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Abstract: Neutron and gamma irradiation is known to compact silica, resulting in macroscopic
changes in refractive index (RI) and geometric structure. The change in RI and linear compaction in a
radiation environment is caused by three well-known mechanisms: (i) radiation-induced attenuation
(RIA), (ii) radiation-induced compaction (RIC), and (iii) radiation-induced emission (RIE). These
macroscopic changes induce errors in monitoring physical parameters such as temperature, pressure,
and strain in optical fiber-based sensors, which limit their application in radiation environments. We
present a cascaded Fabry–Perot interferometer (FPI) technique to measure macroscopic properties,
such as radiation-induced change in RI and length compaction in real time to actively account for
sensor drift. The proposed cascaded FPI consists of two cavities: the first cavity is an air cavity, and
the second is a silica cavity. The length compaction from the air cavity is used to deduce the RI
change within the silica cavity. We utilize fast Fourier transform (FFT) algorithm and two bandpass
filters for the signal extraction of each cavity. Inclusion of such a simple cascaded FPI structure will
enable accurate determination of physical parameters under the test.

Keywords: active compensation; radiation-induced attenuation; radiation-induced compaction;
cascaded Fabry–Perot interferometer

1. Introduction

Radiation exposure of vitreous silica can induce changes in density up to 3% [1–3],
whereas pressure can alter it more than 20% [4–6]. However, it has been shown that
depending on the amount of pressure applied in the presence of temperature, the change
in density in the silica glass can either be temporary or permanent [7,8]. On the other hand,
radiation-induced changes in density are always irreversible [1,9] and follows a power law
for dose-dependent exposure given by [3]:

∆ρ

ρ
= ADc (1)

where ρ and D are the density and absorbed radiation dose, respectively and A, and
c are material-dependent constants. The value of constant c has been found c ∼= 2

3 for
the ionization process (gamma ray, X-ray, UV ray, etc.) [1,10–16] and c ∼= 1 for atomic
displacement process (neutron, He+, D+, etc.) [1]. While there might be many reasons
for different values of c, it has been shown that it is the Si-O-Si bond angles rather than
the change in the shape of silica tetrahedron (SiO4) undergoes significant changes due to
particle bombardment or under high pressure [17,18]. To validate the different values
of c in Equation (1), Piao et al. [3] reported a two phase structural model for vitreous
silica. It has been found that neutron irradiation causes a significant compaction compared
to gamma irradiation [1,11]. The detailed discussion about the mechanism of radiation-
induced compaction in silica can be found in Ref [19]. It has been reported that during
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the fast neutron fluence in excess of ∼ 1019 n/cm2, silica reaches the metamict phase with
an increased density change between 2–3% [1,20]. Further fluence of neutrons does not
further increase the density.

Radiation, primarily through radiation-induced attenuation (RIA) and radiation-
induced compaction (RIC) within silica optical fibers, changes the optical, mechanical, and
chemical properties of silica fiber in many ways, thus affecting signal fidelity. Specifically,
these radiation-induced effects in silica induces an error in predominantly used resonance
based optical fiber sensors (OFS), such as fiber Bragg grating (FBG), long period grating
(LPG), and Fabry–Perot (F-P) in measuring physical parameters like temperature, pressure,
strain, etc. For example, recent works on FBGs [21,22], LPGs [23,24], and F-Ps [25,26]
sensors in a gamma and mixed radiation (gamma and neutron radiation) environment
explained radiation-induced drift in detail.

RIA increases the linear attenuation in silica based fibers [27,28]. Different parameters
govern the RIA levels and kinetics, which include chemical compositions of fibers [29,30],
manufacturing process [31–33], light guiding properties of fibers, the nature of irradiation
(X-ray, gamma ray, neutron, etc.) [34], the dose rate [34–36], wavelength of light used [37,38],
injected light power [39], temperature of irradiation [40,41], etc. On the other hand, RIC
causes the structural changes of the fiber, leading to a density change [1]. While RIA leads
to RI change through the Kramer–Kronig relation [42,43], its determination is complex and
one needs to consider the spectrum over a wide frequency range [43]. RIC alters the RI
through Lorentz–Lorenz [44,45] and point dipole theory [46]. So far, radiation-induced
compaction has been calculated using power law [3] and empirical equation [1]. Then,
Lorentz–Lorenz relationship, point dipole theory, sensitivity factor, and a few empirical
equations have been utilized to find out the change in RI and linear compaction from
the volume compaction [3,9,44,46–48]. An immediate question arises on whether these
methods (Lorentz–Lorenz, point dipole theory) consider the combined RIC, RIA and
dopant diffusion effects on the RI change or only consider the RIC effects on the RI change.
In this regard, these methods do not present the whole picture regarding RI change due to
radiation. As RI and length compaction are the input parameters for the resonance-based
OFS, accurate calculation of these parameters is of great importance to predict the actual
radiation effects on OFS and correct the sensor drift.

