)

where the incremental sculling correction is given by

δvscul,i =
1
2

[(
θi−1 +

1
6

∆θi−1

)
× ∆vi +

(
vi−1 +

1
6

∆vi−1

)
× ∆θi

]
, (12)
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which results from an integration of the sculling motion over the measurement cycle,
assuming a linearly changing angular velocity and specific force [14]. The correction due
to the rotation of the velocity vector on the interval is

∆vrot,` =
1
2
(θ` × v`) , (13)

where θ` is the accumulation of the incremental angle measurements as discussed in
Section 2.1. The non-gravitational incremental velocity is then used for the vehicle’s
velocity propagation.

At the initialization of the algorithm, for any given major interval, the terms from
the previous time-step must be zero (v0 = 0 and ∆vscul,0 = 0 at t0 = tk−1) because no
information is available for the correction on the current interval. Similarly to the coning
algorithm, this algorithm can be used to process any number of measurements, and when
[t`−1, t`] = [tk−1, tk], or just a single measurement is used for state prediction, the algorithm
becomes identical to the traditional method of dead-reckoning at measurement frequency.
This is proven similar to the equivalent statement regarding the coning algorithm.

2.3. Position Integration (Scrolling) Algorithm

No additional measurement source is used for the position integration algorithm; the
integrated specific force is again integrated to provide the position increment, while the
scrolling algorithm corrects for the effects of a varying angular rate and specific forces
upon the integration. The effects of scrolling can be accounted for in the non-gravitational
specific force integration, given by

∆rng,k = sv,` + ∆rrot,` + ∆rscrl,` . (14)

The accumulation of the integrated incremental velocity is defined to be

sv,` = sv,`−1 + ∆sv,` =
`

∑
i=1

∆sv,i , (15)

where

∆sv,i = vi−1∆t` +
1

12
(5∆vi + ∆vi−1)∆t` (16)

and ∆t` = t` − t`−1. Note that the result in Equation (16) is obtained by integrating the
specific force, assuming that the angular velocity and specific force vary linearly over the
minor interval [4]. The rotational component of the scrolling correction is given by

∆rrot,` =
1
6
(sθ,` × v` + θ` × sv,`) , (17)

with the integrated incremental angle accumulating as

sθ,` = sθ,`−1 + ∆sθ,` =
`

∑
i=1

∆sθ,i ,

where

∆sθ,i = θi−1∆t` +
1
12

(5∆θi + ∆θi−1)∆t`.
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The scrolling correction can be broken into a component accounting for the effects due
to sculling and a component accounting for other higher-order effects. The accumulation
of these effects is therefore given by

∆rscrl,i = ∆rscrl,i−1 + δrscrl/scul,i + δrscrl/other,i , (18)

where the scrolling correction contributed by sculling is

δrscrl/scul,i = ∆vscul,i−1∆t` +
1
2

[
θi−1 −

1
12

(∆θi − ∆θi−1)

]
× (∆sv,i − vi−1∆t`) (19)

+
1
2

[
vi−1 −

1
12

(∆vi − ∆vi−1)

]
× (∆sθ,i − θi−1∆t`)

and the correction for the other higher-order effects is

δrscrl/other,i =
1
6

[
sv,i−1 +

∆t`
24

(∆vi − ∆vi−1)

]
× ∆θi (20)

− 1
6

[
sθ,i−1 +

∆t`
24

(∆θi − ∆θi−1)

]
× ∆vi

+
∆t`
6

[
θi−1 −

1
6
(∆θi − ∆θi−1)

]
×
[

vi−1 −
1
6
(∆vi − ∆vi−1)

]

− ∆t`
2160

(∆θi − ∆θi−1)× (∆vi − ∆vi−1) .

Similar to the coning and sculling algorithms, each term from the previous cycle must
be initialized to zero (sθ,0 = 0, sv,0 = 0, θ0 = 0, ∆θ0 = 0, v0 = 0 and ∆vi = 0 at t0 = tk−1).
It can also be shown that the scrolling correction algorithm and the traditional method for
position dead-reckoning are equivalent given that no scrolling motion is present.

2.4. Discrete Dead-Reckoning Dynamics

The discretized dynamics for a vehicle aided by a strapdown IMU may be expressed as

ri
c,k = ri

c,k−1 + vi
c,k−1∆tk + T i

c,k−1∆rng,k (21a)

+
1
2

(
gk−1 −

1
3

Gk−1T i
c,k−1

[
dc

k−1×
]
∆φk

)
∆t2

k

vi
c,k = vi

c,k−1 + T i
c,k−1∆vng,k +

(
gk−1 −

1
2

Gk−1T i
c,k−1

[
dc

k−1×
]
∆φk

)
∆tk (21b)

q̄c
i,k = q̄(∆φk)⊗ q̄c

i,k−1 , (21c)

describing the propagation of position r, velocity v and attitude q̄ from tk−1 to tk. Note
that the superscripts c and i denote quantities described in the IMU case frame and
inertially fixed reference frame, respectively, while the k and k − 1 subscripts describe
the discrete instances in time tk and tk−1, respectively, where the value is available to
the navigation computer. Consequently, time time between navigation cycles is thus
defined to be ∆tk = tk − tk−1. The transformation from the inertial frame to the case frame
is described by the right-handed vector-first attitude quaternion q̄c

i and transformation
matrix Tc

i —the transformation from the case to inertial frame is then given by the transpose
of the transformation matrix, (Tc

i )
T = T i

c . The acceleration acting on the vehicle due to
gravity is denoted by g = ag(rcg), and G is the Jacobian of g evaluated at vehicle center of
gravity, rcg, where ri

cg = ri
c + T i

c dc relates the position of the vehicle center of gravity rcg to
the position of the IMU’s case frame rc via their relative position vector d. The quaternion
multiplication is denoted by⊗ and defined such that the order of quaternion multiplication
parallels the multiplication of corresponding transformation matrices. The skew-symmetric
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cross product matrix is defined to be the matrix equivalent of the cross product operation;
i.e., a× b = [a×]b where a, b ∈ R3 and

[a×] =



0 −a3 a2
a3 0 −a1
−a2 a1 0


 .

The total rotation of the body ∆φk is given by Equation (8) and the non-gravitational
changes in the position ∆rng and velocity ∆vng are given by Equations (10) and (14). The
incorporation of the CSS corrections accounts for the vector rotation between tk−1 to tk;
this is also done in more traditional approaches [22,26], though the integration of a single
set of IMU measurements only provides a first-order correction for the vector rotation.
Savage [14] similarly posed these dynamics with the CSS corrections, though he instead
considered a rotating navigation frame (such as the East–North–Up (ENU) frame) and
implicitly assumed that the origin of the IMU case frame and body’s center of gravity
were collocated.

2.5. Strapdown IMU Model

The discrete inertial measurements used for the standard SINS are a function of the
true quantity being measured and several contributing measurement corruption parameters
that result from a variety of sources such as manufacturing tolerances, sensor installation,
and unit degradation. The measurement model considered for the strapdown IMU is
described by

∆θm,k = (I3×3 + [sg,kr])(I3×3 + [mg,k×] + [ng,k∗])(∆θk + bg,k + wg,k) (22a)

∆vm,k = (I3×3 + [sa,kr])(I3×3 + [ma,k×] + [na,k∗])(∆vk + ba,k + wa,k) , (22b)

where bg,k, sg,k, ng,k, mg,k, and wg,k are the bias, scale factor, nonorthogonality, misalign-
ment, and zero-mean, time-wise uncorrelated noise in the gyroscope measurement at tk,
respectively, while ∆θk is the true incremental angle, and ∆θm,k is the measured incremental
angle at tk. Similarly, ba,k, sa,k, na,k, ma,k, and wa,k are the bias, scale factor, nonorthogonality,
misalignment, and zero-mean, time-wise uncorrelated noise in the accelerometer measure-
ment at tk, respectively, ∆vk is the true incremental velocity, and ∆vm,k is the measured
incremental velocity at tk. The operators used in Equation (22) are defined such that, for
y ∈ R3,

[yr] =




y1 0 0
0 y2 0
0 0 y3


 and [y∗] =




0 y3 y2
y3 0 y1
y2 y1 0


 .

