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Abstract: The Internet of Things (IoT) consists of a massive number of smart devices capable of
data collection, storage, processing, and communication. The adoption of the IoT has brought
about tremendous innovation opportunities in industries, homes, the environment, and businesses.
However, the inherent vulnerabilities of the IoT have sparked concerns for wide adoption and
applications. Unlike traditional information technology (I.T.) systems, the IoT environment is
challenging to secure due to resource constraints, heterogeneity, and distributed nature of the smart
devices. This makes it impossible to apply host-based prevention mechanisms such as anti-malware
and anti-virus. These challenges and the nature of IoT applications call for a monitoring system such
as anomaly detection both at device and network levels beyond the organisational boundary. This
suggests an anomaly detection system is strongly positioned to secure IoT devices better than any
other security mechanism. In this paper, we aim to provide an in-depth review of existing works in
developing anomaly detection solutions using machine learning for protecting an IoT system. We
also indicate that blockchain-based anomaly detection systems can collaboratively learn effective
machine learning models to detect anomalies.

Keywords: cybersecurity; anomaly detection; the Internet of Things; machine learning; deep learn-
ing; blockchain

1. Introduction

The IoT consists of myriad smart devices capable of data collection, storage, processing,
and communication. The adoption of the IoT has brought about tremendous innovation
opportunities in industries, homes, the environment, and businesses, and it has enhanced
the quality of life, productivity, and profitability. However, infrastructures, applications,
and services associated with the IoT introduced several threats and vulnerabilities as
emerging protocols and workflows exponentially increased attack surfaces [1]. For instance,
the outbreak of the Mirai botnet exploited IoT vulnerabilities and crippled several websites
and domain name systems [2].

It is challenging to secure IoT devices as they are heterogeneous, traditional security
controls are not practical for these resource-constrained devices, and the distributed IoT
networks fall out of the scope of perimeter security, and existing solutions such as the
cloud suffer from centralisation and high delay. Another reason for this challenge is that
IoT device vendors commonly overlook security requirements due to a rush-to-market
mentality. Furthermore, the lack of security standards has added another dimension to the
complexity of securing IoT devices. These challenges and the nature of IoT applications call
for a monitoring system such as anomaly detection at device and network levels beyond
the organisational boundary.

An anomaly is a pattern or sequence of patterns in IoT networks or data that signif-
icantly deviate from the normal behaviour. Anomalies can be contextual and collective
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points based on the sources of anomalies [3]. Point anomaly represents a specific data point
that falls outside the norm, and it indicates random irregularity, extremum, or deviation
with no meaning, often known as outliers. The contextual anomaly denotes a data point
that deviates from the norm in a specific context such as in a time window. It means that
the same normal observation in a given context can be abnormal in a different context. The
contextual anomaly is driven by contextual features such as time and space and behavioural
features such as the application domain. A collection of related data points, specifically in
sequential, spatial, and graph data, that fall outside of normal behaviour forms collective
anomalies. It is denoted as a group of interconnected, correlated, or sequential instances,
where individuals of the group are not anomalous themselves; the collective sequence is
anomalous. Anomalous events rarely occur; however, these events bring about dramatic
negative impacts in businesses and governments using IoT applications [4].

As for protecting IoT and I.T. applications, intrusion detection systems (I.D.S.s) that
alert abnormal events or suspicious activities that might lead to an attack have been
developed. I.D.S.s can be divided into two main categories: anomaly-based and signature-
based. With anomaly-based I.D.S.s, unidentified attacks or zero-day attacks can be detected
as deviations from normal activities [5]. However, signature-based I.D.S cannot identify
unknown attacks until the vendors release updated versions consisting of the new attack
signatures [5]. This indicates that anomaly-based I.D.S.s are strongly positioned to secure
IoT devices better than signature-based I.D.S.s. Moreover, there is a large amount of
raw data generated by IoT devices, which leads to the process of identifying suspicious
behaviour from data suffering from high computation cost due to included noise. Hence,
lightweight distributed anomaly-based I.D.S.s play a significant role in thwarting cyber-
attacks in the IoT network.

In recent years, using machine learning techniques to develop anomaly-based I.D.S.s
to protect the IoT system has produced encouraging results as machine learning models are
trained on normal and abnormal data and then used to detect anomalies [1,2]. However,
building effective and efficient anomaly detection modules is a challenging task as machine
learning has the following drawbacks:

• First, machine learning models, specifically with classical algorithms, are shallow
to extract features that can truly represent underlying data to discriminate anomaly
events from normal ones.

