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Abstract: The problem of characterizing the structural residual life is one of the most challenging issues
of the damage tolerance concept currently applied in modern aviation. Considering the complexity of
the internal architecture of composite structures widely applied for aircraft components nowadays, as
well as the additional complexity related to the appearance of barely visible impact damage, prediction
of the structural residual life is a demanding task. In this paper, the authors proposed a method
based on detection of structural damage after low-velocity impact loading and its classification with
respect to types of acting stress on constituents of composite structures using the developed processing
algorithm based on segmentation of 3D X-ray computed tomograms using the rebmix package, real-
oriented dual-tree wavelet transform and supporting image processing procedures. The presented
algorithm allowed for accurate distinguishing of defined types of damage from X-ray computed
tomograms with strong robustness to noise and measurement artifacts. The processing was performed
on experimental data obtained from X-ray computed tomography of a composite structure with
barely visible impact damage, which allowed better understanding of fracture mechanisms in such
conditions. The gained knowledge will allow for a more accurate simulation of structural damage in
composite structures, which will provide higher accuracy in predicting structural residual life.

Keywords: barely visible impact damage; damage classification; real oriented dual-tree wavelet
transform; X-ray computed tomography

1. Introduction

Carbon fiber reinforced polymer (CFRP) composites, which are increasingly wide-
spread in numerous industrial branches, found their primary applications in aircraft and
aerospace vehicles due to their excellent strength-to-mass ratio, resistance to corrosion and
numerous chemical agents, flexible forming and manufacturing capabilities, etc. Despite
their numerous advantages, one of the main problems of these materials during operation
is their susceptibility to impact loading (see e.g., [1–3]). The most dangerous type of impact
damage from an operational point of view is the so-called barely visible impact damage
(BVID), which appears at low-velocity impact (LVI) loading and results in extended internal
damage that is often not recognizable on a surface. This creates a necessity of periodic
inspections of elements with such a type of damage using advanced non-destructive testing
(NDT) techniques, which enable identification of internal damage as well as monitoring of
possible propagation of such damage.

Damage caused by LVI loading, although often not visible on a surface of a CFRP
structure, especially when this surface is covered by paint or other type of coatings, causes
an extended net of various types of cracks and delaminations. Due to the complex stress
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state, different types of cracks appear during such a loading, including vertical, diagonal,
and horizontal (known as delaminations). An analysis of acting stresses and a characteriza-
tion of BVID in terms of fracture mechanics can be found in [4]. Cracks and delaminations
resulting from LVI can cause significant reductions in numerous properties of the material,
mainly compressive strength and resistance to buckling [5,6], which are the key parameters
of composite structures in aviation.

Since BVID remains a serious problem for the operation of composite elements and
structures in numerous industrial branches, a variety of NDT techniques were adjusted to
detect this type of damage. Taking into account the practical reasons, the detection and local-
ization of BVID is performed primarily using ultrasonic testing (UT), infrared thermography
(IRT), and guided waves (GWs) [7–16], less often acoustic emission (AE), shearography, and
other NDT technqiues [8,17–19]. The mentioned techniques are characterized by various
sensitivity to BVID, resolution of the obtained results, and other parameters, but are usually
selected for inspection because of their simplicity of application. Nevertheless, none of the
above-mentioned techniques are capable of providing NDT results in a three-dimensional
(3D) representation and with sufficient resolution to investigate the nature and fracture
mechanisms occurring during LVI, which is necessary to investigate damage mechanisms in
an impacted structure. This investigation is a necessary step in the reconstruction of BVID
currently developed by the authors of this study to predict the residual life of composite
structures after LVI [4,14,20].

Fortunately, X-ray computed tomography (XCT) provides necessary properties of
the inspection results, including representation of the resulting tomograms in a form of
3D grayscale arrays with high resolution, which makes it possible to identify all types of
cracks mentioned above. Despite the high cost of testing, XCT found a wide applicability
in problems related to the detection, localization and identification of structural damage in
composites [6]. However, due to the complexity of an internal architecture of composite
structures, presence of scanning artifacts, and difficulties with a proper interpretation of the
obtained results, tomograms are usually subjected to further post-processing. An overview
of problems that appear during XCT measurements and processing of the resulting tomo-
grams can be found in [21]. Within post-processing methods, one can mention those based
on image segmentation techniques, which reveal very good results in the cases where
cracks are remarkably distinguishable in resulting tomograms and a texture of internal
architecture of a composite, is not dominating. Such segmentation can be performed even
using built-in tools in a software dedicated to viewing and initial post-processing of results,
which was demonstrated in [3,22–25]. However, in many cases, the resulting tomograms
contain visible reinforcement characteristics and generally low contrast compared to a
polymeric matrix [21], which makes it difficult to segment damage from them (see [6],
for example). This requires the development of advanced image processing algorithms to
extract necessary diagnostic information.

