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Abstract: Roads make a huge contribution to the economy and act as a platform for transportation.
Potholes in roads are one of the major concerns in transportation infrastructure. A lot of research
has proposed using computer vision techniques to automate pothole detection that include a wide
range of image processing and object detection algorithms. There is a need to automate the pothole
detection process with adequate accuracy and speed and implement the process easily and with low
setup cost. In this paper, we have developed efficient deep learning convolution neural networks
(CNNs) to detect potholes in real-time with adequate accuracy. To reduce the computational cost and
improve the training results, this paper proposes a modified VGG16 (MVGG16) network by removing
some convolution layers and using different dilation rates. Moreover, this paper uses the MVGG16
as a backbone network for the Faster R-CNN. In addition, this work compares the performance of
YOLOv5 (Large (Yl), Medium (Ym), and Small (Ys)) models with ResNet101 backbone and Faster
R-CNN with ResNet50(FPN), VGG16, MobileNetV2, InceptionV3, and MVGG16 backbones. The
experimental results show that the Ys model is more applicable for real-time pothole detection
because of its speed. In addition, using the MVGG16 network as the backbone of the Faster R-
CNN provides better mean precision and shorter inference time than using VGG16, InceptionV3,
or MobilNetV2 backbones. The proposed MVGG16 succeeds in balancing the pothole detection
accuracy and speed.

Keywords: deep learning; smart potholes detection; YOLOv5; faster R-CNN

1. Introduction

Roads make a huge contribution to the overall of growth of an economy. Roads
paved with asphalt, concrete, or both are widely used throughout the world as a platform
for transportation. Road conditions include various types of defects such as potholes,
unevenness of manholes, crack skid resistance, etc. Potholes can form because of low-
quality materials, bad design that allows surface water accumulation, formation of ice
in the cracks, etc. [1]. Every year potholes cause a lot of damage to life and property.
Two-thirds of Americans are directly impacted and frustrated by potholes [2]. Since 2011,
for five continuous years, motorists spent over $3 billion on vehicles to repair damage due
to potholes. This cost approximately $300 on average for each driver. A report of India
Economic Times in 2018 states that 3597 deaths due to potholes in roads were reported
by the Supreme Court [3]. This is a huge toll, and the report claims that there are many
cases that are unreported. Figure 1 shows the annual number of potholes repaired in city
of San Antonio, Texas from fiscal year 2013 to 2021. It shows that the San Antonio pothole
patrol crews repaired approximately 100,520 potholes in 2019 and 80,937 potholes in 2021
due to COVID-19 [4,5]. In Chicago there were over 156,000 potholes filled just in 2021 [6].
These numbers are relatively large amounts for cities. The road network of the United
States is very large: a study from the Bureau of Transportation Statistics showed that there
are approximately 746,100 miles of road in United States [7]. Keeping track of this length
of road is a tedious task and almost impossible with the use of only human manpower.
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Integrating an automated pothole detection technique in vehicles would help to locate
potholes and, accordingly, it will warn motorists and plan repair tasks.
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Figure 1. Annual number of potholes repaired From FY13 to FY21 in San Antonio, TX, USA drawn 
from data in [4,5]. 
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to be implemented on devices with limited hardware [11], (2) they may suffer from false 
positives as the joints of road could be detected as potholes and false negatives as the 
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The 3D reconstruction approaches are categorized based on the technology used: la-

ser-based or stereo-vision based techniques. The 3D laser scanner utilizes reflected laser 
pulses to create accurate digital models of objects [13–15]. These lasers could be used to 
detect potholes depth in real-time. Yu and Salari proposed a method [14] that involves the 
use of a light source to project a pattern of laser beams on the pavement, a camera to 
capture the pavement illuminated with the laser beams, and image processing on the cap-
tured images to identify potholes. Different approaches such as Multi-window Median fil-
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Figure 1. Annual number of potholes repaired From FY13 to FY21 in San Antonio, TX, USA drawn
from data in [4,5].

There are various research efforts to automate the pothole detection process in roads
using different approaches: sensor-based techniques [8–12], 3D reconstruction techniques
(laser-based [13–15] and stereo vision-based [16–20]), image processing techniques [21–28],
and model-based (machine-learning techniques and deep learning techniques) [29–37].
Senor-based techniques use vibration sensors to detect potholes. The accuracy of detecting
potholes may be affected by false positive and false negative readings due to the vibration
sensor detecting joints in roads as potholes or not detecting potholes in the center of a
lane, respectively. The 3D reconstruction techniques collect 3D road data for pothole
detection. They require costly configuration and computational efforts to reconstruct
pavement surface and might suffer from cameras misalignment that could impact detection
accuracy. Although traditional image processing techniques for pothole detection provide
significant accuracy, they also need to perform challenging tasks such as extracting features
manually and adjusting the image processing parameters and steps for different road
conditions. The development of advanced image processing techniques and the availability
of low-cost camera devices have motivated the development of model-based pothole
detection techniques. Traditional machine learning (ML) techniques were applied to
generate a trained model to detect potholes in 2D digital images. They achieve significant
accuracy while utilizing high computational power. In addition, to improve the accuracy
performance of ML techniques to detect potholes, experts are needed to manually extract
features. Deep learning (DL) techniques used deep convolutional neural network (CNN)
operations that are able to simultaneously automate the processes of features extraction
and classification. One-stage detectors and two-stages detectors are two types of DL object
detectors [20]. Several research efforts have been published to detect potholes that are
one-stage detectors [33–35,38,39] such as You Only Look Once (YOLO) [40] and Single Shot
Multibox Detector (SSD) [41]. They achieve moderate accuracy and fast detecting speed.
However, few research efforts have been published to build two-stage detectors [42] to
detect potholes such as Faster R-CNN [43]. They achieve high accuracy with slow detecting
speed. Therefore, the main aim of this paper is to fill this gap in the literature by addressing
the trade-off between accuracy and real-time performance. The main contributions of this
paper are summarized as follows: (1) we proposed a dilated deep CNN as backbone for
Faster R-CNN that increases the receptive field (RF) and reduces the number of calculations;
(2) we developed a DL algorithm that generates a trade-off model that involves and
balances the cost (inference time) against the benefits (accuracy) of potholes detection; (3)
we developed and tested the YOLOv5 models for detecting potholes; and (4) we compared
the performance of the proposed algorithm with the state-of-the-art methods.
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The paper is organized as follows: a literature review is briefly discussed in Section 2.
Section 3 comprises the theoretical background of deep learning algorithms used and the
proposed modified VGG16. The experimental setup, dataset, and results are presented in
Section 4. We conclude the paper with possible further enhancements in Section 5.