Applying the models given in Equation (22), the true incremental angle and incremen-
tal velocity can be obtained from the measured quantities such that

∆θk = (I3×3 + [mg,k×] + [ng,k∗])−1(I3×3 + [sg,kr])−1∆θm,k − bg,k −wg,k (23a)

∆vk = (I3×3 + [ma,k×] + [na,k∗])−1(I3×3 + [sa,kr])−1∆vm,k − ba,k −wa,k . (23b)

It can then be shown, through the application of the matrix inversion lemma [27], that
Equation (23) can be approximated by

∆θk = ∆θm,k − [∆θm,kr]sg,k + [∆θm,k×]mg,k − [∆θm,k∗]ng,k − bg,k −wg,k (24a)

∆vk = ∆vm,k − [∆vm,kr]sa,k + [∆vm,k×]ma,k − [∆vm,k∗]na,k − ba,k −wa,k . (24b)

Often, statistics surrounding these parametric errors are studied and detailed by
sensor manufacturers, though they can also be determined through independent testing
and analysis. If the estimated incremental angle and velocity are denoted as ∆θ̂i and ∆v̂i,
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respectively, then the error between the true and estimated incremental angle and velocity
can be defined such that

e∆θ,i , ∆θi − ∆θ̂i and e∆v,i , ∆vi − ∆v̂i . (25)

Fusing the available statistics with the expressions in Equations (24) and (25), a model
of how errors in the sensor specific parameters propagate into the IMU measurement errors
can be developed. Furthermore, expressions detailing the propagation of these parameteric
errors into the state estimation error can be developed and used for implementation within
the navigation system architecture.

3. Error Propagation Development

By performing the CSS corrections, a correction factor is determined for the raw
measurements, allowing the results to better represent the true dynamics of the vehicle.
However, when considering the propagation of errors through these corrections, it is clear
that if the manufacturer-provided performance specifications for the sensor bias, noise, etc.,
are for the raw measurements at the sensor’s operational frequency, then these statistics
will be inconsistent with the output when CSS corrections are introduced. To have an
accurate uncertainty representation, the navigation filter’s covariance prediction requires
the description of how errors propagate into the estimate to be representative of the system
dynamics. In situations where the navigation system relies upon CSS correction algorithms,
the CSS corrections aid in the dynamics description and thus have an influence on the
error propagation. Therefore, a rigorous expression for the uncertainty in CSS corrections
can be determined and implemented within common navigation system architectures by
examining the algorithms and mapping the errors through each.

3.1. Method for Error Analysis

To determine how the sensor errors propagate through the CSS algorithms contained
within Section 2, the transformation of measurement errors through each correction term is
examined. To develop the transformation, it is necessary to consider the estimation error
in a given variable to be e = x− x̂, such that the error, e, is expressed as the difference
between the true, x, and estimated, x̂, quantities. Additionally, as seen in Equations (8),
(10), and (14), the output of each algorithm can be expressed as a function of the mea-
surement accumulation and the correction terms, while the error dynamics for covariance
propagation must be expressed as a function of the estimate and the error in each quantity.
To aid in this development, the result of each algorithm is broken into smaller components
and recombined to develop the full error dynamics for a given correction.

For example, to determine the coned measurement error, it can be recast as functions
of the accumulated incremental angle and coning correction errors such that

e∆φ,k = eθ,` + eβ,` . (26)

Noting that the coning correction is a function of the measurements, it is then possible
to independently express eθ,` and eβ,` as functions of the measurement errors e∆θ,i ∀i ∈
{1, 2, . . . `} as

eθ,` = f (e∆θ,i) and eβ,` = g(e∆θ,i) , (27)

where f and g are taken to be independent functions that describe the transformation
of sensor errors into the accumulated incremental angle and coning correction vectors,
respectively. Therefore, after developing the expressions that map the sensor errors into
the accumulation and the correction, the error in the coned measurement can be written as
a function of the sensor errors.

The same can be done for the sculled and scrolled non-gravitational changes in
velocity and position, respectively. The error mapping is developed by first generating the
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mapping for each term in the correction individually and then combining the components
to construct a mapping of the sensor error sources through the algorithm and into the
resulting correction. After developing the mapping of the errors through the algorithms, a
slight simplification can be made to each by assuming that some of the error sources are
approximately constant over a single major interval. Finally, the transformation of the error
into the state estimate can be written as a function of each contributing error source.

3.2. Parametric Estimation Errors

The uncertain parameters used to account for sensor errors in IMU measurements are
typically identified as neglected, considered, or estimated quantities within the navigation
filter, pending the results of a consider analysis as originally posed by S.F. Schmidt [28],
though now widely used in application and research [29–33]. In the case in which all of
the error parameters are estimated directly by the navigation filter, and assuming that
Equation (24) holds, the expected values of the incremental angle E{∆θk} = ∆θ̂k and the
incremental velocity E{∆vk} = ∆v̂k are seen to be

∆θ̂k = ∆θm,k − [∆θm,kr]ŝg,k + [∆θm,k×]m̂g,k − [∆θm,k∗]n̂g,k − b̂g,k (28a)

∆v̂k = ∆vm,k − [∆vm,kr]ŝa,k + [∆vm,k×]m̂a,k − [∆vm,k∗]n̂a,k − b̂a,k , (28b)

where b̂g,k, ŝg,k, n̂g,k, and m̂g,k are the estimated or expected bias, scale factor, nonorthogo-
nality, and misalignment in the gyroscope measurements, respectively, and b̂a,k, ŝa,k, n̂a,k,
and m̂a,k are the estimated or expected bias, scale factor, nonorthogonality, and misalign-
ment in the accelerometer measurements, respectively. Note that the noise is defined to be
zero-mean. By subtracting Equation (28) from Equation (24) and simplifying, the error in
the measurements can be expressed as

e∆θ,k = −[∆θm,kr]esg ,k + [∆θm,k×]emg ,k − [∆θm,k∗]eng ,k − ebg ,k −wg,k (29a)

e∆v,k = −[∆vm,kr]esa ,k + [∆vm,k×]ema ,k − [∆vm,k∗]ena ,k − eba ,k −wa,k , (29b)

where the errors in the bias, scale factor, misalignment, and nonorthogonality estimates for
the gyroscopes are defined to be

ebg ,k , bg,k − b̂g,k , esg ,k , sg,k − ŝg,k , emg ,k , mg,k − m̂g,k , and eng ,k , ng,k − n̂g,k ,

respectively, and, similarly, the errors in the bias, scale factor, misalignment, and nonorthog-
onality estimates for the accelerometers are

eba ,k , ba,k − b̂a,k , esa ,k , sa,k − ŝa,k , ema ,k , ma,k − m̂a,k , and ena ,k , na,k − n̂a,k ,

respectively. Through this model, sensor errors can be attributed to and expressed as a
function of parametric estimation errors.

3.3. Coning Error Propagation

Consider the error in the incremental angle internal measurements to be expressed as

eθ,` , θ` − θ̂` , (30)

where θ` and θ̂` are the true and estimated accumulated rotation vectors for the major
interval, respectively. An expression describing the propagation of errors through the
coning algorithm presented in Section 2.1 can be shown to be [34].

e∆φ =
`

∑
i=1

e∆θ,i + Ξcon,ie∆θ,i =
`

∑
i=1

(I3×3 + Ξcon,i)e∆θ,i , (31)
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where Ξcon,i , [ξcon,i×] and

ξcon,i =
1
2

[
i−1

∑
j=1

∆θ̂j −
`

∑
j=i+1

∆θ̂j

]
− 1

12
(
∆θ̂i+1 − ∆θ̂i−1

)
. (32)

With Equation (32), it can also be shown that the error in the ith coning correction
term is not correlated to the ith measurement, but only to those prior to and following its
processing. Additionally, if i + 1 ≥ ` or i− 1 ≤ 0, then ∆θ̂i+1 = 0 or ∆θ̂i−1 = 0, respectively.
To generate ξcon,i as stated in Equation (32), the entire array of ` measurements must be
known; fortunately, this can be restated so that the error terms can be accumulated in a
navigation preprocessor algorithm, much like the coning algorithm itself.