An in-line measurement of RI and length changes due to radiation can be a potential
way to understanding the structural change of optical fiber in a nuclear environment, thus
helping in minimizing signal error. Such in-line measurement techniques must provide
the change in RI of optical fiber due to any specific phenomena the fiber is subjected to,
including RIC, RIA, dopant diffusion, temperatures, dose, and dose rate [9,21,22,41]. Once
the macroscopic properties are measured, it is comparatively easy to understand how they
would impact the sensor performance; therefore, enabling real-time correction of sensor
signal drifts.

In this paper, we propose a simple cascaded Fabry–Perot sensor to measure the
radiation-induced change in RI along with length compaction due to radiation for active
compensation of signal drift. Compared to conventional cook and look method, analytical
method using Lorentz–Lorenz, point dipole theory, etc., this technique provides unique
features, such as real-time determination of RI and length changes due to any specific
phenomena the fiber is subjected to, including RIC, RIA, dopant diffusion, temperatures,
etc. Our proposed cascaded Fabry–Perot structure consists of a hollow cavity (air/gas
cavity) and a solid cavity (silica cavity) within the same fiber, as shown in Figure 1. The air
cavity can be used to measure the radiation-induced linear compaction from the spectral
response since RI shows no or little change. However, radiation alters both the length and
the RI in the silica cavity. Since the silica capillary tube and the silica cavity are both made
of silica, and both cavities are in very close proximity to each other, it is expected that both
the cavities will experience the same compaction. Considering the same amount of linear
compaction in both cavities, change in RI can be measured from the spectral response of
the silica cavity. Separation of the signal for each cavity is required to calculate the change
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in RI of the silica cavity with the help of the air cavity. We use fast Fourier transform (FFT)
algorithm to convert the wavelength domain signal into frequency domain. Then, two
bandpass filters are applied to separate the signals of each cavity. Finally, inverse FFT is
used to convert the filtered signals into wavelength domain. This simple way of finding the
radiation-induced change in RI and linear compaction simultaneously will help improve
understanding of the radiation effects on OFS.
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2. Geometric Structure and Principles

The cascaded FPI, shown in Figure 1, consists of a hollow silica capillary fiber (HCF)
of length L1 spliced between a coreless silica fiber (CLF) of length L2 and a lead single
mode fiber (SMF) of arbitrary length. The air cavity has a cavity length (L1) of 117 µm and
refractive index (n1) of 1. The silica cavity has a cavity length (L2) of 211 µm and refractive
index (n2) of 1.44402. The value of refractive n2 has been calculated by using the three-term
Sellmeier Equation [49] at 1550 nm of wavelength. The cavity lengths were chosen in such
a way so that the signal peak of each cavity does not overlap each other in spatial frequency
domain. There is one more cavity that consists of L1 + L2 and is sometimes referred to
as a hybrid cavity (air-silica cavity). The main components of this cascaded FPI are three
reflective interfaces, M1 (between the interface of lead SMF and HCF), M2 (between the
interface of end facet HCF and CLF), and M3 (between the interface of end facet CLF and
air). The total interference spectrum from the cascaded FPI is a three-beam interference
and can be expressed by [50]

I = I1 + I2 + I3 + 2
√

I1 I2 cos(ϕair) + 2
√

I2 I3 cos(ϕsilica) + 2
√

I1 I3 cos(ϕair−silica) (2)

where ϕair = 4πn1L1
λ , ϕsilica = 4πn2L2

λ , and ϕair−silica = 4π
λ (n1L1 + n2L2) are the phase of

the air cavity (first cavity), silica cavity (second cavity), and hybrid cavity, respectively.
The total spectrum from the cascaded FPI is shown in Figure 2a. To separate the reflection
spectrum of each cavity, optical frequency domain signal processing was used to retrieve
the air cavity and the silica cavity. The fast Fourier transform (FFT) algorithm is applied to
the total spectrum, and the corresponding spatial frequency domain distribution is shown
in Figure 2b. It is seen that three peaks are available in the frequency domain. These three
peaks are situated at 0.1 nm−1 (peak 1), 0.2562 nm−1 (peak 2), and 0.3562 nm−1 (peak 3).
The spatial frequency values of the air cavity, silica cavity, and hybrid cavity are calculated
as f1 = 2n1L1

λ1λ2
, f2 = 2n2L2

λ1λ2
, and f1 + f2, respectively, where λ1 and λ2 are the wavelengths of

adjacent peaks or dips in the reflection spectrum of each cavity. Calculation of the spatial
frequency for each cavity indicates that peak 1, peak 2, and peak 3 correspond to the peaks
of air cavity, silica cavity, and hybrid cavity, respectively.
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Figure 2. (a) total spectrum of the cascaded FPI and (b) the spatial frequency distribution of the total spectrum using FFT.