To date, different algorithms for the classification of structural damage from NDT
tests have been proposed. A simple binary segmentation approach to cracks identification
problem from tomograms was proposed by Léonard et al. [26]. A more advanced cracks
identification algorithm based on the semi-automatic ’seed-growth’ approach, was pro-
posed by [27], where the analyzed cracks were clearly distinguishable on a background
of tomograms. An advanced algorithm of segmentation of tomograms was proposed by
Yu et al. [28], where they successfully classified the constituents of a composite and various
types of debonding. Another classification algorithm proposed by Mardanshahi et al. [29]
was based on artificial neural networks. In this study, the authors successfully identified
matrix cracks in composite structures. Several other advanced algorithms have recently
been developed to detect and classify cracks [30–32] from noisy NDT results.

During the previous studies performed by the group of the authors from the Sile-
sian University of Technology, several algorithms for extraction of diagnostic information
from tomograms were developed. In [33], the authors developed the damage classification
algorithm, which was based on image segmentation, filtering, and morphological opera-
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tions, and was able to distinguish cracks and delaminations from tomograms of damaged
composite structures. Later, this approach was enhanced in terms of image segmentation
and the texture/background removal procedures were added. The developed algorithm
was applied to CFRP structures with BVID [4,14]. However, based on the above literature
survey, two major emerging problems with XCT tomograms damage classification can be
defined. The first problem is related to the proper interpretation of NDT results, which is
ultimately performed by a human. This problem is connected with a second one, namely, in
the current times we usually deal with large amounts of data. Manual analysis is a difficult,
responsible, and time-consuming task, thus, the automation of interpretation is a desired
tool in numerous branches. In numerous cases, such as during the analysis of aircraft
inspection results, a human cannot be substituted by an algorithm due to the appropriate
protocols and responsibility [34]. However, the development of an effective and automated
algorithm, which is able to provide a valid interpretation of NDT results in a short time
period, is a desired supporting tool for inspectors. In addition to the acceleration of process-
ing and interpretation of such results, such algorithms have an additional advantage—the
decrease of the number of errors made by a human in the interpretation step, which is
confirmed in some studies [35]. In the times of the fourth industrial revolution, it is essen-
tial to develop effective and automated tools for the interpretation of the results, which,
in addition to the already mentioned benefits, will allow for a significant reduction in
inspection costs. The bottleneck of this general problem is the need for the development of
effective, fast, and smart solutions to automate the process of interpretation of inspection
results, which is the fundamental supporting tool for high-level NDT inspectors.

The following study is an attempt to solve the above-defined problems with the
interpretation and automation of the processing of XCT testing results. The specific aim
of this study was to develop an effective and fast image processing algorithm capable of
retrieving diagnostic information on damage from tomograms and classifying the damage
recovered according to the types of stresses that act during LVI of a composite structure. To
achieve the defined goal, a two-step processing and classification algorithm was developed,
which is based on color-based segmentation implemented in the Rough-Enhanced-Bayesian
MIXture estimation (REBMIX) algorithm and the real oriented dual-tree wavelet transform
used for identification of the directions of crack propagation in the analyzed composite
structure with BVID and further classification of these cracks with respect to acting stresses.
This made it possible to better understand the character of damage after LVI in composites
as well as to automatize the decision process on types of cracks, which makes it possible
to significantly improve a speed of classification and to eliminate human mistakes during
this process.