3.4. Sculling Error Propagation

Through the application of a sculling algorithm, a correction for the measured non-
gravitational specific force and its integration into the vehicle’s velocity is made using
the incremental angle and velocity measurements over the major interval. It is worth
noting that the statistics surrounding the sculling corrected incremental velocity will be
dependent upon both the incremental angle and incremental velocity, unlike the coning
correction. Noting the equation governing the sculling-corrected non-gravitational term in
Equation (10), the error can be written as a sum of errors in each of the components; i.e.,

e∆vng,` = ev,` + e∆vscul ,` + e∆vrot ,` , (33)

where ev,` is the error in the incremental angle accumulation, e∆vscul ,` is the error in the
sculling correction, and e∆vrot ,` is the error in correction for the vehicle’s rotation during the
measurement accumulation.

The error in the accumulated incremental velocity can be expressed as

ev,` , v` − v̂` , (34)

where v` and v̂` are the true and estimated accumulated velocity vector over the major inter-
val, respectively. By the definition of the incremental velocity accumulation in Equation (9)
and the definition of the incremental angle accumulation in Equation (6), it is clear from
Equation (25) that the error in each accumulated error is expressed as a sum over all minor
interval incremental velocity and angle errors such that

ev,` =
`

∑
i=1

e∆v,i and eθ,` =
`

∑
i=1

e∆θ,i . (35)

To determine the error in the sculling correction, first recognize that the sculling
correction is a sum of the incremental sculling corrections, as shown in Equation (11),
where the increments are defined by Equation (12). Therefore, to determine the error in the
sculling correction, the error in the increments must first be determined. Define the error in
the sculling increment eδvscul ,i such that

eδvscul ,i , δvscul,i − δv̂scul,i . (36)

Applying the definition of the individual measurement errors and the accumulations,
the propagation of errors through the sculling correction is approximated to first-order as

eδvscul ,i =

(
θ̂i−1 +

1
6

∆θ̂i−1

)
× e∆v,i − ∆θ̂i ×

(
ev,i−1 +

1
6

e∆v,i−1

)
(37)

+

(
v̂i−1 +

1
6

∆v̂i−1

)
× e∆θ,i − ∆v̂i ×

(
eθ,i−1 +

1
6

e∆θ,i−1

)
.
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By the definition of the accumulated incremental sculling corrections given in
Equation (11), the accumulated error is simply a sum of the incremental errors; i.e.,

e∆vscul ,` =
`

∑
i=1

eδvscul ,i . (38)

Now that an expression for the error in the accumulated sculling correction is known,
the explicit mapping of the error in each measurement into the accumulated error is desired.
Notice that Equation (37) has two components that parallel the form of the propagation
of the incremental angle measurements through the coning correction—the first is the
previously defined Ξcon,i, crossed with the incremental velocity errors, while the second
term is a similar mapping that can be defined such that Ξscul,i , [ξscul,i×], where

ξscul,i =
1
2

[
i−1

∑
j=1

∆v̂j −
`

∑
j=i+1

∆v̂j

]
− 1

12
(∆v̂i+1 − ∆v̂i−1) , (39)

and further allows the definition of the mapping of the measurement errors through the
incremental sculling correction to be

e∆vscul ,` =
`

∑
i=1

(Ξcon,ie∆v,i + Ξscul,ie∆θ,i) . (40)

The direction of the incremental velocity vector must compensate for the vehicle’s
rotation during the major interval; this is done via the rotational correction term. To
determine the mapping of the measurement errors through the rotational correction term,
define the error in the rotational correction as

e∆vrot ,` , ∆vrot,` − ∆v̂rot,` . (41)

Expanding Equation (41) with the definition of ∆vrot,` in Equation (13) and simplifying,
the error in the rotational correction is then

e∆vrot ,` =
1
2
[
θ̂` × ev,` − v̂` × eθ,`

]
, (42)

when higher-order error terms are neglected. Given that the errors in the accumulations
are simply a sum of errors in each of the measurements, the error propagation for the
rotational correction is

e∆vrot ,` =
1
2

`

∑
i=1

([
θ̂`×

]
e∆v,i − [v̂`×]e∆θ,i

)
. (43)

To produce the error propagation for the sculled, non-gravitational change in ve-
locity, Equation (33) is combined with the definitions for each component defined in
Equations (35), (40), and (43). Therefore, the error in the sculling term as a function of the
estimated incremental angles and velocities mapped into the errors in each of those terms is

e∆vng ,` =
`

∑
i=1

(
I3×3 + Ξcon,i +

1
2
[
θ̂`×

])
e∆v,i +

`

∑
i=1

(
Ξscul,i −

1
2
[v̂`×]

)
e∆θ,i . (44)

The errors in each of these measurement sources, however, is a function of well-known
and commonly estimated error sources.

3.5. Scrolling Error Propagation

Paralleling the results in Section 3.4, a correction to the measured non-gravitational
and its integration into position is made using the incremental angle and velocity mea-
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surements by the application of the scrolling algorithm. Whereas the coning correction
is dependent upon the statistics surrounding the incremental angle measurements, the
scrolling corrections are more similar to the sculling corrections as they are also dependent
upon the statistics for the incremental velocity. Noting that the equation governing the
scrolling-corrected non-gravitational term is Equation (14), the error can be written as a
sum of errors in each of the components; i.e.,

e∆rng ,k = esv ,` + e∆rrot ,` + e∆rscrl ,` , (45)

where esv ,` is the error in the incremental angle accumulation, e∆rscrl ,` is the error in the
scrolling correction, and e∆rrot ,` is the error in the correction for the vehicle’s rotation
during the measurement accumulation. Each of these terms is examined separately and
recombined to produce the desired result.

The first term in Equation (45) describes the error introduced through the integration
of the incremental velocity vectors to determine the change in the vehicle’s position, with
the increment and accumulation defined in Equations (15) and (16), respectively. The error
must then be expressed in terms of the error in the accumulation and increment; the error
in the accumulation is simply a sum of the error in each increment, i.e.,

esv ,` =
`

∑
i=1

e∆sv ,i . (46)

The error in the increment is then defined to be the difference between the estimated
and true increments, which is given by e∆sv ,i = ∆sv,i − ∆ŝv,i. Substituting for the definition
of the increment and truth, the error in the increment can be simplified and expressed as

e∆sv ,i = ev,i−1∆t` +
1

12
(5e∆v,i + e∆v,i−1)∆t` , (47)

allowing Equation (46) to be expressed as a sum of the errors in each increment. Note
that the ev,i−1 term has been deconstructed and expressed as a sum of the increments by
applying Equation (35). Expanding for a variable number of steps, the propagation of
incremental velocity errors into the accumulated integrated velocity is given by

esv ,` = ∆t`
`

∑
i=1

ci,`e∆v,i , (48)

with the coefficient cm,n defined to be

ci,j =

{
1
2 + n−m m < n
5

12 m = n ,
(49)

where m denotes the index of the measurement error term with which the coefficient is
associated, and n is the number of measurements contained within the esv ,` term. In most
cases, m = `, though this is not always true.