• Second, running machine learning models can consume extensive resources, making
it challenging to deploy such models on resource-constrained devices.

• Third, it requires massive data for training machine learning models to archive high ac-
curacy in anomaly detection. Therefore, machine learning models may not capture all
of the cyber-attacks or suspicious events due to training data. This means that machine
learning suffers from both false positives and false negatives in some circumstances.

However, with the advancement in hardware such as GPU and neural networks such
as deep learning, machine learning has constantly improved. This makes it promising for
anomaly detection emerging platforms such as blockchain.

This paper aims to provide an in-depth review of current works in developing anomaly
detection solutions using machine learning to protect an IoT system, which can help re-
searchers and developers design and implement new anomaly-based I.D.S.s. Our contribu-
tions are summarised as follows: first, we present the significance of anomaly detection in
the IoT system (Section 2); then, we identify the challenges of applying anomaly detection
to an IoT system (Section 3); after that, we describe the state-of-the-art machine learning
techniques for detecting anomalies in the system (Section 4); finally, we analyse the use of
machine learning techniques for IoT anomaly detection (Section 5). In particular, this paper
also covers the federated learning technique that helps to collaboratively train effective
machine learning models to detect anomalies (Section 4) and indicates that the use of
blockchain for anomaly detection is a novel contribution as the inherent characteristics of a
distributed ledger is an ideal solution to defeat adversarial learning systems (Section 5).
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2. Significance of Anomaly Detection in the IoT

Over the years, anomaly-based I.D.S.s have been applied in a wide range of IoT
applications, as illustrated in Table 1. This section will focus on the important roles of
anomaly detection systems in industries, smart grids, and smart cities.

Table 1. Anomaly-Based I.D.S.s according to Anomaly Types and Applications.

ANOMALY TYPES
Points Contextual Collective

A
PP

LI
C

A
T

IO
N

S

Generic

[6] [7] [8]
[9] [10]

[11]
[12]
[13]
[14]
[15]

Flights [16]

Industries
[17]
[18]
[19]

Health [20]

Smart Cities [21]

Smart Grids [22]

Smart Home
[23] [24]

[25]
[26]

Unmanned Aerial Vehicles [27]

Industrial IoT is one of the beneficiaries of anomaly detection tools. Anomaly de-
tection has been leveraged for industrial IoT applications such as power systems, health
monitoring [28], heating ventilation and air conditioning system fault detection [29], pro-
duction plant maintenance scheduling [30], and manufacturing quality control systems [31].
In [32], machine learning approaches such as linear regression have been applied to sensor
readings of engine-based machines to learn deviations from normal system behaviours.
The study demonstrated that anomaly detection plays a significant role in preventive main-
tenance by detecting machine failures and inefficiencies. In another study, autoencoder
(A.E.)-based outlier detection was investigated in audio data using reconstruction error [33].
The study showed that early detection of anomalies could be used as responsive main-
tenance for machine failures, thereby reducing downtime. Furthermore, water facilities
used IoT anomaly detection [34] to monitor and identify certain chemical concentration
levels as a reactive alerting mechanism. These studies show that IoT anomaly detection
provides mechanisms of improving efficiency and system up-time for industry machines
by monitoring machine health.

The power sector including existing smart grids has also attracted anomaly detection
systems to identify power faults and outages. The study in [35] utilised statistical methods
to develop an anomaly detection framework using smart meter data. The authors argue that
hierarchical network data can be used to model anomaly detection for power systems. The
other study [36] employed high-frequency signals to detect anomalies in power network
faults. The article concludes that local anomaly detection depends more on network size
than topology. In [37], big data analysis schemes were explored to detect and localise
failures and faults in power systems. The study showed that the compensation theorem in
circuit theory could be applied to event detection in power networks. Physical attacks on
smart grids such as energy theft can also be detected by using anomaly detection systems,
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as shown in [38]. It is compelling that anomaly detection plays a paramount role in
detecting failures and faults in power systems, enhancing system reliability and efficiency.