2. Related Work

Vision technologies provide efficient alternatives to automate tasks in various engineer-
ing fields such as transportation [44,45], agriculture [46,47], and industrial sectors [48–50].
This section illustrates some of the research efforts that have been developed to auto-
mate pothole detection in roads. The pothole detection techniques are classified into
four approaches: sensor-based techniques, 3D reconstruction techniques (laser-based and
stereo vision-based), image processing techniques, and model-based techniques (machine-
learning and deep learning).

2.1. Sensor-Based Pothole Detection Approaches

There are multiple research efforts to detect potholes using various vibration sensors
(such as ICP accelerometer or PC-oscilloscope) mounted to motorcycles, vehicles, and
buses [8–12] to collect accelerated data to estimate pavement surface conditions. The
vibration sensors could be built-in or [11] external to a PC. Eriksson [10] used GPS sensors
and 3-axis accelerometers to collect data and used a machine-learning approach to identify
severe road surface irregularities and potholes from accelerometer data (e.g., input x
and z axis acceleration and vehicle speed). Five consecutive filters were studied: z-peak,
xz-ratio, speed, high-pass, and speed vs. z ratio. These filters were used as well to
exclude the generated data from events such as crossing railways and door slamming. To
reduce the number of features, researchers used backward and forward selection, genetic
algorithm, and support vector machine using principal component analysis [51]. Sensor-
based pothole detection methods are not efficient techniques because: (1) they are not
suitable to be implemented on devices with limited hardware [11], (2) they may suffer from
false positives as the joints of road could be detected as potholes and false negatives as the
potholes in the center of a lane cannot be detected because they are not hit by any of the
vehicle’s wheels [10], (3) they cannot detect potholes until the vehicle pass over them, and
(4) they lack information about the area and shape of potholes.

2.2. Three-Dimensional (3D) Reconstruction Pothole Detection Approaches

The 3D reconstruction approaches are categorized based on the technology used:
laser-based or stereo-vision based techniques. The 3D laser scanner utilizes reflected laser
pulses to create accurate digital models of objects [13–15]. These lasers could be used to
detect potholes depth in real-time. Yu and Salari proposed a method [14] that involves
the use of a light source to project a pattern of laser beams on the pavement, a camera
to capture the pavement illuminated with the laser beams, and image processing on the
captured images to identify potholes. Different approaches such as Multi-window Median
filtering, Tile Partitioning with common thresholding [52], Laser line deformation, and
Template matching were explored. The laser-based pothole detection techniques can detect
potholes in real time. However, the cost of a 3D laser scanner is still expensive to mount on
vehicles. Stereo vision techniques are used to extract 3D information from digital images.
There are multiple research efforts using stereo vision methods to evaluate pavements
and detect potholes [16–19]. Hou et al. [19] and Staniek [16] used two cameras to collect
digital images. Zhang et al. [17] used a stereo camera to capture the left/right images of
potholes. They calculated a disparity map using a computationally efficient algorithm. A
surface fitting algorithm developed using low computational bi-square weighted robust
least-squares method [53,54] were used to determine road surface and potholes. This
pothole information was saved with geometric coordinates that can be used later to access
the properties such as size and volume of potholes to prioritize the repairs accordingly.
Like laser-based techniques, the stereo-vision techniques are also expensive in terms
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of configuration. Stereo-vision methods are not efficient because they (1) require a high
computational effort to reconstruct pavement surface. (2) are vulnerable to vehicle vibration
and camera misalignment that may affect the quality of the outcome.

2.3. Image Processing Pothole Detection Techniques

The image processing object detectors are dependent on hand-crafted representations
to extract low-level features. There were several previous image-processing research efforts
to detect potholes in a single image/frame [21–24], and other video-based methods were
proposed to detect potholes and count their number over a series of frames [21,25–28]. The
authors in [24] collected different frames and converted the frames into blurring grayscale
images and then applied morphological and edge detection methods [55] to identify con-
tours that are run through a Hough transform algorithm to extract features. Ouma et al. [56]
applied fuzzy c-means clustering algorithm and morphological reconstruction techniques
to 2D color images to detect potholes on asphalt pavement. In addition, Nienaber et al.
used image processing to identify the potholes on roads and reject unwanted objects such as
vehicle and plants from the image [22]. Frames are processed by simple image processing
techniques such as Canny filters [57] and contour detection to locate potholes. The experi-
ments resulted in precision of 81.8% with recall of 74.4%. Although the accuracy values are
satisfactory in the test images, it is not guaranteed that using the same techniques in all type
of roads will result in the same accuracy. The authors in [58] detect potholes in three stages:
(1) pre-processing to extract the dark areas from a grayscale image, (2) candidate extraction
to find the vanishing point to create virtual lanes, and (3) cascade detector to extract the
pothole region using some threshold values. This technique achieved 88% accuracy with
recall of 71%. Similarly, in [59], the authors detect potholes in three stages: (1) segmentation
using histograms and morphology filters to extract dark regions, (2) candidate region
extracted using various features, such as size and compactness, and (3) decision making as
to whether candidate regions are potholes through comparing pothole and background
features. The detection’s accuracy of the potholes using image processing approaches will
be affected by the road conditions such as existence of dirt on the road and the variation in
the pothole size. Thus, these approaches required adjusting the image processing param-
eters and steps for different road conditions, which are tedious tasks. In addition, these
approaches are not suitable for real-time potholed detection because they require high
computational power due to their computational complexities.