2. Specimen and Testing Methods
2.1. Specimen Preparation and Introducing Impact Damage

The CFRP specimen considered in this study was manufactured and supplied by the
Sexcraft s.c. (Helenów, Poland). The matrix of the specimen was made of LG700 epoxy
resin by GRM Systems s.r.o. (Olomouc, Czech Republic). The plain weave Toray T700
carbon fabric with the weight of 160 g/cm2 was manufactured by the Toray Composite
Materials America, Inc. (Tacoma, WA, USA) and used in the composite as the reinforce-
ment. A composite sheet was manufactured using VARTM resin infusion technology with
10 layers of the reinforcement oriented in the same direction (0° with respect to the global
coordinate system). The material properties obtained in the previously performed ex-
perimental studies for this material can be found in [20]. The specific dimensions of the
considered specimen were as follows: 100 × 100 × 2.5 mm, which corresponds to planar
dimensions and thickness.

BVID was introduced into the specimen using the in-house drop weight testing ma-
chine, which allowed performing automatic adjustment of test parameters based on the
input of the desired impact energy value. According to the results of previous studies [14,20],
the case of impact energy of 20 J with the hemispherical impactor with the diameter of
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10 mm was selected as representative and met the criteria of a bare visibility of an impact
damage [36]. The view of the testing facility and the impacted specimen is presented in [4].

2.2. X-ray Computed Tomography Tests

The scanning using the XCT technique was performed by Machinefish Materials &
Technologies Sp. z.o.o. Sp. k. (Wrocław, Poland). Before scanning, the specimen was cut to
dimensions of 40 × 70 × 2.5 mm based on the results of the ultrasonic testing [4] in such
a way that the cutting process had no influence on the introduced BVID. The scanning
was performed using the XT H 225 ST industrial computed tomography scanning system
(Nikon, Tokyo, Japan) with the 225 kV reflection and 180 kV transmission targets. The
scanning volume was defined as 40 × 40 × 2.5 mm, which covered all elements of the
resulting damage that appeared during LVI and resulted in dimensions of a single voxel
of 0.022 × 0.022 × 0.01 mm3. The resulting scan was obtained in a form of a grayscale
3D array, which was sliced in a direction normal to the surface of the dedicated software
specimen using the myVGL 2.2 (Volume Graphics GmbH, Heidelberg, Germany) and then
exported in a form of a sequence of 2D images. A view of the XCT scan with indicated
slicing planes is presented in Figure 1a, while the exemplary slice is presented in Figure 1b.

(a)

(b)

Figure 1. The view of the XCT scan of the tested specimen (a), and the exemplary slice in the normal direction to the
specimen’s surface (b).

The above-presented slices indicate the presence of various types of damage, including
delamination, matrix, and interface cracks. No other types of damage were observed, such
as reinforcement damage or perforation damage, since the load during impact testing
was comparatively low. However, the types of the observed damage are characterized
by variable visibility and thus detectability, which implies the necessity of their proper
identification and classification.

3. Cracks Recognition

In crack recognition problems, one of the key issues is the image segmentation [37,38].
High quality image segmentation is important as it can significantly simplify further
object detection and recognition [39,40]. Within the current problem, the objects of interest
are cracks and voids, which need to be separated from the background as efficiently as
possible. The processing procedures were applied to the 2D slices of a 3D grayscale array
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representing the damaged structure (see Section 2.2 for more details). This means that x, y,
and z pixel coordinates are at the disposal, together with the corresponding gray colors, as
integers in the range from 0 to 255.

For image segmentation, the clustering capabilities of the rebmix package are evalu-
ated in the paper. From the tomographic 3D arrays, only information on pixel gray colors is
intentionally used in order to simplify and speed up clustering to the highest possible level.

3.1. Short Overview on rebmix Package

The main capabilities of the rebmix R package are the finite mixture estimation, cluster-
ing, and classification. R is a programming language aimed at solving different problems in
statistics, machine learning, data mining, etc. The rebmix package has been freely available
at https://CRAN.R-project.org/package=rebmix, where one can get a reference manual
and vignette with examples, source code, and others. It is based on the Rough-Enhanced-
Bayesian MIXture estimation (REBMIX) algorithm [41–44]. The version used in this study is
2.13.1 from 28 July 2021.

The first step in image segmentation is a finite mixture estimation, as shown in Figure 2.
Let y1, . . . , yn be an observed d dimensional dataset of size n of continuous or discrete vector
observations yj. Each observation is assumed to follow the predictive mixture density

f (y|c, w, Θ) =
c

∑
l=1

wl f (y|θl) (1)

with conditionally independent component densities

f (y|θl) =
d

∏
i=1

f (yi|θil) (2)

indexed by the parameter vector θl = (θ1l , . . . ,θdl)
>. The objective is to obtain the number

of components c, component weights wl summing to 1 and component parameters θl in
such a way that they represent the global optimal solution.