To accurately propagate the vehicle states with the non-gravitational incremental ve-
locity and angle, the rotation of the vectors during the measurement period is accounted for
and defined in Equation (17). When considering uncertainty, however, the transformation
of errors in each of the measurements to the correction must be determined. Define the
error in the rotational component to be

e∆rrot,k , ∆rrot,k − ∆r̂rot,k, (50)
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and the error in the integrated incremental angle esθ ,` can be expressed similarly to how
the incremental velocity is defined in Equation (48) as

esθ ,` = ∆t`
`

∑
i=1

ci,`e∆θi , (51)

with ci,` defined by Equation (49), where m = i and n = `. It can then be shown that the
error in the rotational scrolling term can be expressed as a function of the measurement
errors as

e∆rrot,k =
1
6

`

∑
i=1

(
Λ∆θ,ie∆vi −Λ∆v,ie∆θi

)
, (52)

where Λ∆θ,i , [λ∆θ,i×], Λ∆v,i , [λ∆v,i×], and

λ∆θ,i = ŝθ,k + ci,`∆t`θ̂k (53a)

λ∆v,i = ŝv,k + ci,`∆t`v̂k . (53b)

With Λ∆θ,i and Λ∆v,i defined, the mapping of measurement errors through the position
rotational correction is known.

The scrolling correction term, as described by Equation (18), is composed of an
accumulation of two incremental corrections: a correction for the presence of sculling
motion and its integration into the position and a correction for the presence of other,
higher-order effects. The error in the accumulation of the scrolling correction can be
expressed as

e∆rscrl ,` =
`

∑
i=1

eδrscrl/scul ,i +
`

∑
i=1

eδrscrl/other ,i , (54)

where the error in each increment is defined to be

eδrscrl/scul ,i , δrscrl/scul,i − δr̂scrl/scul,i (55a)

eδrscrl/other ,i , δrscrl/other,i − δr̂scrl/other,i . (55b)

Applying the definition in Equation (19) to Equation (55a), the propagation of sensor
errors through the incremental scrolling correction for sculling motion is determined to be

eδrscrl/scul ,i = ∆t`
i−1

∑
j=1

(
Ξcon,je∆v,j + Ξscul,je∆θ,j

)
(56)

− ∆t`
24
(
5∆θ̂i + ∆θ̂i−1

)
× ev,i−1 −

∆t`
24

(5∆v̂i + ∆v̂i−1)× eθ,i−1

+
∆t`
24

(
θ̂i−1 −

1
2

∆θ̂i

)
× e∆v,i−1 +

∆t`
24

(
v̂i−1 −

1
2

∆v̂i

)
× e∆θ,i−1

+
∆t`
24

(
5θ̂i−1 +

1
2

∆θ̂i−1

)
× e∆v,i +

∆t`
24

(
5v̂i−1 +

1
2

∆v̂i−1

)
× e∆θ,i .

It is worth noting the dependency of Equation (56) on the sculling correction, as
expected. For brevity, the derivation of Equation (56) is neglected here but can be found
in [35].

Using the expression describing the propagation of measurement errors through the
incremental correction, the propagation of the measurement errors through the scrolling
algorithm’s correction for sculling motion is simply a sum of errors in each increment
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generated across the major interval. Expanding manually, it can be shown that the error in
the incremental scrolling correction for sculling motion is then expressed as

e∆rscrl/scul ,` = ∆t`

[ `

∑
i=1

(
(`− i)Ξcon,i +

1
24

Γ∆θ,i

)
e∆v,i (57)

+
`

∑
i=1

(
(`− i)Ξscul,i +

1
24

Γ∆v,i

)
e∆θ,i

]
,

with the mappings defined such that Γ∆θ,i , [γ∆θ,i×] and Γ∆v,i , [γ∆v,i×], where

γ∆θ,i =





6
(

∑i−1
j=1 ∆θ̂j −∑`

j=i+1 ∆θ̂j

)
+ 1

2
(
∆θ̂i−1 − ∆θ̂i+1

)
+ ∆θ̂` i < `

5 ∑i−1
j=1 ∆θ̂j +

1
2 ∆θ̂i−1 i = `

and

γ∆v,i =





6
(

∑i−1
j=1 ∆v̂j −∑`

j=i+1 ∆v̂j

)
+ 1

2 (∆v̂i−1 − ∆v̂i+1) + ∆v̂` i < `

5 ∑i−1
j=1 ∆v̂j +

1
2 ∆v̂i−1 i = ` .

The scrolling correction error introduced by the additional correction for higher-order
effects is a sum of the error in each incremental correction made over the major interval.
In any given increment, the propagation of each measurement error into the scrolling
correction increment for higher-order effects can be defined such that [35]

eδrscrl/other ,i =
∆t`
6

i−1

∑
j=1

([
θ̂i−1 −

1
6
(
∆θ̂i − ∆θ̂i−1

)
− cj, i−1∆θ̂i

]
× e∆v,j

)
(58)

− ∆t`
6

i−1

∑
j=1

([
v̂i−1 −

1
6
(∆v̂i − ∆v̂i−1)− cj, i−1∆v̂i

]
× e∆θ,j

)

+
∆t`
6

[
1
6

θ̂i−1 −
1
40
(
∆θ̂i − ∆θ̂i−1

)
+ ∆θ̂i

]
× e∆v,i−1

− ∆t`
6

[
1
6

v̂i−1 −
1

40
(∆v̂i − ∆v̂i−1) + ∆v̂i

]
× e∆θ,i−1

+
∆t`
6

[
7

120
(
∆θ̂i − ∆θ̂i−1

)
− 1

24
∆θ̂i−1 +

i−1

∑
j=1

(
i− j− 1

3

)
∆θ̂j

]
× e∆v,i

− ∆t`
6

[
7

120
(∆v̂i − ∆v̂i−1)−

1
24

∆v̂i−1 +
i−1

∑
j=1

(
i− j− 1

3

)
∆v̂j

]
× e∆θ,i ,

where the coefficient cj,i−1 is defined in Equation (49), with m = j and n = i − 1. The
propagation of errors into the accumulated correction is then the sum of contributions for a
given measurement error into each of the increments. Through a manual expansion of the
terms, an expression mapping measurement errors into the scrolling correction term that
accounts for higher-order effects is expressed as

e∆rscrl/other ,` =
`

∑
i=1

eδrscrl/other ,i =
∆t`
6

`

∑
i=1

(M∆v,ie∆θ,i −M∆θ,ie∆v,i) , (59)
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with M∆θ,i , [µ∆θ,i×] and M∆v,i , [µ∆v,i×], where µ∆θ,i and µ∆v,i can be expressed as

µ∆θ,i =





(
`− i + 1

6

)
θ̂i − 1

10 ∆θ̂i−1 +
5
4 ∆θ̂i +

13
120 ∆θ̂i+1 − 1

6 ∆θ̂` i < `

+∑i−1
j=1

(
i− j− 1

3

)
∆θ̂j + ∑`

j=i+1

(
`+ i− 2j + 1

2

)
∆θ̂j

7
120 ∆θ̂i − 1

10 ∆θ̂i−1 + ∑i−1
j=1

(
i− j− 1

3

)
∆θ̂j i = `

(60)

and

µ∆v,i =





(
`− i + 1

6

)
v̂i − 1

10 ∆v̂i−1 +
5
4 ∆v̂i +

13
120 ∆v̂i+1 − 1

6 ∆v̂` i < `

+∑i−1
j=1

(
i− j− 1

3

)
∆v̂j + ∑`

j=i+1

(
`+ i− 2j + 1

2

)
∆v̂j

7
120 ∆v̂i − 1

10 ∆v̂i−1 + ∑i−1
j=1

(
i− j− 1

3

)
∆v̂j i = ` .

(61)

The error in the scrolling-corrected non-gravitational change in position can be ex-
pressed by substituting the components from Equations (48), (52), (57), and (59), the
propagation of errors is expressed as

e∆rng,k =
`

∑
i=1

(
X∆v,ie∆θi + X∆θ,ie∆vi

)
, (62)

where

X∆v,i =∆t`

(
(`− i)Ξscul,i +

1
24

Γ∆v,i +
1
6

M∆v,i

)
− 1

6
Λ∆v,i

X∆θ,i =∆t`

(
ci,` I3×3 + (`− i)Ξcon,i +

1
24

Γ∆θ,i −
1
6

M∆θ,i

)
+

1
6

Λ∆θ,i

are defined to simplify notation.