2.4. Model-Based Approaches for Potholes Detection Techniques

There is an increasing tendency of applying machine learning (ML) methods to gener-
ate trained models to detect potholes in 2D digital images. Support vector machine (SVM)
was used as a ML algorithm for road information analysis and pothole detection [29].
Texture measure based on histograms was used as the feature of the image and non-linear
SVM was used to detect whether the image includes potholes. The authors in [30] created
a SVM trained by a set of scale-invariant feature transform (SIFT) features for recognizing
potholes in labeled images. These methods achieved accuracy of 91.4% for detecting pot-
holes. Hoang [31] used least squares SVM and neural network with steerable filter-based
feature extraction and achieved a pothole detection accuracy rate of roughly 89%. Recently,
Hoang et al. [32] integrated the SVM and the forensic-based investigation (FBI) metaheuris-
tic to optimize the detection accuracy, and their experiments achieved an accuracy of
94.833% for detecting potholes. The stated machine learning approach achieved signif-
icant accuracy, although they encountered the following challenges: (1) manual feature
extraction must be performed by experts to improve the accuracy performance during the
pothole detection process, and (2) they required high computational power, which are not
feasible to be used by drivers in their devices. Deep learning (DL) approaches provide
an alternative solution that automatically processes features extraction and classification
simultaneously through convolutional neural network (CNN) operations.
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Recent studies used object detection DL to detect potholes accurately with significant
speed. DL object detectors were classified into two categories: one-stage detectors and
two-stages detectors [60]. The one-stage detector is a regression that implements a unified
architecture to achieve results directly. The two-stage detector is based on selecting the
region of interest and then detecting/classifying each region into various object classes.
Several research efforts developed the one-stage detectors to detect potholes as follows.
Maeda et al. [33] trained the model using the SSD-InceptionV2 and SSD-MobileNet frame-
works. They installed the model on a smartphone, and their experiments showed recalls
and precisions greater than 75% with an inference time of 1.5 s. Silvister et al. used SSD
deep learning algorithms to detect potholes on a smartphone [38]. They validated the SSD
detection against the detection done by sensor reading to reduce the false positives and
have a backup mechanism if one of them fails. The authors claimed 96.7% detection accu-
racy. Similarly, the authors in [34] combined vision and vibration sensor-based methods for
pothole detection. They used an accelerometer and the camera of a mobile phone for this
task. Based on SSD with MobileNet, they were able to detect potholes with 55% accuracy
for the sensor-based method, and 60% for the vision-based method. Song et al. [35] also
used smartphones to gather movement information and the InceptionV3 [39] classifier to
detect potholes. In addition, Redmon et al. developed YOLO, a one-stage object detector in
2016 [40]. YOLOv2, YOLOv3, and YOLOv3 Tiny have been applied to detect potholes [36].
The YOLOv3 Tiny and YOLOv4 achieved 76% and 85% high precision, respectively, and
49.71% and 85.39% mean average precision mAP@0.5, respectively [37]. The processing
speed of both YOLOv3 and YOLOv4 is approximately 20 FPS (frames per second). A
few research efforts developed two-stage detectors to detect potholes. The authors in [42]
developed Faster R-CNN having 10 layers: 3 convolutional layers, 3 max-pooling layers,
and 4 fully connected layers. They compared Faster R-CNN with YOLOv3 and SSD and
concluded that the YOLOv3 model is faster than both SSD and Faster R-CNN model and
YOLOv3 has the best accuracy of 82% [42]. Moreover, several research efforts [61–63]
conclude that a two-stage detector such as Faster R-CNN always has a better precision
rate with a lower speed compared to a one stage-detector such as YOLOv5. Balancing
the potholes detection accuracy and processing (inference) time is needed. Thus, in our
work we will fill this gap in the literature by addressing the trade-offs between accuracy
and real-time performance by developing a novel DL algorithm that balances the pothole
detection model’s accuracy and inference time. Moreover, the stated research works have
shown acceptable levels of precision and inference time, but there is still room for improve-
ment. Table 1 lists the limitations of the pothole detection approaches. Thus, this paper
develops supervised DL algorithm to detect potholes in roads with significant accuracy
while achieving real-time requirements.

Table 1. Pothole detection approaches.

Approaches Limitations

Sensor-based
[8–12]

- Specific devices are needed
- Sensors may get damaged due to road conditions
- False negative potholes in the center of a lane:
- False positive: road-joints detected as potholes
- Lacks information: Area and shape of potholes

3D reconstruction
Laser [13–15],
Stereo vision [16–19]

- Expensive 3D laser scanner
- High computational efforts to reconstruct surface
- Repetitive camera alignments are needed

Image processing
Images [21–24]
Videos [21,25–28]

- Require adjusting several parameters and steps
for different road conditions

- High computational complexity
- Not suitable for real-time
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Table 1. Cont.

Approaches Limitations

Model-based [29–37]
Machine learning

- Need large training data
- Manual feature extraction
- Shallow models

Deep learning
- Require balancing the model’s accuracy and

detection time

3. Materials and Methods

There are two major categories of deep learning object detectors: two-stage detectors
and one-stage detectors [60]. Two-stage detectors, in the first stage, generate region pro-
posals from a region proposal network (RPN) that proposes bounding boxes that have the
probabilities of having an object. The second stage contains an RoI pooling operation that
extracts features from the bounding boxes generated by the RPN for classification and the
bounding-box regression task. Faster R-CNN [43] is an example of a two-stage detector.
One-stage detectors such as YOLO (You Only Look Once) [40] and SSD (Single Shot Multi-
box Detector) [41] are regression models that predict both bounding boxes and classification
probabilities simultaneously without the region proposal step. Thus, two-stage detectors
achieve high accuracy in terms of object localization and recognition whereas one-stage
detectors are popular for their speed [64]. Backbone networks extract the features from
input images and produce feature maps. Layers in the backbone network can be used for
object detection as well as classification. The deeper the backbone, the more the features
enhance the accuracy. Predefined backbones such as VGG16 [65], ResNet50 [17], and Dark-
net [66,67] are widely used in object detection algorithms as a means of feature extraction
and classification. This paper proposed a modified version of VGG16 (called MVGG16)
that generates high quality training results and reduces the required computation cost to
detect potholes. The proposed MVGG16 is used as a backbone network to the two-stage
detector (Faster R-CNN). The following sections briefly discuss the YOLOv5 [68] and Faster
R-CNN [43] architectures and illustrate the architecture of the proposed MVGG16.