Rough component parameter estimation

Enhanced component parameter estimation

Bayesian mixture parameter optimization

d dimensional observed dataset

of n observations

Number of components c, component weights 

w and mixture parameters Q

Preprocessing of observations

EM mixture parameter optimization

Rough component parameter estimation

Enhanced component parameter estimation

Bayesian mixture parameter optimization

d dimensional observed dataset

of n observations

Number of components c, component weights 

w and mixture parameters Q

Preprocessing of observations

EM mixture parameter optimization

Rough component parameter estimation

Enhanced component parameter estimation

Bayesian mixture parameter optimization

d dimensional observed dataset

of n observations

Number of components c, component weights 

w and mixture parameters Q

Preprocessing of observations

EM mixture parameter optimization

Figure 2. Flowchart of REBMIX & EM.

The task is far from trivial and is achieved iteratively by applying the numerical
procedure thoroughly described in [41,45–47]. Besides REBMIX there exist other prominent
algorithms for finite mixture estimation. The Expectation Maximization (EM) algorithm
introduced in [48] is one of them. Today, after more than 40 years, it is still one of the most
popular algorithms for statistical pattern recognition. It has turned out to be favorable to

https://CRAN.R-project.org/package=rebmix
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combine both algorithms [42]. The REBMIX provides c, w, and Θ, which tend to be close
to optimal, while the EM algorithm aims to reach the global optimal solution. This way,
the best is gained from the algorithms.

3.2. Image Segmentation by rebmix Package

For image segmentation, we assume d = 1 and y = y, where y represents the value of
gray color of the pixel. Equation (1) thus yields

f (y|c, w, Θ) =
c

∑
l=1

wl f (y|θl) (3)

Furthermore, the data set y1, . . . , yn of size n = width× height represents gray colors as
integers, where width and height determine image size in pixels. This means that any image
can be preprocessed into a histogram containing no more than v = 256 nonempty bins.
Therefore, the histogram can be understood as an unbiased and optimized substitute for
the data set. The preprocessing of observations for image segmentation in Figure 2 should
therefore always be set to "histogram", ymax to 255.5, ymin to −0.5, and K representing
the number of bins v to 256, which yields unbiased binning of observations in the rebmix
package at bin width of size

h =
ymax − ymin

v
= 1.

Pilot testing has further pointed out that the Gumbel component probability density

f (y|θl) =
1
σl

exp
{
−y− µl

σl
− exp

{
−y− µl

σl

}}
can provide better image segmentation as normal or Weibull parametric families. The
3D tomographic arrays have been processed to estimate the finite mixture parameters in
Equation (1) and to cluster the images.

The 3D tomographic arrays have been processed to estimate the finite mixture pa-
rameters in Equation (1) and to cluster the images by calling the methods REBMIX and
RCLRMIX consecutively. The maximum number of components has been set to 16, the infor-
mation criterion to "BIC" and the EM strategy to "exhaustive". See help("REBMIX") and
help("RCLRMIX") in rebmix for details. Such a numerical setup has resulted in clusters
representing cracks and voids only, background only, and sometimes also cracks and voids
partially contaminated by the noise from the background. It has not yet been possible
to completely restore barely visible cracks if the gray colors of the cracks blend with the
background. This topic has been left over to be dealt with in the future. The clusters
containing cracks and voids contaminated by background noise could here serve as a good
starting point for some improvements.

The training of image segmentation is shown in Figure 3. It requires input, e.g., a 3D
tomographic array consisting of a sequence of z = 1, . . . , depth images (layers). Each image
Dataset enters the training individually and is processed in two steps. In the first step, it
is converted to the predictive mixture density f (y|c, w, Θ) by calling the REBMIX method

rng = range(Dataset)
EM <- new("EM.Control", strategy = "exhaustive", K = rng[2] - rng[1])
rebmixest <- REBMIX(Dataset = Dataset, Preprocessing = "histogram",
cmax = 16, Criterion = "BIC", pdf = "Gumbel", K = 256,
ymin = -0.5, ymax = 255.5, EMcontrol = EM)