Abnormality detection can be used for smart city facilities such as roads and buildings.
Road surface anomalies were studied in [39]. It has been indicated that damage to private
vehicles can be reduced if the road surface is monitored for anomalies so that timely
measures such as maintenance are taken before road incidents. In the study undertaken
in [40], pollution monitoring and controlling were modelled as an anomaly to enable
policymaker decisions in health, traffic, and environment. Similarly, assisted living can
also benefit from IoT-based anomaly detection as deviations from normal alert caregivers
as studied in [41]. Thus, it can be summed up that abnormal situations in smart cities and
buildings can be detected using anomaly detection systems, and these can be provided to
policymakers for decision-making purposes.

3. Challenges in IoT Anomaly Detection Using Machine Learning

The development of anomaly detection schemes in the IoT environment is challenging
due to several factors such as (1) scarcity of IoT resources; (2) profiling normal behaviours;
(3) the dimensionality of data; (4) context information; and (5) the lack of resilient machine
learning models [15]. These factors will be explained in this section.

3.1. Scarcity of IoT Resources

The leverage of device-level IoT anomaly detection can be hindered by the constraints
in storage, processing, communication, and power resources. To compensate for this, the
cloud can be adopted as a data collection, storage, and processing platform. However, the
remoteness of the cloud can introduce high latency due to resource scheduling and round
trip time. This delay may not be acceptable for real-time requirements of IoT suspicious
events [15]. It is also evident that the scale of traffic in the IoT may degrade the detection
performance of the anomaly detection system if it exceeds the capacity of the devices. A
better solution is to offload certain storage and computations from devices to edge nodes
or to send aggregated data to the cloud. Sliding window techniques can also offer reduced
storage benefits by withholding only certain data points, though the anomaly detection
system may require patterns/trends [26].

3.2. Profiling Normal Behaviours

The success of an anomaly detection system depends on gathering sufficient data
about normal behaviours; however, defining normal activities is challenging. Due to their
rare occurrence, anomalous behaviours might be collected within normal behaviours. There
is a lack of datasets representing both IoT normal and abnormal data, making supervised
learning impractical, specifically for massively deployed IoT devices. This drives the need
to model IoT anomaly detection systems in unsupervised or semi-supervised schemes,
where data deviating from those collected in normal operations are taken as anomalous [3].

3.3. Dimensionality of Data

IoT data can be univariate as key-value xt or multivariate as temporally correlated
univariate xt =

[
xt

1, . . . , xt
n]. The IoT anomaly detection using univariate series compares

current data against historical time series. In contrast, multivariate-based detection pro-
vides historical stream relationships and relationships among attributes at a given time.
Thus, choosing a specific anomaly detection mechanism in IoT applications depends on
data dimensionality due to associated overheads in processing [3,29]. Furthermore, multi-
variate data introduces the complexity of processing for models, which needs dimension
reduction techniques using principal components analysis (P.C.A.) and A.E.s. On the other
hand, univariate data may not represent finding patterns and correlations that enhance
machine learning performance.
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3.4. Context Information

The distributed nature of IoT devices caters to context information for anomaly de-
tection. However, the challenge is to capture the temporal input at a time t1 is related to
input at a time tn and spatial contexts in large IoT deployments where some IoT devices are
mobile in their operations. This means that introducing context enriches anomaly detection
systems, but increases complexity if the right context is not captured [3].

3.5. Lack of Machine Learning Models Resiliency against Adversarial Attacks

The lack of a low false-positive rate of existing machine learning models and the
vulnerability to adversarial attacks during training and detection call for both accurate
algorithms and resilient models. On the other hand, the massive deployment of IoT devices
could be leveraged for collective anomaly detection as most of the devices in the network
exhibit similar characteristics. This large number of devices helps to utilise the power of
cooperation against cyber-attacks such as malware [42]. Model poisoning and evasion can
decrease the utility of machine learning models as adversaries can introduce fake data to
train or tamper the model.

4. Machine Learning Techniques for Detecting Anomalies in the IoT

Several aspects of IoT anomaly detection using machine learning must be considered.
Learning algorithm methods can be categorised into three groups: supervised, unsuper-
vised, and semi-supervised. The technique to train the learning algorithms across many
decentralised IoT devices is known as federated learning. In addition, anomaly detection
can be seen in terms of extant data dimension, leading to univariate-and multivariate-based
approaches. In the rest of this section, we will present the anomaly detection schemes
based on (1) machine learning algorithms; (2) federated learning; and (3) data sources
and dimensions.