3.6. State Estimation Error Dynamics

For implementation within the multiplicative extended Kalman filter (MEKF) [36],
a widely used tool developed to appropriately handle the quaternion representation
of attitude, the transformation of errors through each of the CSS algorithms must be
incorporated into the relationships describing the propagation of state estimation errors,
where errors in the position and velocity states are defined to be

er,k , ri
c,k − r̂i

c,k and ev,k , vi
c,k − v̂i

c,k ,

respectively. Unlike position and velocity, the attitude quaternions may not be directly sub-
tracted. Thus, the attitude error is instead defined by the multiplicative attitude error; i.e.,

δq̄c
i,k , q̄c

i,k ⊗ ( ˆ̄qc
i,k)
−1 , (63)

as is necessary according to the MEKF architecture. Under a small angle assumption, the
error in the attitude is approximately given by

ea,k = 2δqc
i,k ,

where δqc
i,k is the vector part of the error quaternion.
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Examining the discrete-time dynamics in Equation (21), it can be shown that the error
equations for the position, velocity, and attitude of the vehicle are given by [35]

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3

Ûk−1

)}
er,k−1 + ∆tkev,k−1

+

{
∆t2

k
6

Ĝk−1T̂T
k−1

[(
d̂k−1 × ∆φ̂k

)
×
]
− T̂T

k−1

[
∆r̂ng,k×

]

− ∆t2
k

2

(
Ĝk−1 −

1
3

Ûk−1

)
T̂T

k−1

[
d̂k−1×

]}
ea,k−1

+
∆t2

k
2

{(
Ĝk−1 −

1
3

Ûk−1

)
T̂T

k−1 +
1
3

Ĝk−1T̂T
k−1
[
∆φ̂k×

]
}

ed,k−1

+ T̂T
k−1e∆rng ,k −

∆t2
k

6
Ĝk−1T̂T

k−1

[
d̂k−1×

]
e∆φ,k

ev,k =∆tk

(
Ĝk−1 −

1
2

Ûk−1

)
er,k−1 + ev,k−1

+

{
∆tk
2

Ĝk−1T̂T
k−1

[(
d̂k−1 × ∆φ̂k

)
×
]
− T̂T

k−1

[
∆v̂ng,k×

]

− ∆tk

(
Ĝk−1 −

1
2

Ûk−1

)
T̂T

k−1

[
d̂k−1×

]}
ea,k−1

+ ∆tk

{(
Ĝk−1 −

1
2

Ûk−1

)
T̂T

k−1 +
1
2

Ĝk−1T̂T
k−1
[
∆φ̂k×

]
}

ed,k−1

+ T̂T
k−1e∆vng ,k −

∆tk
2

Ĝk−1T̂T
k−1

[
d̂k−1×

]
e∆φ,k

ea,k =T(∆φ̂k)ea,k−1 + e∆φ,k

This result is similar to that of more traditional methods where only a single set of
IMU measurements is used for propagation, as is seen in [26], though the contribution
from the incremental angle and velocity are removed and housed within the e∆vng ,k and
e∆rng ,k terms. Having previously described the transformation of errors through the CSS
algorithms in Equations (31), (44), and (62), the state estimation error dynamics can then be
expressed as

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3

Ûk−1

)}
er,k−1 + ∆tkev,k−1 (64a)

+

{
∆t2

k
6

Ĝk−1T̂T
k−1

[(
d̂k−1 × ∆φ̂k

)
×
]
− T̂T

k−1

[
∆r̂ng,k×

]

− ∆t2
k

2

(
Ĝk−1 −

1
3

Ûk−1

)
T̂T

k−1

[
d̂k−1×

]}
ea,k−1

+
∆t2

k
2

{(
Ĝk−1 −

1
3

Ûk−1

)
T̂T

k−1 +
1
3

Ĝk−1T̂T
k−1
[
∆φ̂k×

]
}

ercg/c ,k−1

+
`

∑
i=1

{
T̂T

k−1X∆v,i −
∆t2

k
6

Ĝk−1T̂T
k−1

[
d̂k−1×

]
(I3×3 + Ξcon,i)

}
e∆θ,i

+
`

∑
i=1

T̂T
k−1X∆θ,ie∆v,i
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ev,k = ∆tk

(
Ĝk−1 −

1
2

Ûk−1

)
er,k−1 + ev,k−1 (64b)

+

{
∆tk
2

Ĝk−1T̂T
k−1

[(
d̂k−1 × ∆φ̂k

)
×
]
− T̂T

k−1

[
∆v̂ng,k×

]

− ∆tk

(
Ĝk−1 −

1
2

Ûk−1

)
T̂T

k−1

[
d̂k−1×

]}
ea,k−1

+ ∆tk

{(
Ĝk−1 −

1
2

Ûk−1

)
T̂T

k−1 +
1
2

Ĝk−1T̂T
k−1
[
∆φ̂k×

]
}

ed,k−1

+
`

∑
i=1

{
T̂T

k−1

(
Ξscul,i −

1
2
[v̂`×]

)
− ∆tk

2
Ĝk−1T̂T

k−1

[
d̂k−1×

]
(I3×3 + Ξcon,i)

}
e∆θ,i

+
`

∑
i=1

T̂T
k−1

(
I3×3 + Ξcon,i +

1
2
[
θ̂`×

])
e∆v,i

ea,k = T(∆φ̂k)ea,k−1 + e∆φ,k . (64c)

Note that ed,k is the error in the position of the vehicle center of gravity with respect to
the IMU case frame origin, and Ûk−1 arises due to this discrepancy in the vehicle’s center
of gravity position and is defined to have an element in the ith row and jth column given
by [26]

Ûk−1(i, j) =




3

∑
m=1

∂2g(i)
∂r(j)∂r(m)

u(m)

∣∣∣∣∣
r=r̂cg,k−1


 ,

where

uk−1 = T̂T
k−1

[
d̂k−1×

]
∆φ̂k .

It should be noted that r(j) and r(i) denote the ith and jth elements of the rcg,k−1

vector, while g(i) similarly denotes the ith component of gk−1 and u(m) denotes the mth

component of uk−1. Finally, notice that the frame designations have been dropped from
the transformation matrix—it is assumed that the transformation matrix T represents the
transformation from the inertial frame to the case frame.

3.7. Covariance Propagation

Let the navigation filter state vector x̂k be given by the concatenation of the estimated
position, velocity, and attitude states of the vehicle, augmented by the estimated inertial
sensor parameters, or

x̂k =




r̂i
c,k

v̂i
c,k

ˆ̄qc
i,k

p̂g,k
p̂a,k




, p̂g,k =




b̂g,k
ŝg,k
m̂g,k
n̂g,k


 , and p̂a,k =




b̂a,k
ŝa,k
m̂a,k
n̂a,k


 ,

where p̂g,k and p̂a,k are the concatenated sensor error parameters for the gyroscope and
accelerometers, respectively. Notice that the state estimation error is defined to be

ek = xk − x̂k
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for all states except for the attitude, which requires the multiplicative error definition for
the attitude quaternion in Equation (63). Thus, the dynamics governing the estimation
error can, as given in Equation (64), can be expressed as

ek = Fk−1ek−1 + Mk−1wk−1 ,

where Fk−1 is the discrete-time dynamics Jacobian that describes the mapping of errors
from one time-step to the next, while Mk−1 maps dynamic process noise into the state
estimation error. It is worth pointing out that, for systems aided by strapdown inertial
sensors, the dynamic process noise described by wk−1 is taken to be the noise of the inertial
sensors; i.e,

wk−1 =

[
wa,k−1
wg,k−1

]
.