The method range calculates the minimum and maximum gray color values in the
Dataset. The method new creates an object EM of type "EM.Control". The maximum
number of components has been set to 16, the information criterion to "BIC", and the EM
strategy to "exhaustive". See help("REBMIX") in rebmix for details.
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In the second step, the image is clustered. The number of clusters is always less or
equal than the number of components. The cluster numbers s = 1, . . . , c are assigned to the
coordinates of the pixels x and y by the RCLRMIX method

rebmixclr <- RCLRMIX(x = rebmixest)

The clustering is based on the Bayes decision rule. The RCLRMIX method returns an
object rebmixclr of type "RCLRMIX" containing information on the clustered image. See
help("RCLRMIX-class") for further reading. In this particular case no merging of clusters
has been used, although it is available in rebmix. The cluster structure is thus affected solely
by the information criterion BIC, the maximum number of components cmax = 16, and
the parametric family type "Gumbel" in the REBMIX method. Such a numerical setup has
resulted in clusters representing cracks and voids only, background only, and sometimes
also cracks and voids partially contaminated by the noise from the background. It has not
yet been possible to completely restore barely visible cracks if the gray colors of the cracks
blend with the background. This topic has been left over to be dealt with in the future. The
clusters containing cracks and voids contaminated by background noise could here serve
as a good starting point for some improvements.

Image

REBMIX&EM

RCLRMIX

1 2 3 c···4 5

B A A C B B···Expert decision

Cluster number

Clustering

Finite mixture estimation

Input

Features of clustersOutput

Figure 3. Training of image segmentation.

Next, an expert opinion on image labeling is requested. The cluster can be labeled
as cracks and voids only A, background only B, or cracks and voids contaminated by
the noise C. Finally, an output is formed for each image. It is composed of the features
to follow: image number z and vector of length c containing cluster numbers 1, . . . , c,
labels designations A, B, or C of individual clusters together with minimum, median, and
maximum gray color values encountered in the part of the image associated to cluster s.
Training can be performed on all images, or a carefully selected set of images, or by a
randomly selected set of images.

Once training is complete, the minimum and maximum gray color values of the clusters
designated as A are carefully analyzed. If the gray colors of the cracks and voids differ
from the background to some extent, image segmentation can be automated. In this respect,
color filters are proposed. We can have, for example, three filters [0, 29] representing almost
black voids, [37, 78] denoting dark gray cracks, and [217, 255] standing for almost white
cracks. This means that the pixel with coordinates x, y, and z of color value within [0, 29] or
[37, 78] or [217, 255] is designated as a crack or void. Otherwise, it means background. The
automation of image segmentation is then trivial. The filters have so far been identified by
an expert. In the future, filter definition is aimed to be automated, at least to some extent.

3.3. Analysis of the Crack Recognition Results

The results obtained from the recognized anomalies in 2D CT slices were used to
produce a 3D array, which corresponds to the entire composite specimen.
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Figure 4a presents the selected 2D slice with all labeled clusters, while Figure 4b shows
the same slice with regions preclassified as damage based on the experts’ knowledge.

(a)

(b)

Figure 4. The selected 2D slice with labeled clusters (a), and the same slice after preclassification (b).

Figures 5 and 6 present 3D views of the recognized anomalies divided into individual
clusters with positive and negative labels, respectively. The analysis of the recognized areas
indicated that cracks are included in the clusters: 6–12, whereas clusters 2, 4, 5, and −10,
−11, −12 contain air voids (identified as shapes close to spherical), and clusters −4–−9
mostly represent noise (rounding the cracks and areas of healthy composite fibers with
similar pixels’ values). Representation of the resulting clusters in the form of 3D arrays
makes it possible to observe entire set of a given type of features present in an XCT scan,
which makes it possible to distinguish anomalies from identified cracks.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 5. Cont.
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(i) (j)

Figure 5. Recognized anomalies—clusters with positive labels nos.: (a) 2; (b) 4; (c) 5; (d) 6; (e) 7; (f) 8; (g) 9; (h) 10; (i) 11;
(j) 12.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6. Recognized anomalies—clusters with negative labels nos.: (a) −4; (b) −5; (c) −6; (d) −7; (e) −8; (f) −9; (g) −10;
(h) −11; (i) −12.
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Figure 7 presents 3D and side views of the cumulative clusters of the anomalies (the
clusters are marked with different colors), namely all the clusters (a) and the clusters se-
lected as cracks (b). A comparative analysis of these visualizations proved the correctness
of the selection of the crack clusters, since an excess of noise is removed while the crack re-
gions remained in the resulted images. Some pixels representing the external surroundings
of the cracks (areolas) could be omitted due to excluding the clusters −4–−9, however, the
level of their noise was too high to include them to the result.