3.1. Faster R-CNN

Faster R-CNN [43] is one of the widely used two-stage detectors for object detection.
Unlike YOLO, Faster R-CNN has two networks: a region proposal network (RPN) for
generating region proposals and a classifier network for classifying the objects in the
generated region proposals as shown in Figure 3. Anchors are the basic components of
this architecture. Anchors are basically boxes and at each position in an image there are
nine anchors by default. The default size for anchors is 128, 256, and 512, but this can be
overridden. This paper used anchors with various sizes as shown in Table 2. The input
images are passed through a CNN that generates a feature map. The next stage is the
RPN, which finds a predefined number of regions from the feature map. With a list of
possible objects and their locations represented by the bounding boxes, the Faster R-CNN
uses a classifier to classify whether the bounding boxes contain desired classes of objects.
The CNN used for feature extraction are also known as backbone networks. VGG16 [65],
MobileNet [69], ResNet [17], etc., are few of the widely used backbone networks. In this
paper, we proposed a modified VGG16 network as shown in Section 3.2 and Figure 3
by removing some convolution layers and using different dilation rates to reduce the
computational cost and improve the training results. In addition, we have compared the
performance of ResNet50 with feature pyramid network (FPN) [70], VGG16, MobileNetv2,
Inception V3, and modified VGG16 to figure out which one is the best in terms of speed
and accuracy. As shown in Figure 3, the input image is given to the backbone (e.g., VGG16)
that processed it until the last convolution layer (except the last pooling layer). Each region
of interest (RoI) pooling layer then produces a fixed-length (H ×W) feature vector from
the feature map (e.g., VGG16, H = W = 7). The generated feature vector is given to fully



Sensors 2021, 21, 8406 7 of 21

connected layers (Fc6 and Fc7). They then branched to two sibling output layers. The first
sibling layer generates softmax probability of K object classes plus a “background” class.
The second sibling layer produces four real-valued numbers (bounding box positions)
for each of the K object classes. The Faster R-CNN multitask loss function is defined as
follows [43].

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, pi) + λ

1
Nreg

∑
i

piLreg
(
ti, ti

)
(1)

where pi is the predicted probability of an anchor with index i being an object in mini-
batch. The ground-truth label pi is 1 if the anchor is positive and is 0 if the anchor is
negative. Moreover, ti is a vector representing the four coordinates of the predicted
bounding box, and ti is that of the ground-truth box associated with a positive an-
chor. The classification loss Lcls is log loss over two classes (object versus not object)
Lcls(pi, pi) = pi log pi − (1− pi) log(1− pi), Lreg

(
ti, ti

)
= L1

(
ti − ti

)
where λ is the balanc-

ing parameter, L1 is robust loss function, and Ncls is normalized by the mini-batch size
(Ncls = 256) and the Nreg is normalized by the number of anchor locations (Nreg ∼ 2400).
The following section illustrates the proposed CNN that reduces the required computation
cost and improves detection accuracy.

3.2. Proposed Dilated CNN

The traditional object detection algorithms include CNN where the image is convolved
and then pooled. The pooling is used to increase the receptive field RF and reduce the
amount of calculation. The receptive field RF is the part of the image that is defined by the
filter size of the layer in the CNN [71]. This filter is used to extract the required features.
Equation (2) shows the definition of the receptive field RF, where k is the size of the kernel
and d is the space between each pixel in the convolution filter and called the dilation rate.

RF = d(k − 1) + 1 (2)

To increase feature resolution, improve the quality of the training results, and decrease
the required computational costs, this paper expands the receptive field RF by adding
dilation rate d larger than one to the conv2D kernel through dilated convolution [72]. For
example, if we use dilation rate of 1 and 3 × 3 kernel, it produces receptive field with size
3 × 3 that is the same as the standard convolution as shown in Figure 2b. However, if we
use dilation rate d = N, as a result each input skips N pixels. Figure 2c shows an example
of using 3 × 3 kernel having dilation rate d = 2, which is equivalent to the same field of
view as 5 × 5 kernel. This shows that increasing the receptive field RF enabled the filter
to grab more contextual information. Equation (3) shows the size of the output that can
be calculated.

σ =

∣∣∣∣ g + 2p− RF
s

∣∣∣∣+ 1 (3)

where g× g is the input with a dilation factor, padding, and stride of d, p, and s, respectively.
Finally, using several receptive fields with different σ sizes enable us to grab valuable
features in the scene area having different scales. In conclusion, dilated convolutions
support exponentially enlarging the receptive fields without missing any coverage or
resolution [72].

The VGG16 [65] network was designed for large scale image classification. VGG16
has 5 blocks of 13 convolutional layers and 3 fully connected layers and has a total of
138 million parameters. The convolution layers use 3 × 3 kernel size. Therefore, they have
a very small receptive field RF = 3 × 3 to capture the smallest size notion of left/right,
up/down, center. Spatial pooling is carried out by adding five max-pooling layers that
follow some of the convolutional layers. Each maxpool layer has a 2 × 2 kernel size with a
stride of two. The use of multiple pooling of high-level features lead to loss of some details



Sensors 2021, 21, 8406 8 of 21

and features. Therefore, this paper proposes a modified version of VGG16 (MVGG16) to
generate high quality training results and reduce the required computation cost.
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The proposed MVGG16 has five blocks including nine convolution layers and five
maxpool layers as shown in Figure 3. It has total of 5.28 million parameters. The first seven
convolution layers used 3 × 3 kernel size and dilation rate 1 × 1. The last two convolution
layers use 3 × 3 kernel size and dilation rates 2 × 2 and 3 × 3, respectively, as shown in
Figure 3. Similar to VGG16, in all convolution layers, we used rectified linear units (ReLUs)
as activation functions. To generate region proposals, we slide a small network over the
MVGG16 map output by the last shared convolutional layer. This small network takes as
input a 3 × 3 spatial window of the input convolutional feature map. Each sliding window
is mapped to a lower-dimensional feature (512-d for MVGG16, with ReLU following).
This feature is fed into two sibling fully connected layers, a box-regression layer and a
box-classification layer. In summary, the MVGG16 modifies VGG16 by removing f our
convolution layers from the last two blocks and use different dilation rates, as shown in
Figure 3.
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3.3. YOLOV5