The spatial frequencies of the air cavity ( f1) and the silica cavity ( f2) are related to
the optical path difference (OPD) of these two cavities. The crosstalk between the two
cascaded cavities can be reduced by increasing the OPD between the air cavity and the
silica cavity. To extract the signals for each cavity from the total reflection spectrum, two
bandpass filters are used. The interference spectrum of the air cavity is obtained by filtering
the total spectrum using a bandpass filter centered on peak1 and for the silica cavity
centered on peak 2. Then, the lengths of the air cavity and silica cavity can be obtained
by using L1 = λ1λ2

2n1(λ1−λ2)
and L2 = λ1λ2

2n2(λ2−λ1)
, respectively, if n1 and n2 are known.

The reconstructed spectrum for the air cavity and silica cavity is shown in Figure 3a,b,
respectively. Table 1 shows the original and reconstructed length of the cavities. It is seen
that the retrieved lengths of the cavities are almost same as that of the original length of
the cavities. There is one more term called free spectral range (FSR), which is the spectral
distance between two adjacent peaks or dips. This is calculated for the air cavity and the
silica cavity as FSRair =

λ1λ2
2n1L1

and FSRsilica =
λ1λ2
2n2L2

.
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Sensors 2021, 21, 8193 5 of 12

Although this paper focuses on theoretical and numerical analyses, we fabricated
a cascaded FPI for better understanding. Since the cascaded FPI consists of SMF, HCF,
and CLF, only cleaving and splicing are required to give the practical realization of this
structure. We used an SMF-28 single-mode fiber as the lead-in fiber and capillary tubes
with inner diameters of 39.2 µm (TSP040150) from Polymicro Technologies, in order to
construct the air cavity. As a first step, we cleaved the SMF, HCF, and CLF using a cleaving
tool (CT101/102, Fujikura) and then fusion spliced the SMF-28 with the HCF using a fusion
splicer (70S + fusion splicer, Fujikura). Next, a linear stage in conjunction with the cleaving
tool was used to cleave the spliced HCF at a certain distance from the splicing point. A CLF
fiber from Thorlabs was cleaved and spliced with the capillary tube to complete the silica
cavity. The microscopic image of the fabricated cascaded FPI is shown in Figure 4.
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3. Compaction Analysis

Radiation changes both the length and the RI of the silica-based fiber. The volume
compaction as a function of neutron fluence induced by radiation can be calculated by [1]

Cv(ϕ) = Cv∞

(
1 − e−

ϕ
ϕS

)
(3)

where Cv(ϕ) is the amount of compaction dependent on neutron fluence ϕ, Cv∞ is the
equilibrium compaction, and ϕS is the fluence at which the fiber material gets saturated.
The linear compaction (Cl) can then be calculated from the Cv, assuming isotropic changes
by the following empirical equation:

Cl = 1 − (1 − Cv)
1
3 (4)

Once the Cv is known, the final density due to radiation can be calculated by using
the following empirical equation:

ρ2 − ρ1

ρ2
=

v1 − v2

v1
= Cv (5)

where ρ1, v1, ρ2, and v2 are the initial density, initial volume, final density, and final volume
of the material, respectively. Once the density is known, the change in RI due to radiation-
induced compaction can be calculated by using point dipole theory or Lorentz–Lorenz
equation. The extended point dipole theory can be expressed as [46]

n2 − 1
4π + b(n2 − 1)

=
α

M
ρ (6)
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and the Lorentz–Lorenz relationship can be represented by the following expression [44,45]

n2 − 1
n2 + 2

=
4π

3
Nα =

4π

3

(
ρNA

M

)
α (7)

where n, N, ρ, M, α, b, and NA, are the refractive indices of silica glass, number density
of silica glass, mass density of silica glass, molecular weight of silica glass, electronic
polarizability of silica glass, electronic overlap between adjacent dipoles in the silica glass,
and Avogadro number, respectively. Since the proposed cascaded FPI consists of an air
cavity and a silica cavity, the radiation-induced change in RI for both cavities would be
different. As the two cavities are very close to each other, we can reasonably assume the
change in length compaction is identical for both cavities since they will experience the
same environment. The length compaction information is obtained from the interference
spectrum of the air cavity as no change occurs in RI for being hollow cavity. If L1i is the
intial cavity length and L1 f is the compacted length of the air cavity due to the exposure of
radiation, the linear companion (Cl−air) is

Cl−air =
L1i − L1 f

L1i
(8)