4.1. Detection Schemes Based on Machine Learning Algorithms

Supervised algorithms, known as discriminative algorithms, are classification-based
learning through labelled instances. These algorithms consist of classification algorithms
such as the K-nearest neighbour (K.N.N.), support vector machine (SVM), Bayesian net-
work, and neural network (N.N.) [43,44]. K.N.N. is one of the distance-based algorithms of
anomaly detection where the distances of anomalous points from the majority of the dataset
are greater than a specific threshold. Calculating the distances is computationally complex;
it seems impossible to provide on-device anomaly detection using this algorithm. On the
other hand, SVM provides a hyperplane that divides data points for classification. As in
the case of K.N.N., it is so resource-intensive that the applicability to IoT anomaly detection
is impractical. As the Bayesian network may not require the prior knowledge of neighbour
nodes for anomaly detection, it can be adopted for resource-constrained devices through
low accuracy. Finally, N.N. algorithms have been extensively used to train on normal
data so that anomalous data can be detected as the deviation from normal. The resource
requirements of N.N. algorithms make it challenging to adapt to the IoT environment.
Hence, supervised algorithms are the least applicable for IoT anomaly detection systems
for their labelled dataset requirements and extensive resource requirements.

Commonly known as generative algorithms, unsupervised algorithms use unlabelled
data to learn hierarchical features. Clustering-based algorithms such as K-means and
density-based spatial clustering of applications with noise (D.B.S.C.A.N.) are unsupervised
techniques that apply similarity and density attributes to classify data points into clus-
ters [43,44]. Abnormal points are small data points significantly far from the dense area,
while normal points are either close to or within the clusters. Usually, clustering algorithms
are used with classification algorithms to enhance anomaly detection accuracy. Because of
resource usage, most of the clustering algorithms cannot be directly applied to IoT devices
for anomaly detection. Another unsupervised learning technique involves dimension-
reduction approaches such as P.C.A. and A.E. to remove noise and redundancy from data
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to reduce the dimension of original data [44,45]. P.C.A. has been extensively applied to
anomaly detection, but it fails in the dynamic IoT environment. A.E. has produced promis-
ing results in IoT anomaly detection in reducing data sizes and in reconstructing errors to
identify anomalous points. However, these techniques have been used extensively as a part
of feature extraction for classification algorithms. The dimensionality reduction algorithms
in unsupervised learning can be adapted to IoT anomaly detection. Semi-supervised al-
gorithms combine discriminative and generative algorithms by providing normal data
instances so that deviation from normal behaviour is seen as abnormal behaviour. Hence,
anomaly detection in IoT is geared toward unsupervised or semi-supervised algorithms
where normal system profiling is utilised as a baseline environment [46].

Table 2 shows the state-of-the-art machine learning algorithms according to three
anomaly types.

Table 2. Learning Algorithms According to Anomaly Types and Machine Learning Schemes.

ANOMALY TYPES
Points Contextual Collective

M
A

C
H

IN
E

LE
A

R
N

IN
G

SC
H

EM
ES

Supervised

RF [21] RL [16] CNN [24]
DL [17] LSTM [22] GNN [8]

Multiple [10]
AE-ANN [11]

LSTM [12]
AE-CNN [13]
Ensemble [14]

Unsupervised AE-CNN [6] Subspace [27] AE [25]
AE [18] Self-learning [26]

Semi-Supervised TCN [23] AE-LSTM [20] DNN [15]
DBN [7]

4.2. Training Detection Schemes Based on Federated Learning Algorithms

Federated learning, also known as collaborative learning, allows IoT devices to train
machine learning models locally and send the trained models, not the local data, to the
server for aggregation [47,48]. This training method is different from the standard machine
learning training approaches that require centralising the training data in one place such as
a server or data centre.

The federating learning method consists of four main steps. First, the server initialises
a global machine learning model for anomaly detection and selects a subset of IoT devices
to send the initialised model. Second, each selected IoT device will train the model by
using its local data, then send the trained model back to the server. Next, the server will
aggregate received models to form the global model. Finally, the server will send the final
model to all IoT devices to detect anomalies. Note that the server can repeat the tasks of
selecting a sub-set of IoT devices, sending the global model, receiving the trained models,
and aggregating the received models multiple times, as some devices may not be available
at the time of federated computation or some may have dropped out during each round.