After combining Equation (29) with Equation (64), the elements of Fk−1 and Mk−1
are given by inspection. For brevity, this combination is done in Appendix A. From this
definition of the state estimation error dynamics, the linearized covariance propagation
can be clearly stated such that

Pk = Fk−1Pk−1FT
k−1 + Mk−1Qk−1MT

k−1 ,

where Qk−1 is the process noise covariance. Note that, for the typical INS, the uncertainty
introduced by noise in strapdown sensor measurements is commonly incorporated as
process noise.

4. Simulation

Two separate architectures are examined for a lunar descent-to-landing simulation.
The first architecture utilizes a traditional dead-reckoning architecture—i.e., one prop-
agating after receiving a single incremental angle and velocity [22,26]—while the other
employs the CSS algorithms and utilizes the rigorous treatment of the estimation error
propagation as developed within Section 3. The same trajectory is examined in [22,37],
where the effects of external measurements on the navigation performance are considered.
In contrast, the analysis here focuses on the situation where the vehicle is only navigating
through inertial navigation techniques and thus has no external measurements to aid in
navigation. Understanding how the estimation error propagates through the navigation
system in a high-stakes scenario, such as a lunar landing, is crucial for informing future
systems’ development. Comparing the two different propagation techniques with this
scenario provides a quantifiable differentiation between navigation systems equipped with
the CSS algorithms’ error propagation and those without. It should be noted that the
selected trajectory is chosen not to maximize the effects or usefulness of CSS algorithms
but to represent a scenario in which these algorithms may be used on a realistic trajectory
in which increased accuracy and precision is desired. This comparison highlights the ex-
pected difference in navigation system performance when employing the error propagation
alongside the often-implemented CSS algorithms.

To assess performance and compare configurations, Monte Carlo analysis is used.
However, this method of analysis typically samples the true state from some distribution
about the mean. Breaking convention, the true position, velocity, attitude, acceleration,
and angular velocity are fixed for this trajectory, as is the case in [37], requiring that the
initial estimates be sampled from a distribution about the true states. The initial states are
assumed to be initially uncorrelated and sampled from Gaussian distributions, with 1σ
uncertainties in each channel of position, velocity, and attitude shown in Table 1.
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Table 1. Initial uncertainty for each state (per axis, 1σ).

Uncertainty (1σ)

Position 1000 m
Velocity 0.1 m/s
Attitude 100 arcsec

Aspects of the true vehicle trajectory are illustrated in Figures 2–4. The altitude profile
of the vehicle across the mission is shown in Figure 2, where the trajectory is initialized
50 km above the lunar surface. The vehicle slowly descends over the first 24 min to an
altitude of 16.5 km and enters a powered descent phase after 25.5 min of mission elapsed
time (MET). During powered descent, the vehicle rapidly descends to the surface in just
under 7 min. Figure 3 shows the vehicle attitude, expressed as Euler angles; the attitude
profile is only provided for a portion of the mission to show the changes experienced
throughout the powered descent phase of the simulation. A large attitude maneuver occurs
at approximately 24 min MET, as can be seen in Figures 3 and 4, while a smaller attitude
maneuver occurs at roughly 25.5 min MET, coinciding with the start of the powered descent
phase. During the powered descent phase, the vehicle performs a translational maneuver
to decelerate and land the vehicle, as seen in Figure 5. As the simulation ends and the
vehicle approaches its landing location, several small attitude correction maneuvers are
also performed.
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Figure 5. Non-gravitational acceleration magnitude during terminal descent.

The IMU gyroscope and accelerometer measurements utilize the model given in
Section 2.5 and have sensor error statistics consistent with the Northrop Grumman LN-200S
[38], as provided in Table 2. Measurement error sources of white noise, bias, scale factor,
misalignment, and nonorthogonality are included for both the gyro and accelerometer
measurements. Each error is sampled from a zero-mean Gaussian distribution defined by
the statistics in Table 2; the bias, scale factor, misalignment, and nonorthogonality sources
are modeled to be constant throughout a given trial. Because the primary goal of this work
is to compare the propagation architectures, no external measurements are modeled, and
only the internal measurements provided by the IMU are simulated. As such, only the
prediction stage of the multiplicative extended Kalman filter is employed.

Table 2. Error specifications for the LN-200S IMU (per axis, 1σ).

Gyroscope Accelerometer

Frequency 400 Hz 400 Hz
Noise 0.07 ◦/

√
hr 35 µg/

√
hr

Bias 1 ◦/hr 300 µg
Scale factor 300 ppm 100 ppm
Misalignment 0.1 mrad 0.1 mrad
Nonorthogonality 0.1 mrad 0.1 mrad

4.1. Nominal Simulation

The nominal state propagation considers the case in which the state is propagated
at 400 Hz—the frequency at which inertial measurements are sampled. Processing a
single measurement is a generally desirable approach for the navigation system, as the
algorithmic mechanics tend to be simpler. However, it is almost always desirable to process
higher-rate IMU data so that underlying vibration in the vehicle motion can be detected.
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Unfortunately, the computational resources necessary to process inertial measurements at
the rate at which modern inertial sensors are capable of producing them are significant,
even when considering state-of-the-art computing systems. Considering this case for the
nominal simulation gives a baseline performance for the navigation system’s state and
covariance propagation, as it exemplifies the most common method of inertial navigation.

4.2. Coning, Sculling, and Scrolling Simulation

The proposed architecture, which employs the CSS algorithms as presented in Section 2
and the error propagation derived within Section 3, can also be used to propagate the
mean and covariance of the vehicle state. For simulation, these algorithms operate at a
frequency of 10 Hz, while the measurements are simulated at 400 Hz. Therefore, a batch of
40 measurements obtained between tk−1 and tk is used to propagate the state and uncer-
tainty of the vehicle through the utilization of second-order CSS correction algorithms. The
dynamics outlined in Equation (21) describe the vehicle state evolution.

5. Results and Discussion

For each simulation, the Monte Carlo sample covariance and averaged filter co-
variance are examined and compared against one another to determine the statistical
consistency of the chosen method; i.e., either CSS or the traditional single-measurement
dead-reckoning. To better determine how the developed CSS error propagation affects the
uncertainty propagation, the same statistics are then compared directly against one another.
In Figures 6 and 7, results for the position, velocity, and attitude estimation errors from the
nominal simulation are shown. Figure 6 shows the mean estimation error, alongside the
averaged filter covariance and Monte Carlo sample covariance 3σ intervals for each compo-
nent of the position, velocity, and attitude, whereas Figure 7 shows the RSS value for each.
Figures 8 and 9 show similar results for the application of the CSS algorithms. From these
figures, it is clear that both configurations are consistent with the Monte Carlo statistics,
despite the presence of a bias in the mean error. However, by comparing Figures 7 and 9, it
is observed that both methods produce similar mean estimation errors with no noticeable
difference in the predicted or observed uncertainty intervals. It is worth noting that the
mean error not being zero is likely due to under-sampling and continues to reduce with an
increasing number of Monte Carlo trials.