Redmon et al. [40] proposed an object detection algorithm “YOLO” that was claimed
to be more usable in real time than the prevailing algorithms because of its speed in
detecting objects. An input image is divided into S × S grid cells and some grid cells are
responsible for detecting an object present in the image, i.e., only the ones where the center
of the bounding box is in the cell. There were β bounding boxes, and confidence scores for
those boxes were predicted for each grid cell. The bounding box prediction is composed of
five components: (x, y, w, h, c), where (x, y) coordinates give the center of the box, (w, h)
give the width and height of the box, and c gives the confidence score of the box. There are
in total S × S × β × 5 outputs for an image input. The presence or absence of a pothole can
be ascertained from the confidence score. As in [40], we define confidence score as where
Pr(Object) is the probability of pothole appearing in a grid cell and IoU is the intersection
of union between the ground truth and the predicted boxes as shown in Equation (10).
If no pothole exists in that box, the confidence score should be zero. The GIoU metric in
Equation (4) is used to evaluate how close the prediction bounding box (A) is to the ground
truth box (B), where A, B ⊆ S ∈ Rn and object shape (C), C ⊆ S ∈ Rn [73].

GIoU = IoU − |C\(A ∪ B)|
|C| (4)

The sum of the following Equations (5)–(8) is the loss function that penalizes bounding
box, coordination error, and classification error [40].

λcoord

S2

∑
i=0

β

∑
j=0

Kobj(xi − x̂i)
2 + (yi − ŷi)

2 (5)

Equation (5) computes the loss related to the predicted bounding box position (x, y)
and the actual position (x̂, ŷ) from the training data. This function computes a sum over
each bounding box predictor (j = 0 . . . β) of each grid cell (i = 0 ... S2) Kobj

i , where Kobj
i implies

that object appears in cell i and Kobj
ij indicates that jth bounding box predictor in cell i is

responsible for that prediction. Equation (6) computes loss related to the coordination error
of the predicted box width/height. It is like Equation (5), but the square root is used to
reflect that the small deviations in large boxes matter less than those in small boxes. Thus,
we can predict the square root of the bounding box width and height instead of the width
and height directly.

λcoord

S2

∑
i=0

β

∑
j=0

Kobj
ij

[(√
wi −

√
Ŵi

)2
+

(√
hi −

√
ĥi

)2
]

(6)

Equation (7) computes the loss related to the classification error based on the confi-
dence score for each bounding box predictor. Here, C is the confidence score and Ĉ is the
intersection over union of the predicted bounding box with the ground truth; Kobj

j is equal

to one when there is an object in the cell, and 0 otherwise, and Knoobj
i is the opposite.

S2

∑
i=0

β

∑
j=0

Kobj
ij
(
Ci − Ĉi

)2
+ λnoobj

S2

∑
i=0

β

∑
j=0

Knoobj
ij

(
Ci − Ĉi

)2 (7)

The λ parameters seen in Equations (5)–(7) are used to differently weight the loss
functions to improve the model stability (λcoord = 5, λnoobj = 0.5). Equation (7) computes
the classification loss as normal sum-squared error for classification, except for the Kobj term.

After the official release of YOLO in 2016, there have been four more revisions:
YOLOv2 (darknet-19 backbone) [66], YOLOv3 (darknet-53 backbone) [67], YOLOv4 (e.g.,
CSP Darknet53 backbone) [74], YOLOv5 [68], and You Only Learn One Representation



Sensors 2021, 21, 8406 10 of 21

(YOLOR) [75]. The YOLOv5 was developed and published by Glenn Jocher, Ultralytics LLC
in 2020 as a GitHub repository [68]. There are four major models of YOLOv5 based on the
complexity of architecture, i.e., XS, S, M, and L. This paper provides a performance analysis
of YOLOv5 Large (Yl), Medium (Ym), and Small (Ys) models. The YOLOv5 models [68]
includes two main parts: the model backbone and the model head, as shown in Figure 4.
First, to extract important features from the given input image the model backbone is
used. YOLOv5 used ResNet101 to develop the cross-stage partial (CSP) bottleneck that
reduces the network parameters, extracts the informative features from an input image [76],
and reuses the captured features. Second, YOLOv5 developed the final detection part
(model head) for feature aggregation. It is responsible to generate the final output vectors
including bounding boxes, confidence scores, and class probabilities. In YOLOv5, the final
detection layers used the Sigmod activation function; however, the middle or hidden layers
used Leaky ReLU activation functions. Finally, to filter the false predictions, in this paper
we ignore any prediction that has a confidence score lower than 0.5. The YOLOv5 used
the k-mean clustering algorithm with different k values to automatically determine the
best anchor boxes for that dataset and use them during training. The YOLOv5 calculates a
total loss function from regression loss box_loss (based on GIoU; Equations (4)–(6)), obj_loss
(based on IoU; Equations (7) and (10)) and classification loss cls_loss. In this paper, the
cls_loss equals zero because our problem is to only to detect objects.
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4. Results

This section comprises the description of the experimental environment and visualiza-
tion of performance metrics performed by trained models on the pothole dataset.