By using federated learning, data in the IoT system is decentralised, and data privacy
is protected. The other advantages of federated learning include lower latency, less network
load, less power consumption, and can be applied across multiple organisations. However,
federated learning also suffers from some drawbacks such as inference attacks [49] and
model poisoning [50].

4.3. Detection Mechanisms Based on Data Sources and Dimensions

Univariate IoT data consists of data representation from a single IoT device over time.
In reality, anomaly detection systems utilise data from multiple IoT devices deployed in
complex environments. These multivariate multi-sources feed richer contexts by providing
noise-tolerant temporal and spatial information than a single source.



Sensors 2021, 21, 8320 7 of 13

4.3.1. Univariate Using Non-Regressive Scheme

In the non-regressive scheme, threshold-based mechanisms can be leveraged by setting
low and high thresholds of observations on univariate stationary data to flag anomalies if
a data point falls outside the boundary. More advanced mechanisms such as mean and
variance thresholds produced over historical data can replace this min–max approach.
Another similar approach is using a box plot to split data distribution into a range of small
categories where new data points are compared against the boxes. These non-regressive
approaches are ideal in saving resources such as processors and memories for IoT devices.
However, being distributed techniques over univariate observations, the range-based
schemes fail to detect contextual and collective anomalies due to the lack of the ability to
capture temporal relationships [3].

N.N.s such as A.E.s, recurrent neural networks (R.N.N.), and long short-term memory
(L.S.T.M.) can be used as non-regressive models to solve the problem of anomaly detection
in the IoT ecosystem using univariate time series data. A.E. is used to reconstruct data
symmetrically from the input to the output layer, and a high reconstruction error probably
indicates abnormality [13]. A.E. can also be applied to resource-constrained IoT devices
for conserving resources and battery power. On the other hand, R.N.N. provides memory
in the network by affecting neurons from previous outputs through feedback loops. This
enables the capture of temporal contexts over time. The vanishing gradient problem in
R.N.N. makes it unsuitable for large IoT networks. L.S.T.M. can provide semi-supervised
learning on normal time series data to identify anomaly sequences from reconstruction to
solve this error problem. Hence, it seems that combining A.E. and L.S.T.M. can bring about
resource-saving and accuracy requirements of the IoT anomaly detection tasks.

4.3.2. Univariate Using Regressive Scheme

Predictive approaches, known as regressive schemes, enable identifying anomalies
by comparing predicted value to actual value in time series data. Parametric models such
as autoregressive moving average (A.R.M.A.) are popular techniques despite seasonality
or mean shift problems in non-stationary datasets. However, these problems can be
solved by using enhanced variants of A.R.M.A. such as autoregressive integrated moving
average (A.R.I.M.A.) and seasonal A.R.M.A. As another approach to predictive IoT anomaly
detection, NN-based predictive models such as M.L.P., R.N.N., L.S.T.M., and others can
be applied to capture the dynamics of a time series on complex univariate data [46]. For
instance, R.N.N., L.S.T.M., and G.R.U. models can represent the variability in time series
data to predict the expected values for time sequences. Recently, attention-based models
have been applied to IoT anomaly detection in complex long sequential data. Similar to the
non-regressive scheme, sequential models can boost the accuracy of IoT anomaly detection
if dimensional reduction algorithms can be used in feature extraction.

4.3.3. Multivariate Using Regressive Scheme

As the additional variables increase data sizes, dimensionality reduction techniques
such as P.C.A., A.E., and others can be employed to decrease overall data size. P.C.A. can
capture the interdependence of variables for multivariate sources. It reduces the data size
by decomposing multivariate data into a reduced set. The linearity and computational
complexity of P.C.A. can limit its usage for IoT anomaly detection. A.E. works like P.C.A.
and can discover anomalies in multivariate time series data using reconstruction error, the
same way as in univariate cases. The promising aspect of A.E. is its low resource usage
and its non-linear feature extraction. Similar to predictive and non-predictive models
on univariate data, schemes using L.S.T.M., CNN, DBN, and others can also be applied
to identifying anomalies in multi-source IoT systems. Specifically, CNN and L.S.T.M.
algorithms can be preceded by A.E. for important feature extraction and resource savings.
These deep learning schemes can learn spatio-temporal aspects of multivariate IoT data [12].
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Clustering mechanisms are another approach to detect anomalies in multivariate
data. In addition, graph networks can be used to learn models about variable or sequence
relationships where the weakest weight between graph nodes is considered anomalous.