Within Figures 10 and 11, a direct comparison of each method is made by examin-
ing the averaged normalized estimation error squared (ANEES) and a normalized error
between the RSS standard deviations. The ANEES, ε̄, is calculated by [39,40]

ε̄ =
1

nM

M

∑
i=1

εi =
1

nM

M

∑
i=1

(xi − x̂i)
TP−1

i (xi − x̂i) =
1

nM

M

∑
i=1

eT
i P−1

i ei ,

which is the squared Mahalanobis distance for trial i of the estimation error, ei, with respect
to the filter covariance, Pi, averaged over the number of states, n, and the number of
Monte Carlo trials, M. The ANEES measure is χ2-distributed if the estimation errors are
Gaussian-distributed and allows the filter to be rejected as credible at a particular level, α,
should a credibility interval be breached for a significant amount of time. The credibility
interval is constructed such that Pr

(
ε̄ ∈ [a, b]|nMε̄ ∼ χ2

nM
)
= 1− α for a < 1 < b and

0 < α � 1, where χ2
nM is a χ2-distribution of nM degrees of freedom [40]. The interval

[a, b] contains 95% of the probability mass for the χ2 distribution having a mean of one and
nM degrees of freedom when α = 0.05. The lower bound a separates the lower α/2 of the
probability mass, while the upper bound eliminates the upper α/2. If ε̄ = 1, the ANEES
is perfectly consistent with the error distribution. It is necessary to note that ANEES is
not a credibility measure but is useful in recognizing if the filter’s approximation of the
uncertainty is representative of the errors or that the filter is consistent [41]. Finally, this
measure allows the recognition of estimation performance; the estimator overestimates the
estimation error when the ANEES is less than one and underestimates the error when the
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ANEES is greater than one. While examining the consistency of the diagonal elements of
the filter and Monte Carlo sample covariance matrices is useful, ANEES allows the direct
comparison of cross-correlation terms in the covariance structure to the estimation errors.
Figure 10 shows the ANEES for position, velocity, and attitude for both configurations and
allows the assessment that each estimator has approximately the same level of credibility
for the estimation of those states. While no significant difference manifests, notice that a
slight deviation occurs in the position ANEES around 28 min MET, though no significant
difference is noticed in the consistency of the estimators.
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Figure 6. Monte Carlo simulation results from 500 trials using traditional methods of inertial
navigation; mean error, averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ)
for position (top), velocity (middle), and attitude (bottom)

Figure 6. Monte Carlo simulation results from 500 trials using traditional methods of inertial
navigation: mean error, averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) for
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Figure 11 compares the RSS standard deviations of the Monte Carlo sample covariance
and averaged filter covariance, σrss

x,c and σrss
x,t respectively, by computing a normalized error,

here defined as

eσ,x =
σrss

x,c − σrss
x,t

σrss
x,t

,

between the CSS and traditional configurations for a state x, such as position, velocity, or
attitude. By this measure, if the value is less than zero, the CSS methods predict or observe
a smaller spread in the distribution than the traditional methods and a larger spread if
it is greater than zero. Even though the differences are small, several comments can be
made when comparing system performance. By recognizing that the ratios of Monte Carlo
sample standard deviations are less than zero for the velocity and position distributions
and that the mean error is consistent between the two configurations, as recognized by
comparing Figures 7 and 9, it is concluded that the application of the CSS algorithms
successfully reduces the error present in the system. The same trend is followed by the
averaged filter ratio until approximately 24 min MET, when the attitude maneuver occurs.
After the attitude maneuver, the vehicle begins the powered-descent phase, and a continued
divergence between the ratios is observed. It is therefore clear that the introduction of
these algorithms allows for a slightly more conservative representation of the uncertainty
during maneuvers, while simultaneously producing a smaller spread in the estimation
errors. A caveat to the analysis is that the sample size of 500 Monte Carlo trials is likely
somewhat under-sampled, and the significance of the findings made by examining the
ratios is difficult to justify as the differences are relatively small.

Comparing the run-time for 500 Monte Carlo trials, a mean run-time of 15.5 min is
found for the traditional method and a time of 2.94 min is found for the CSS configuration.
The required run-time to process the same measurements and provide the state and
covariance at a down-sampled frequency yielded an approximately 81% reduction in
computational complexity and scaled as the frequency of covariance propagation is further
reduced. Unfortunately, the time savings do not seem to be as large as those shown in [34].
This may be a result of the relatively low number of measurements processed by the CSS
algorithms between state predictions; if higher-frequency measurements are available, the
reduction is likely to be more significant. Finally, it should be noted that an attempt at
streamlining the implementation may also yield an additional run-time reduction.
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tion: mean error (RSS), averaged filter covariance (1σ, RSS), and Monte Carlo sample covariance (1σ,
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Figure 8. Monte Carlo simulation results from 500 trials using CSS corrections for inertial navigation:
mean error, averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) for position
(top), velocity (middle), and attitude (bottom).
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Figure 9. Monte Carlo simulation results from 500 trials using CSS corrections for inertial navigation:
mean error (RSS), averaged filter covariance (1σ, RSS), and Monte Carlo sample covariance (1σ, RSS)
for position (top), velocity (middle), and attitude (bottom).
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6. Conclusions

Advancements in precision navigation systems are needed to enable the increasingly
complex and demanding tasks required for future autonomous vehicles. One method to
consider for the improvement of current navigation system capabilities—for the estimation
of position, velocity, attitude, and other vehicle-relevant parameters—is the incorporation
of previously unmodeled effects, such as the contribution of coning, sculling, and scrolling
(CSS) corrections on vehicle position, velocity, and attitude uncertainty within the popular
strapdown inertial navigation system (SINS). A method for developing each algorithm’s
error propagation has been presented alongside the resulting expressions for a set of
CSS algorithms. It is worth noting that the developed error propagation relies upon a
linearized error propagation, developed by truncating higher-order terms and assuming
that the non-gravitational acceleration and angular velocity vary linearly with time. Thus,
this approach is a first-order approximation of the true CSS error propagation—future
developments that relax the associated simplifications by incorporating the higher-order
effects and allowing more optimized approaches, such as those discussed in [15,25], are of
interest for future work.

It is found through Monte Carlo simulation and analysis that the inclusion of an error
propagation for the CSS algorithms results in a more conservative filter representation
of the predicted position, velocity, and attitude uncertainties following a large attitude
maneuver. Additionally, the averaged estimation errors seem consistent with existing
methods for the simulated scenario, where both the CSS and traditional dead-reckoning
approaches exhibit the same level of statistical consistency. It is also shown that reduced
computationally complexity is established by the CSS system when compared to traditional
methods of discrete dead-reckoning, giving an 81% reduction in average run-time. If the
generation of the error mappings was handled by a navigation pre-processor or within
the IMU software, a further reduction of the computational complexity would be seen.
Finally, because the developed models for uncertainty propagation allow uncertainty to
be handled in a more mathematically consistent manner when using CSS corrections,
while simultaneously producing a computationally efficient and statistically conservative
navigation filter, it can be concluded that the developed models could be beneficial to
future navigation systems.
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Appendix A. Incorporating the Strapdown Sensor Model

As discussed in Section 2.5, a number of parameters corrupt the strapdown inertial
sensor measurements including bias, scale-factor, axes nonorthogonality, frame misalign-
ment, and white noise. The contribution of each of these common sensor error sources
to the measurement error was shown in Equation (29). Using the model in Section 3.2,
combined with the state error propagation in Equation (64), the error dynamics for the state
can be expressed in terms of the sensor error parameter statistics. Note that throughout this
section, it is assumed that the error dynamics for each sensor error parameter are constant,
though this assumption is not necessary and is made to somewhat simplify notation.

Appendix A.1. Attitude

Considering the gyro measurements to be corrupted by bias, scale factor, misalign-
ment, nonorthogonality, and noise error sources, the propagation of these errors into the
attitude estimate is given by the combination of Equations (29a) and (64c). Assuming that
the parametric errors for the gyroscope have constant dynamics, i.e., that

bg,k = bg,k−1 , sg,k = sg,k−1 , mg,k = mg,k−1 , and ng,k = ng,k−1 ,

the component of Equation (64c) containing the measurement errors is given by

`

∑
i=1

(I3×3 + Ξcon,i)e∆θ,i =− Lsg esg ,k + Lmg emg ,k − Lng eng ,k − Lbg ebg ,k −wa,g , (A1)

where the components

Lbg = `I3×3 +
`

∑
i=1

Ξcon,i (A2a)

Lsg = [θm,`r] +
`

∑
i=1

Ξcon,i[∆θm,ir] (A2b)

Lmg = [θm,`×] +
`

∑
i=1

Ξcon,i[∆θm,i×] (A2c)

Lng = [θm,`∗] +
`

∑
i=1

Ξcon,i[∆θm,i∗] (A2d)

wa,g =
`

∑
i=1

(I3×3 + Ξcon,i)wg,i . (A2e)

are defined to simplify the notation and isolate the propagation of the gyro bias, scale
factor, misalignment, nonorthogonality, and noise into the attitude estimate, respectively.
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Note that θm,` is simply the sum of the measurements; i.e., θm,` = ∑`
i=1 ∆θm,i. The attitude

error, including the contribution from each of the gyro error sources, is thus

ea,k = T(∆φ̂k)ea,k−1 − Lsg esg ,k + Lmg emg ,k − Lng eng ,k − Lbg ebg ,k −wa,g . (A3)

It is important to note that the noise is not assumed to be constant over the coning
interval and requires special attention for implementation.