(a) (b)

Figure 7. Recognized anomalies: (a) all clusters (nos. −4–12); (b) selected clusters with cracks (nos. 6–12).

The analysis of Figure 7b also indicated that the crack classification into vertical,
horizontal, and diagonal ones is not possible based on the obtained results of the crack
recognition determined from the pixels’ values (no relationship is noticeable between the
cluster numbers and the crack directionality); thus, additional image processing operations
are needed.

4. Cracks Classification

The classification of types of identified cracks by acting stresses in a composite struc-
ture during impact loading is generally based on the estimation of the directionality of
these cracks, which correspond to various mechanical interactions during such a loading.
Based on the results of the previous studies [4], three groups of directions were assumed:

• vertically oriented cracks, being the result of indentation and bending stresses on the
opposite side with respect to an impacted surface;

• skew cracks with an inclination of ca. 45° with respect to an impacted surface, which
is a result of the acting of shear stresses during impact loading;
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• horizontally oriented cracks, that is, delaminations, are the result of the action of shear
stresses on the existing vertically oriented and skew cracks in a matrix of a composite
structure, triggered by exceeding the critical stress values at the fiber/matrix interfaces
of a composite.

Having defined three possible orientations in the tested composite structure, it is
essential to select a tool which allows distinguishing cracks of these orientations. This step
of the algorithm was based on the 2D real oriented dual-tree wavelet transform (DTWT),
which reveals appropriate directional selectivity together with the low noise level during
decomposition (see the analysis presented in [49]).

The obtained results of the crack recognition were filtered using three binary masks,
defined based on the detail coefficients obtained after a decomposition using DTWT with
areas possibly containing damage of various directionality. This operation was divided
into two stages: extraction of the masks based on the raw (gray-scale) data of CT slices;
and then filtering the recognized cracks in the previous stage using the masks.

A scheme of the algorithm steps is illustrated in Figure 8, and the description is pre-
sented in Sections 4.1 and 4.2, respectively, for the two stages of the algorithm.

Figure 8. The algorithm of cracks classification.

4.1. Wavelet-Based Masks

The mask extraction example is presented on a selected 2D XCT slice (see Figure 9a)
no. 113 from 198). Raw 2D XCT slices were initially subjected to a binarization in such a
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way that the threshold was defined at zero, which means that all nonzero pixel values were
assigned to unities. Next, the adjustment of a 2D XCT slice size was performed according
to the requirements of the applied DTWT algorithm, since DTWT is of a dyadic type, which
means that the dimensions of the input data should be a multiplicity of a power of 2.
For this purpose, empty rows and columns were added to the binarized 2D XCT slices,
resulting in their dimensions of 128 × 2048 pixels.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 9. The original slice (a) and the results of WT and post-processing—slice 84: (b–e) vertical; (f–i) horizontal; (j–m)
diagonal.

After initial processing, each slice of the sequence considered of the 2D XCT slices
was subjected to further processing using the DTWT algorithm. DTWT was selected in this
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study due to its high directional selectivity, as well as its robustness to noise [50], which
was confirmed in previous studies related to structural damage identification [49]. A single-
level decomposition using the 2D real oriented dual-tree wavelet transform using 10-tap
Kingsbury Q-shift filters resulted in 8 sets of directional detail coefficients. The selection of
a single-level decomposition was forced by the need to retain appropriate spatial resolution
of the resulting data after decomposition, while the selection of a wavelet basis represented
by the above-mentioned filters was based on previous analyzes of performance of var-
ious directional wavelet transforms and filterbanks cited above. The resulting wavelet
coefficients can be grouped into three predominant directions: horizontal H, vertical V,
and diagonal D. According to this, the resulting sets of detail coefficients were added up
following the directions of sensitivity:

dH = d3 + d6, (4)

dV = d1 + d2, (5)

dD = d4 + d5 + d7 + d8, (6)