5. Analysis of Machine Learning for IoT Anomaly Detection

Anomaly detection systems have proven their capabilities of defending traditional
networks by detecting suspicious behaviours. However, the standalone anomaly detection
systems in classical systems do not fit the architecture of distributed IoT networks. In such
systems, a single node compromise could damage the entire network. By collecting traffic
from various spots, a collaborative anomaly detection framework plays a paramount role
in thwarting cyber threats. However, the trust relationship and data sharing form two
major challenges [42,51]. In this massive network, insider attacks can be a serious issue.

Furthermore, as most anomaly detection systems apply machine learning, nodes may
not be willing to share normal profiles for training or performance optimisation due to
privacy issues. The trust problem can be solved by implementing a central server that
handles trust computation and data sharing. However, this approach could lead to a single
point of failure and security, specifically for the large-scale deployment of IoT devices.
Recently, blockchain has attracted much interest in financial sectors for its capability
of forming trust among mistrusting entities using contracts and consensus. Blockchain
could provide an opportunity to solve the problem of collaborative anomaly detection by
providing trust management and a data-sharing platform. In the remainder of this section,
we will focus on analysing (1) the collaborative architecture for IoT anomaly detection
using blockchain; (2) datasets and algorithms for IoT anomaly detection; and (3) resource
requirements of IoT anomaly detection.

5.1. Collaborative Architecture for IoT Anomaly Detection

Blockchain is a decentralised ledger that provides immutability, trustworthiness,
authenticity, and accountability mechanisms for the maintained records based on majority
consensus. Though it was originally applied to digital currency systems, blockchain can
be applied in various fields. With the power of public-key cryptography, strong hash
functions, and consensus algorithms, participating nodes in a blockchain can verify the
formation of new blocks. A block typically consists of a group of records, timestamp,
previous block hash, nonce, and a block’s hash. Thus, the change in a record or group of
records will be reflected in the next block’s previous hash field, which makes it immune to
adversarial change [42].

The powerful attributes of blockchain could provide a solid foundation for anomaly
detection in distributed networks such as the IoT. IoT devices can collaboratively develop
a global anomaly detection model from local models without adversarial attacks using
blockchain architecture. As IoT needs mutual trust to share local models in a secure and
tamper-proof way, consensus algorithms and decentralised blockchain storage make it
challenging for malicious actors to manipulate the network. However, the successful
Bitcoin consensus algorithms in financial areas such as proof-of-work require extensive
storage and processing capabilities. Etherium has applied proof-of-stake where the partic-
ipants’ stakes determine consensus. It uses smart contracts, and is less computationally
intensive. Hyperledger Fabric is another customisable blockchain platform that applies
smart contracts in distributed systems rather than cryptocurrencies. As it relies on central
service to enable participants to endorse transactions, endorsing participants must agree
on the value of a transaction to reflect changes in the local participant ledger. These three
popular blockchain systems do not seem to solve resource-constrained IoT devices [51].

Blockchain-based security solutions have been discussed in a mix of traditional and
IoT systems [52,53]. In these studies, a resource-rich device was connected to IoT devices,
where the device acts as a proxy to connect IoT devices to the blockchain. A similar study
was conducted in [54]. The main advantages of these approaches lie in resource savings, but
they may also create a central point of failure. In [55], the author’s utilised smart contracts to
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integrate IoT devices into blockchain for communication integrity and authenticity through
the resource requirement issues that may not make it practical. The most promising result
has been achieved on distributed and collaborative IoT anomaly detection [51]. The study
uses a self-attestation mechanism to establish a dynamic trusted model against which
nodes compare to detect anomalous behaviour. The model is cooperatively updated by
majority consensus before being distributed to peers.

5.2. Datasets and Algorithms for IoT Anomaly Detection

The lack of labelled realistic datasets has hampered anomaly detection research in the
IoT. The existing data suffer from lacking realistic representation for IoT traffic patterns
and lack capture of the full range of anomalies that may occur in the IoT. Class imbalance
between normal traffic and anomalous patterns also manifests, which makes classification
systems inefficient. Most IoT traffic can be represented as normal behaviour while it
dynamically changes over time. As contextual information such as time, environment, and
neighbour nodes profile rich information to improve anomaly detection in the IoT, it seems
that multivariate data plays a significant role. The challenges associated with the absence of
truly representative, realistic, and balanced datasets favour an anomaly detection scheme
that profiles normal behaviours to detect anomalous points that deviate from the normal
data [56]. Table 3 shows the common datasets that have been commonly used in some
recent studies in this research area. As can be seen, most datasets are not specific to the IoT
system; however, they are still suitable for training and evaluating anomaly-based I.D.S.s
because they contain both normal and abnormal data.