4.1. Setup

The machine used for training was running Windows 10 and was embedded with
Intel Core i5 CPU, GPU of NVIDIA RTX 2080(8GB), and 16GB memory. Different pack-
ages of Python3 such as OpenCV [78], PyTorch [79], Cudatoolkit [80], NumPy [81], and
Tensorboard [82] were installed. We used momentum of value 0.843 and weight decay of
0.00036 for YOLOv5, whereas none were used for Faster R-CNN. YOLOv5 dynamically
calculates the anchor size and aspect ratios; however, in Faster R-CNN we set anchor sizes
and aspect ratios as shown in Table 2. Furthermore, the parameters used for training are
listed in Table 2. It is noted that Faster R-CNN was able to converge in a smaller number of
epochs (100 epochs) than YOLOv5 (1200 epochs) to generalize the model. In addition, we
used mini batch size to increase the Faster R-CNN and YOLOv5 model’s accuracy and to
efficiently utilize the memory of the GPU.

4.1.1. Dataset Preparation

There is no online benchmark potholes dataset available and a few publicly available
official datasets for pothole detection. Therefore, in this work we accumulated pothole
images from multiple sources (MakeML [83] and Roboflow [84]), and we used smartphone
video cameras attached to vehicle windshields to collect other images from roads in
Carbondale, IL. Out of the total images, 665 images with 2139 potholes were used for
training, 183 images with 327 potholes for validating the model, and 92 images for testing
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the generated model. The images in the dataset include several potholes with different
shape, area, and depth, as shown in Figure 5. We used LabelImg [85], an open-source
graphical annotation tool, to label our images in PASCAL/VOC format and later converted
them into .txt format for YOLOv5 and .csv format for Faster R-CNN. The size of images
used ranged from 14KB to 960KB and the shape of images ranged from 270 × 150 to
3264 × 1836.
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Table 2. Training parameters for YOLOv5 and Faster R-CNN.

Parameters YOLOv5
Faster R-CNN

ResNet50 (FPN) VGG16,
MVGG16

MobileNetv2,
InceptionV3

Batch Size YL = 8, Ym, Ys = 16 2 2 2

Epochs 1200 100 100 100

Learning Rate 0.0032 0.005 0.0001 0.0001

Optimizer SGD SGD Adam Adam

Anchor Sizes Dynamic 32, 64, 128, 256, 512 8, 16, 32, 64, 128,
256, 512

8, 16, 32, 64, 128,
256, 512

4.1.2. Dataset Augmentation

The limited size of the dataset can lead to over-fitting. However, deep learning models
demand a satisfactory amount of data to generate accurate results [86]. Therefore, we
have applied augmentation techniques to avoid over-fitting as well as to gain advantage
of regularization. Various parameters such as scaling, color adjustments, rotation, and
mosaic augmentation, etc., were used for augmentation. Mosaic augmentation in YOLOv5
is one of the peculiar types of augmentation ever used before. It combines multiple
images cropped randomly to form a grid as shown in Figure 6a. YOLOv5 authors have
maintained their own code for augmentation, whereas Albumentations [87] library was
used for augmentation in Faster R-CNN. We have used a scale factor of 0.5, shear of 0.5, flip
up-down of 0.2 and flip left-right of 0.5, mosaic of 1, and translation of 0.1 for augmenting
in training YOLOv5. Similarly, with Faster R-CNN, flip of 0.5, vertical flip of 0.00856, and
horizontal flip of 0.5 were used. Examples of images augmented and used in training
model generated by Faster R-CNN are shown in Figure 6b. Images in YOLOv5 were
resized by scaling one of the larger image’s dimensions to 640 and another dimension
was rescaled maintaining the aspect ratio. However, no image resizing was performed for
Faster R-CNN.

4.2. Performance Evaluation Mertics

In object detection, metrics such as precision, recall, accuracy, and mean average preci-
sion (mAP) are used to evaluate the performance of the prediction model. These metrics
can be used to compare the performance of different object detection algorithms on the
same dataset. Precision measures the accuracy of the model in predicting potholes, whereas
the accuracy is the ratio of correct detection to the total images used for testing. Recall
measures the performance of the model in finding all potholes in the images. All these
measures are directly affected by the IoU. The confidence threshold ω is defined as the ratio
of intersection of ground truth and prediction area to the union of ground truth and predic-
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tion area. The ω is used to distinguish whether detection is valid or invalid (commonly
used ω = 0.5). The metrics discussed are formulated by Equations (8)–(13) below:

Precision =
TP

All detections
=

TP
TP + FP

(8)

Recall =
TP

All ground truths
=

TP
TP + FN

(9)

IoU =
A ∪ B
A ∩ B

(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

AP@ω =
∫ 1

0
p(r)dr (12)

mAP@ω =
1
N

N

∑
i=1

APi (13)

where A is the prediction bounding box and B is the ground truth box, respectively,
A, B ⊆ S ∈ Rn [73] and TP is true positives, TN is true negatives, FN is false negatives, and
FP stands for false positives. Because there are a large number of instances that should not
be detected as objects, the TN metric does not apply in object detection. Using frame-based
constraints, if the bounding box region contains the foreground object (pothole), then the
frame demonstrates true positive when IoU ≥ ω. If the object is not present inside the
bounding box, then frame is considered as false positive where IoU < ω. The frame shows
false negative if target object missed by the bounding box (i.e., ground-truth missed by the
model). The precision-recall (PR) curve plots precision as a function of recall. It depicts
the trade-off between the precision and recall for varying confidence values for the model
detections. The average precision (AP@ω) is the area under the PR curve as shown in
Equation (12), where precision and recalls are always between 0 and 1. The mean average
precision (mAP@ω) is the average of the AP@ω calculated for all the classes as shown in
Equation (13). It is used to determine the accuracy of a set of object detections from a model
when compared to ground-truth object of the dataset.
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5. Object Detection Results and Discussion

The comparison of results achieved by the YOLOv5 models and Faster R-CNN models
in sample images of different daylight conditions and with different numbers of potholes
are shown in Figures 7 and 8, respectively. Figure 7 shows the prediction results of YOLOv5
Ys (a–c), Ym (d–f), and Yl (g–i) models. The images in the right column are comparatively
darker than the other images, we can see that all the models are able to detect the potholes
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correctly, but the Yl model shows better confidence scores on average than the other two
models. The images in the middle column include a single and bigger pothole; all the
models were able to detect it well, but the confidence score Ym shows the highest score
(0.88), followed by the Yl model. Each model has different detection results for images
in the rightmost column, which contains a relatively higher number of potholes. The Ys
model was able to detect a higher number of potholes than the other models. The Ym and
Yl models detected same number of potholes. In summary, as shown in Figure 7, the Yl
model can easily detect visible and bigger potholes with satisfactory confidence score, the
Ym model is able to detect potholes with higher a confidence score, and the Ys model is
able to detect the largest number of potholes.
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Net50 makes a perfect prediction with a perfect bounding box and confidence score. How-
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Sensors 2021, 21, 8406 14 of 21