where the numbers in the lower indices denote the subsequent numbers of the absolute
values of the detail coefficients d obtained after decomposition using DTWT. Next, the
resulting values dH , dV , and dD were assigned to the initial masks. The previously added
empty rows and columns used to fulfill the requirements of DTWT were removed (see
the result in Figure 9b,f,j) and the resulting data were normalized to 8-bit integers, which
was necessary for a further binarization procedure. Binarization was performed using the
Triangle method [51], which was empirically selected and revealed the best thresholding
results (see Figure 9c,g,k). In the next steps, morphological cleaning was performed in order
to filter out single pixels. Then, the original dimensions (reduced due to the application
of DTWT) were restored, and a shifting operation was applied in order to eliminate the
boundary effect resulting from the application of DTWT. Further operations were focused
on additional improvement of the masks in order to enhance the extraction of the vertical,
horizontal, and diagonal objects, and remove noise as follows:

• V: morphological closing (dilation and erosion) using a vertically oriented ‘line’ struc-
turing element (Figure 9d); and morphological area opening in order to remove very
small objects (Figure 9e),

• H: median filtering using horizontally oriented filter (Figure 9h); and morphological
area opening (Figure 9i),

• D: median filtering using a square shape filter (Figure 9l); and morphological area
opening (Figure 9m).

In the end, the resulting 2D masks for the particular 2D XCT slices were stored in a
3D array.

Figure 10 illustrates the V, H and D masks after building 3D arrays from the obtained
2D masks and, for better readability of the results, removing the background (for this
purpose, an additional mask with a 2D shape of damage from the top view was extracted).

4.2. Results on Classification of Cracks

Taking into account that some pixels representing cracks could have been omitted
during the crack recognition stage after REBMIX&EM segmentation (the clusters with
crack surroundings were excluded due to the high level of noise), the recognized cracks
(Figure 11b) were binarized (nonzero pixels assigned to ones) and then slightly expanded
using a morphological dilation) before filtering with the prepared masks to improve the
ability to classify cracks. The image with the recognized cracks was dilated in three ways
(using a structuring element oriented vertically (Figure 11c), horizontally (Figure 11d), and
diagonally (Figure 11e)), which allowed obtaining three resulted images to be filtered by
the corresponding masks. Filtering using the masks was performed by finding common
regions between the pairs of images.
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(a) (b)

(c) (d)

Figure 10. Wavelet-based masks obtained from the implementation of the proposed algorithm for V—vertical, H—horizontal,
D—diagonal components: (a) V, H, and D; (b) V; (c) H; (d) D.
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(a)

(b)

(c)

(d)

(e)

Figure 11. Processing of the results: (a) original CT slice; (b) recognized cracks; and directional expansion in the direction:
(c) vertical; (d) horizontal; (e) diagonal.

Figure 12 presents the final 2D results of the exemplary CT slice, i.e., the pixels
with components V, H, and D, representing the three classes of cracks considered. The
upper images show the differences between the recognized and dilated cracks with the
corresponding masks (black regions in the composite image show where the two images
have the same intensities; magenta and green regions show where the intensities are
different), whereas the lower images present binary results (common regions).

(a)

(b)

(c)

Figure 12. Recognized cracks after masking using: (a) V mask: (b) H mask; (c) D mask.

One can observe that the proposed method based on wavelet-based masks ensures
flexibility in attribution of cracks to particular classes with respect to their orientation, i.e.,
delamination (horizontal cracks) visible in Figure 12 contains characteristic disturbances
from a linearity, which is caused by the waviness of reinforcement in the tested composites,
and thus a delamination follows the fiber/matrix interface. Despite a slight change of angle
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with respect to the surface of impact, delamination was correctly attributed to the class of
horizontal cracks.

An additional problem with the analyzed data is the presence of cases, where different
types of cracks are connected to each other. This connection is a natural physical process
resulting from the damage mechanics. For example, delamination usually appears by
exceeding the critical adhesion stresses between fiber and matrix of a composite and
propagates on the interface, but its origin is usually a vertical or a skew crack. Such a
situation is visible in Figure 11 for the first delamination from the top. It is noticeable
that the origin of this delamination is a vertical crack in the middle of this delamination,
which most probably appeared during the indentation of an impactor. Distinguishing
merged cracks is a difficult task, considering classical segmentation tools; however, the
proposed method allowed attributing different types of cracks to particular classes, which
additionally justifies the application of the wavelet-based masks.