Table 3. Common Datasets for Anomaly Detection in the IoT System (Adapted from [1]).

Dataset Published
Year

IoT
Specific Dimensions Normal

Instances
Abnormal
Instances

N-BaIoT [57] 2018 Yes 115 555,932 6,545,967

CICIDS 2017 [58] 2017 No 80 2,273,097 557,646

AWID [59] 2015 No 155 530,785 44,858

UNSW-NB15 [60] 2015 No 49 2,218,761 321,283

NLS-KDD [61] 2009 No 43 77,054 71,463

Kyoto [62] 2006 No 24 50,033,015 43,043,255

KDD CUP 1999 [63] 1999 No 43 1,033,372 4,176,086

The initial deployment of the IoT anomaly detection system lacks historical data that
specify normal and anomalous points. This absence and the rare nature of anomalies
challenge the usage of traditional machine learning schemes. Though several techniques of
solving imbalanced data have been proposed, such methods cannot maintain the temporal
context of anomalies. In addition, supervised algorithms capture only known anomalies
while failing to detect novel attacks. Thus, unsupervised or semi-supervised approaches
can be used to solve the limitations of supervised algorithms [54].

While several techniques have been used in IoT anomaly detection, most of the ap-
proaches have failed to satisfy the resource and power requirements of IoT devices [54].
Though there is no single best anomaly detection approach, deep learning techniques,
specifically A.E. and CNN, have shown promising results in both delivering better resource-
saving and accuracy, respectively [64]. While algorithms such as CNN and L.S.T.M. can
boost detection accuracy, A.E. can be used to reduce the dimension of data and extract rep-
resentative features by eliminating noise. Specifically, L.S.T.M. can be applied to dynamic
and complex observations within time-series IoT data over a long sequence. Thus, it sug-
gests that these techniques or combinations could be further explored to detect anomalies
in the IoT ecosystem [65].
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5.3. Resource Requirements of IoT Anomaly Detection

The resource-constrained nature of IoT devices prohibits the deployment of traditional
host-based intrusion detection such as anti-malware and anti-virus. As traffic analysis con-
sumes huge computational resources during anomaly detection, incremental approaches
such as sliding windows can reduce the processing and storage requirements for IoT de-
vices. It is also critical that the anomaly detection engine of the IoT system should operate
in near real-time for reliable detection. This indicates that adaptive techniques help to
improve the detection model over time without major retraining. However, offline training
may be applied for initial deployment.

6. Conclusions

The IoT environment’s massive number, heterogeneity, and resource constraints have
hindered cyber-attack prevention and detection capabilities. These characteristics attract
monitoring IoT devices at the network level as on-device solutions are not feasible. To
this end, anomaly detection is better positioned to protect the IoT network. To protect the
system, anomaly detection is considered to be an important tool as it helps identify and
alert abnormal activities in the system. Machine learning has been applied for anomaly
detection systems in I.T. and IoT systems. However, the applications of anomaly detection
systems using machine learning in I.T. systems have been better than the IoT ecosystem
due to their resource capabilities and in-perimeter location. Nevertheless, the existing
machine learning-based anomaly detection is vulnerable to adversarial attacks. This article
has presented a comprehensive survey of anomaly detection using machine learning in
the IoT system. The significance of anomaly detection, the challenges when developing
anomaly detection systems, and the analysis of the used machine learning algorithms are
provided. Finally, it has been recommended that blockchain technology can be applied to
mitigate model corruption by adversaries where IoT devices can collaboratively produce a
single model using blockchain consensus mechanisms. In the future, we plan to implement
a blockchain-based anomaly detection system for protecting high-end IoT devices such as
Raspberry Pi. The system can be built on a python-based machine learning platform such
as TensorFlow and a blockchain platform such as Hyperledger Fabric, where Raspberry Pi
devices act as distributed nodes.
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