Figure 8 shows the prediction results of Faster R-CNN with different backbones for
the same images used for the YOLOv5 model comparison. Figure 8a–l shows the results
of Faster R-CNN with ResNet50(FPN), VGG16, MobileNetV2, and MVGG16 backbones,
respectively. The left column in Figure 8 shows that ResNet50 successfully detect all
the potholes with the highest confidence score (99%), whereas VGG16 and MobileNetV2
successfully detect only four and three potholes, respectively. Figure 8g shows that Mo-
bileNetV2 was able to detect bigger potholes only and fails to detect small/far-away ones,
as shown in Figure 8h,i. MVGG16 was able to detect potholes with a higher confidence
score than VGG16 and MobileNetV2. The middle column in Figure 8 depicts that ResNet50
makes a perfect prediction with a perfect bounding box and confidence score. However,
VGG16 and MobileNetV2 fail to detect the bounding box accurately, although the con-
fidence score is above 90% for both. The proposed MVGG16 successfully detected the
perfect bounding box with a high confidence score. Each of the models have different
detection results in images in the right column in Figure 8. ResNet50 detects bigger and
visible potholes with a relatively better confidence score than the rest of the models. We can
see that VGG16 has the worst confidence score in this image and MobileNetV2 is unable
to detect one of the potholes. However, MVGG16 is able to detect the potholes with a
better confidence score than VGG16. Overall, it is obvious that ResNet50 is the best among
the four models in accuracy. However, MVGG16 outperformed all models in terms of
inference speed. In addition, we developed the image processing techniques in [24] to
detect potholes and compared the results with the Faster R-CNN with MVGG16 as shown
in Figure 9. It shows that the image processing techniques failed to detect potholes due to
the variation of the pothole size.
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Comparison of YOLOv5 and Faster R-CNN (MVGG16)

In the previous section, we compared the inference of models in three sample images.
This section presents the comparison of the training metrics such as precision, recall, mAP,
and loss values of the algorithms along with the other comparison criteria that directly
affect the usability of models in real-time situations. The training loss values for different
models of YOLOv5 and Faster R-CNN are shown in Figures 10a and 10b, respectively. The
training loss value of YOLOv5 [40] is obtained using Equations (5)–(8). Loss values graph
for the Ys, Ym, and Yl models show that the nature of curve is same, but model Yl has a
relatively lower value of loss, followed by Ym and Ys models, as shown in Figure 10a. Faster
R-CNN [43] uses multi-task loss of the joint training for both classification and bounding-
box regression values as shown in Equation (1), where classification loss represents category
loss, and regression loss represents bounding box location loss. Figure 10b depicts the loss
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values of Faster R-CNN with ResNet50, MVGG16, VGG16, and MobileNetV2 backbones.
ResNet50 outperforms the rest of the backbones because it has half the loss values that
the other models have. ResNet50 is followed by MVGG16, VGG16, and MobileNetV2 for
lower training loss values. Figure 11 contains a comparison of YOLOv5 models based on
different metrics discussed in previous section. The nature of the curve of all models is
almost similar for all accuracy metrics except for some differences in values. Figure 11a
shows the precision value of different models in different epochs of training. The precision
value of large model Yl is greater, followed by the Ym and Ys model. It is similar for
recall and mAP@0.5–0.95 as shown in Figures 11b and 11d, respectively. However, the Ys
model surpassed the Ym model at the end of training in the value of mAP@0.5 as shown in
Figure 11c. In conclusion, the YOLOv5 Yl model stays on top in accuracy values followed
by Ym and Ys models, and it achieved high precision 86.4% and YOLOv4 achieved 85% [37].
The summary of comparison of various models discussed in this research is tabulated in
Table 3. We can see that ResNet50 has the highest precision value followed by Ym, Yl and the
proposed MVGG16, whereas MobileNetV2 is last. Similarly, training loss value for Ys model
is smaller compared to all models of YOLOv5 and Faster R-CNN. The proposed MVGG16
reduced the VGG16 training loss by approximately 40%. The ResNet50 has the largest value
of mAP@0.5–0.95 at 64.12%, whereas MobileNetV2 has the worst mAP@0.5–0.95 value. It is
noticed that MVGG16 improved the VGG16′s mAP@0.5–0.95 value by 10%. For two image
resolutions, the Ys model has the best value for inference speed as expected and VGG16
has the worst value. The proposed MVGG16 was able to improve the VGG16 inference
speed by 58.7%. The Ys model showed the lowest training time per epoch, but it required
more epochs to converge. However, MobileNetV2 converged in just 100 epochs with 8000 s
for total training time, which was the fastest. When it comes to final model size, all the
Faster R-CNN models have bigger sizes than th eYOLOv5 models. Table 3 shows that the
proposed MVGG16 produces the smallest model in size for all Faster R-CNN. The Ys model
has the smallest size which of only14.8MB; however, MVGG16 generates the smallest Faster
R-CNN model. The MVGG16 reduces the VGG16 models’ size by approximately 18.8%, as
shown in Table 3. The models listed in Table 3 achieved superior results compared with the
image processing techniques that achieved precision of 81.8 in [22] and 88.0 in [58] with
detection speed ≈ 0.2 s, which is not suitable for real-time potholed detection. In addition,
we tested You Only Learn One Representation (YOLOR) [75], which integrates implicit
knowledge that is obtained from shallow layers and explicit knowledge that is obtained
from deep layers. YOLOR generates a model that could contain a general representation to
enable sub-representations appropriate for various tasks.
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Figure 11. Training comparison of YOLOv5 Ys, Ym, and Yl models using different metrics:
(a) precision value of Ys, Ym, and Yl in different epochs of training, (b) recall value of Ys, Ym,
and Yl in different epochs of training, (c) mAP@0.5 of Ys, Ym, and Yl in different epochs of training,
and (d) mAP@0.5–0.95 of Ys, Ym, and Yl in different epochs of training.