Appendix A.2. Velocity

Given that both the gyros and accelerometers can be corrupted by bias, scale factor,
misalignment, nonorthogonality, and noise error sources, the error in the velocity estimate
will also be dependent upon the sensor error parameters. Combining Equation (29b) with
Equation (64b), the component mapping errors in the accelerometer measurements to the
velocity becomes

`

∑
i=1

T̂T
k−1(Nθ + Ξcon,i)e∆vi ,k =− Vsa esa ,k + Vma ema ,k − Vna ena ,k − Vba eba ,k −wv,a , (A4)

where

Vsa = T̂T
k−1

{
Nθ [vm,`r] +

`

∑
i=1

Ξcon,i[∆vm,ir]

}
(A5a)

Vma = T̂T
k−1

{
Nθ [vm,`×] +

`

∑
i=1

Ξcon,i[∆vm,i×]
}

(A5b)

Vna = T̂T
k−1

{
Nθ [vm,`∗] +

`

∑
i=1

Ξcon,i[∆vm,i∗]
}

(A5c)

Vba = T̂T
k−1

(
`Nθ +

`

∑
i=1

Ξcon,i

)
(A5d)

wv,a =
`

∑
i=1

T̂T
k−1(Nθ + Ξcon,i)wa,i , (A5e)

and

Nθ = I3×3 +
1
2
[
θ̂`×

]
(A6)

are defined to simplify notation. Note that this results from assuming that the bias, scale
factor, misalignment, and nonorthogonality errors are constant over the major interval,
though this assumption can be easily relaxed.

Similarly, by combining Equation (29a) with Equation (64b), defining the mapping of
each error in the gyro measurement into the velocity error as

Vbg =
`

∑
i=1

T̂T
k−1Ξscul,i −

1
2

(
T̂T

k−1[v̂`×] + ∆tkĜk−1T̂T
k−1

[
d̂k−1×

]
Lsb

)
(A7a)

Vsg =
`

∑
i=1

T̂T
k−1Ξscul,i[∆θm,ir] (A7b)

− 1
2

(
T̂T

k−1[v̂`×][θm,`r] + ∆tkĜk−1T̂T
k−1

[
d̂k−1×

]
Lsg

)

Vmg =
`

∑
i=1

T̂T
k−1Ξscul,i[∆θm,i×] (A7c)
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− 1
2

(
T̂T

k−1[v̂`×][θm,`×] + ∆tkĜk−1T̂T
k−1

[
d̂k−1×

]
Lmg

)

Vng =
`

∑
i=1

T̂T
k−1Ξscul,i[∆θm,i∗] (A7d)

− 1
2

(
T̂T

k−1[v̂`×][θm,`∗] + ∆tkĜk−1T̂T
k−1

[
d̂k−1×

]
Lng

)

wv,g =
`

∑
i=1

T̂T
k−1

(
Ξscul,i −

1
2
[v̂`×]

)
wg,i −

∆tk
2

Ĝk−1T̂T
k−1

[
d̂k−1×

]
wa,g , (A7e)

and incorporating the definitions from Equation (A5), it can be shown that the velocity
error propagation is

ev,k =∆tk

(
Ĝk−1 −

1
2

Ûk−1

)
er,k−1 + ev,k−1 (A8)

+

{
∆tk
2

Ĝk−1T̂T
k−1

[(
d̂k−1 × ∆φ̂k

)
×
]
− T̂T

k−1

[
∆v̂ng,k×

]

− ∆tk

(
Ĝk−1 −

1
2

Ûk−1

)
T̂T

k−1

[
r̂cg/c,k−1×

]}
ea,k−1

+ ∆tk

{(
Ĝk−1 −

1
2

Ûk−1

)
T̂T

k−1 +
1
2

Ĝk−1T̂T
k−1
[
∆φ̂k×

]
}

ed,k−1

− Vsa esa ,k + Vma ema ,k − Vna ena ,k − Vba eba ,k −wv,a

− Vsg esg ,k + Vmg emg ,k − Vng eng ,k − Vbg ebg ,k −wv,g .

Therefore, the error propagation in Equation (A8) describes the error propagation
for the velocity estimate given that the navigation system is dependent upon strapdown
inertial sensors and uses a coning and sculling algorithm, where the sensor errors are
assumed constant over the timestep.

Appendix A.3. Position

With the definition of the velocity error dynamics written in terms of the strapdown
sensor errors in Equation (A8), their propagation into the position error follows similarly.
The mappings defining the propagation of gyro measurement errors into the position
estimate are thus defined as

Rbg =
`

∑
i=1

T̂T
k−1X∆θ,i −

∆t2
k

6
Ĝk−1T̂T

k−1

[
d̂k−1×

]
Lbg (A9a)

Rsg =
`

∑
i=1

T̂T
k−1X∆θ,i[∆vm,ir]− ∆t2

k
6

Ĝk−1T̂T
k−1

[
d̂k−1×

]
Lsg (A9b)

Rmg =
`

∑
i=1

T̂T
k−1X∆θ,i[∆vm,i×]−

∆t2
k

6
Ĝk−1T̂T

k−1

[
d̂k−1×

]
Lmg (A9c)

Rng =
`

∑
i=1

T̂T
k−1X∆θ,i[∆vm,i∗]−

∆t2
k

6
Ĝk−1T̂T

k−1

[
d̂k−1×

]
Lng (A9d)

wr,g =
`

∑
i=1

T̂T
k−1X∆θ,iwa,i −

∆t2
k

6
Ĝk−1T̂T

k−1

[
d̂k−1×

]
wa,g . (A9e)

while the mapping for the errors in the accelerometer measurements are defined as

Rba =
`

∑
i=1

T̂T
k−1X∆v,i (A10a)
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Rsa =
`

∑
i=1

T̂T
k−1X∆v,i[∆θm,ir] (A10b)

Rma =
`

∑
i=1

T̂T
k−1X∆v,i[∆θm,i×] (A10c)

Rna =
`

∑
i=1

T̂T
k−1X∆v,i[∆θm,i∗] (A10d)

wr,a =
`

∑
i=1

T̂T
k−1X∆v,iwa,i . (A10e)

With the mappings defined in Equations (A9) and (A10), the error propagation for the
position becomes

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3

Ûk−1

)}
er,k−1 + ∆tkev,k−1 (A11)

+

{
∆t2

k
6

T̂T
k−1

[(
d̂k−1 × ∆φ̂k

)
×
]
− T̂T

k−1

[
∆r̂ng,k×

]

− ∆t2
k

2

(
Ĝk−1 −

1
3

Ûk−1

)
T̂T

k−1

[
d̂k−1×

]}
ea,k−1

+
∆t2

k
2

{(
Ĝk−1 −

1
3

Ûk−1

)
T̂T

k−1 +
1
3

Ĝk−1T̂T
k−1
[
∆φ̂k×

]
}

ed,k−1

− Rsa esa ,k + Rma ema ,k − Rna ena ,k − Rba eba ,k −wr,a

− Rsg esg ,k + Rmg emg ,k − Rng eng ,k − Rbg ebg ,k −wr,g .

Equation (A11) the error dynamics for the position estimate, influenced by accelerom-
eter and gyro bias, scale factor, misalignment, nonorthogonality, and white noise—the bias,
scale factor, misalignment, and nonorthogonality sensor error are assumed to be constant
from tk−1 to tk. The noise, however, is not assumed constant over the interval and thus
provides a separate contribution from each measurement, requiring the definition of wr,g
and wr,a.
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