The final result of a crack classification in the composite structure considered using
the proposed method is presented in Figure 13a, where the processed 2D XCT slices were
restored to a 3D array. For convenience, particular components V, H, and D attributed to
the particular classes of cracks were presented in Figure 13b–d, respectively. Comparing
the obtained shape of the BVID with the shape of the reconstructed BVID using another
approach of the same structure presented in [4], one can conclude about their high similarity.
This means that supporting operations such as morphological operations and filtering itself
do not significantly alter the relevant diagnostic information by using wavelet-based masks.
However, improving classification remains an open question in this class of problems.

The classification performed allows us to evaluate the nature of a fracture mechanism
of the investigated LVI. Vertical cracks (Figure 13b) are observed in the top and bottom
regions along the thickness of the analyzed structure, which coincides well with the
theoretical considerations. The vertical cracks that appeared in the top region are the result
of indentation, while the cracks of this type that appeared in the bottom region are the
result of propagation of the shock wave resulting from impact through the structure and
the initiation of bending stresses in the bottom layers of a composite. Furthermore, it can
be observed that the most vertical cracks appeared on a contour of the impact damage (see,
especially, the X-Y view in Figure 13b), which confirms the character of a propagation in
the form of a truncated cone typical for this type of damage (see [4,52] for instance).

A class with skew cracks presented in Figure 13d has a similar physical nature, i.e. it
is a type of crack that appeared directly due to the impact loading. One can observe a high
concentration of these cracks at the indentation location, and this type of crack is dominant
in this region. This is due to a combination of transverse and shear stresses acting in the
vicinity of the indentation, which resulted in the appearance of cracks with an inclination of
ca. 45°. This type of crack is present in the deeper regions of the considered structure, as can
be observed in the X-Z and Y-Z views in Figure 13d, however, its character of appearance
is transient, i.e., comparing these views with the similar views for delamination presented
Figure 13c, one can observe that often skew cracks link particular delaminated areas. This
confirms the triggering nature of skew cracks for the appearance of delamination, and they
propagate usually from interface to interface.

The last class of cracks—delamination presented in Figure 13c—is observable on the
entire thickness of the composite structure considered. This is mainly due to the lowest
resistance of a composite to crack propagation on interfaces, which is also the reason for
the most extended cracked areas compared to previously discussed types of cracks. As it
can be noticed, this type of cracks is of a secondary type, since it is not resulting directly
from impact loading, but initiated from the previously appeared cracks of two previously
discussed types.
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(a) (b)

(c) (d)

Figure 13. The result of classification of types of cracks resulting from LVI using the proposed method: (a) all types of cracks
considered in the study, and (b) vertical, (c) horizontal, (d) diagonal cracks.
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5. Conclusions

In the following study, the new method for the detection, identification, and classifi-
cation of crack types was proposed with respect to their appearance character from XCT
scans. The presented example identifies numerous challenges of this task, namely identi-
fication of cracks on geometrically complex and variable backgrounds, merging of types
of cracks, etc. A combination of the rebmix package used at the identification stage of the
algorithm as the powerful image segmentation tool as well as wavelet-based masks based
on the real oriented dual-tree wavelet transform with the enhanced directional sensitivity
allowed for solving this problem successfully, with a simultaneous robustness to noise and
measurement artifacts.

However, the proposed method contains several limitations identified during its
testing on XCT data. As was observed, it is difficult to detect cracks with the same color
intensity as healthy regions, which can be resolved by adding new segmentation criteria,
which will be based not only on color intensity, but also on geometric properties. Moreover,
the identification of very short cracks, such as vertical cracks in the case considered,
remains a challenging task. These limitations and a complete automation of segmentation
procedures are challenges that need to be solved in future research activities.

The presented method of identifying and classifying cracks from XCT scans allows us
to deeply characterize the mechanistic nature of damage, including a fracture mechanism,
which may be considered as a powerful tool for the interpretation of the results of the tests
during and after NDT inspections, especially in the aviation ground maintenance. The
proposed method is universal and, with insignificant changes, can be applied in numerous
other problems, both in enhancement of interpretation of NDT results and other problems
and tasks related to image processing, and in particular, retrieving information from
complex backgrounds and with complex structure of objects to be identified and classified.
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