Table 3. Comparison of YOLOv5 and Faster R-CNN performance.

Metrics
YOLOv5 Faster R-CNN [43]

Yl Ym YS ResNet50 (FPN) VGG16 MVGG16 Mobile-Net V2 Inception V3

Precision (P) 86.43% 86.96% 76.73% 91.9% 69.8% 81.4% 63.1% 72.3%

Training Loss 0.015 0.017 0.020 0.065 0.226 0.136 0.209 0.194

Mean Average Precision
(mAP@0.5–0.95) 63.43% 61.54% 58.9% 64.12% 35.3% 45.4% 30.5% 32.3%

Inference speed: Image
resolution (1774 × 2365) 0.014 s 0.012 s 0.009 s 0.098 s 0.114 s 0.047 s 0.036 s 0.052 s

Inference speed: Image
resolution (204 × 170) 0.018 s 0.013 s 0.009 s 0.065 s 0.119 s 0.052 s 0.032 s 0.056 s

Training time/epoch 26 s 16 s 12 s 124 s 173 s 105 s 80 s 95 s

Total training time 31,200 s 19,200 s 14,400 s 12,400 s 17,300 s 10,500 s 8000 s 9500 s

Model Size (MB) 95.3 43.3 14.8 165.7 175.5 134.5 329.8 417.2

Table 4 lists the comparison of YOLOv5 small, Faster R-CNN with MVGG16 back-
bone, YOLOR-P6, and YOLOR-W6. The training of the YOLOR-W6 and YOLOR-P6
require large GPU memory, approximately 6.79GB and 11.3GB per epoch, respectively. The
mAP@0.5–0.95 of the YOLOv5 (Ys) is the largest value, 58.9%, followed by Faster R-CNN
with MVGG16 backbone and YOLOR-W6, respectively, whereas YOLOR-P6 stays last
as shown in Table 4. Moreover, the YOLOv5 (Ys) has the smallest model size, 14.8MB,
followed by Faster R-CNN with MVGG16 backbone and YOLOR-P6, respectively, whereas
YOLOR-W6 generated the largest model size. In conclusion, the proposed Faster R-CNN
MVGG16 backbone developed a deep CNN having different dilated layers to increase
receptive fields. Thus, the generated model succeeds to balance its accuracy and inference
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speed because it: (1) reduces the required computations in CNN backbone (e.g., Resnet50)
and (2) improves the model accuracy compared with other backbones such as VGG16
and MobileNet.

Table 4. Comparison of YOLOv5 small, Faster R-CNN with MVGG16, and YOLOR models.

YOLOv5
(Ys)

Faster R-CNN
with MVGG16

YOLOR-
P6

YOLOR-
W6

Training (batch
size, epochs,
learning rate)

(16, 1200, 0.0032) (2, 100, 0.0001) (8, 1200, 0.01) (8, 1200, 0.01)

Training Loss 0.020 0.136 0.0170 0.015

mAP@0.5-0.95 58.9% 45.4% 43.2% 44.6%

Inference speed:
Image resolution
(1774 × 2365)

0.009 s 0.047 s 0.03 s 0.032 s

Inference speed:
Image resolution
(204 × 170)

0.009 s 0.052 s 0.03 s 0.032 s

Model Size (MB) 14.8 134.5 291.8 624.84

6. Conclusions and Future Work

Considering the needs to detect potholes in roads accurately and in real-time, this
paper developed efficient CNN models. The conducted experiments in this paper used a
dataset that includes pothole images that were collected in different daylight conditions,
different road conditions, and with different shapes and sizes. The pothole dataset was
trained with ten different CNNs: three variations of YOLOv5 (Yl, Ym, and Ys), two vari-
ations of YOLOR, and Faster R-CNN with five different backbones (ResNet50, VGG16,
MobileNetV2, InceptionV3 and the proposed CNN called MVGG16). Experiments show
that Faster R-CNN ResNet50 has the highest precision of 91.9% followed by Ym, Yl, and the
proposed MVGG16 whereas MobileNetV2 was last. The Ys model is the fastest model to
predict potholes followed by Yl, Ym, MobileNetV2, MVGG16, InceptionV3, and ResNet50,
and VGG16 was slowest. In addition, the results show that MVGG16 improves the preci-
sion and shortens the inference speed compared with VGG16. However, the Ys model is
the fastest one in detecting all the potholes in high resolution and low-resolution images
in 0.009 s, but the MVGG16 model outperforms the precision of Ys by 4.67%. In addition,
the experiments show that largest generated model in size is MobileNetV2, and it achieves
the lowest precision value with 63.1% for pothole detection. The VGG16 produces the
slowest model with a detection speed of 0.11s per image. The proposed MVGG16 is able to
outperform the detection time of the VGG16 by 58.7%. Analyzing the inference results and
accuracy metrics, we suggest using the Ys model in real-time scenarios like embedding
them in vehicles, because it has a satisfactory detection speed. Similarly, Faster R-CNN
with ResNet50 can be used with a more sophisticated hardware setup in scenarios where
accuracy is the major concern. In addition, MVGG16 generates a model with smaller size
than Faster R-CNN with ResNet50. Therefore, we suggest using the MVGG16 if model size
is a concern when using Faster R-CNN. There were some pothole images that were taken
in extreme weather conditions like snow, some images were in very bad road conditions,
and some images were taken with unusual camera angles, which directly affected the per-
formance of models in validation sets. In our future research, we will develop a sustainable
model to address these extreme conditions. The accuracy can further be increased by using
training images that are taken from vehicle cameras in an angle that the model will use
later to predict and by adding more variation to the training images. Furthermore, as an
extension of this research, the depth of potholes and the distance (in meters) may also be
estimated using calibrated stereo cameras.
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