As the second cavity is based on silica, both the change in RI and length will occur.
If L2i is the intial cavity length and L2 f is the compacted length of the silica cavity due to
the exposure of radiation, the linear compation (Cl−silica) is:

Cl−silica =
L2i − L2 f

L2i
= Cl−air (9)

As mentioned, the length compaction of the silica cavity would be same as that of
the air cavity (Cl−silica = Cl−air). Based on that consideration, the compacted length of the
silica cavity L2 f can be calculated as

L2 f = L2i − Cl−airL2i (10)

It is known that optical length equals the physical length multiplied by refractive
index of the medium. So, the optical length for the silica cavity, Lop = n2 f L2 f where n2 f
is the compacted RI due to radiation. The optical length (Lop) of the silica cavity can be
found from the interference spectrum of the silica cavity. As we already know, Lop and L2 f ,
then n2 f can be calculated easily. In this approach, compaction and RI can be identified
independently and in real-time.

4. Radiation Effects on Cavities

It is simple to calculate Cl−air and n2 f using Equations (8)–(10) from the measured
fringe spectrum of a cascaded FPI. To test the validity of our proposed model, we used
experimental values of linear and volumetric compaction reported in [9] where silica sam-
ples were exposed to high radiation field at different temperatures to observe the structural
changes. The reported values for linear and volumetric compaction are 0.73 ± 0.04% and
2.20 + 0.13%, respectively, in Ref [9]. These values were measured after exposing the silica
samples to a fast neutron fluence of 2.4 × 1021 n/cm2 at a temperature of 95 ◦C. Point
dipole theory (Equation (6)) is then used to calculate the final n2 f from the density (volume
compaction) based on the values reported in Ref [9]. We input the changes in RI and length
due to a fast neutron fluence of 2.4 × 1021 n/cm2 at a temperature of 95 ◦C to our cascaded
FPI model. The individual cavity spectra from our simulations before and after irradiating
to a fluence of 2.4 × 1021 n/cm2 are shown in Figure 5. As the fiber is compacted, it is
expected that the cavity lengths of both cavities will decrease in comparison to previous
reconstructed cavity length. It is seen that there is a spectral change in Figure 5b,d due to
the radiation effects from their original spectra Figure 5a,b. Table 2 shows the reconstructed
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length of cavities before and after the irradiation. It is seen that the reconstructed cavity
lengths change from 117.39 to 116.56 µm for the air cavity and from 210.69 to 209.20 µm for
the silica cavity.
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Table 2. Reconstructed cavity lengths before and after irradiation to a fast fluence of 2.4× 1021 n/cm2

at a temperature of 95 ◦C.

Cavity
Before Irradiation

Retrieved Original Cavity
Length (µm)

After Irradiation
Retrieved Compacted Cavity

Length (µm)

Air cavity 117.39 116.56

Silica cavity 210.69 209.20

Since the changes in RI and length due to radiation can be measured using cascaded
FPI, it is possible to input these values into fiber Bragg grating (FBG) sensor to observe the
radiation-induced signal drift. FBGs are periodic modulations of the refractive index of
the core of a fiber with a typical period of less than 1 µm [51]. In an FBG, the fundamental
guided mode couples to the counterpropagating guided mode when the following phase-
matching condition is satisfied [52]:

λB = 2ne f f Λ (11)

where λB is the Bragg wavelength, ne f f is the effective RI of the core, and Λ is the grating
period. As the first step to comprehend the radiation effects on FBG, we modelled a FBG
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by using the theoretical analysis described in Ref [53]. The reflectivity of a uniform grating
based on couple mode theory (CMT) can be expressed as

R =

sinh2

(
κL

√
1 −

(
δ
κ

)2
)

(
1 −

(
δ
κ

)2
)

cosh2

(
κL

√
1 −

(
δ
κ

)2
)
+
(

δ
κ

)2
sinh2

(
κL

√
1 −

(
δ
κ

)2
) (12)

where κ = π
λBragg

η∆nmod is the coupling coefficient, δ =
2πne f f

λ − π
Λ and δ

κ are the detuning

ratio depending on λ
λBragg

, and ∆nmod is the grating strength. The modal overlap factor (η),
which defines the core power, can be expressed as [54]

η =
π2∅2

coreNA2

λ2 + π2∅2
coreNA2 (13)

where ∅core and NA are the core diameter and the numerical aperture of the fiber, respec-
tively. We choose the parameters of the FBG in such a way to get the Bragg peak close to
1550 nm of wavelength. We inserted the values of RI and length compaction in to our FBG
model for a fast neutron fluence of 2.4 × 1021 n/cm2 at a temperature of 95 ◦C. First, we
simulated the FBG without any radiation exposure. The spectrum of FBG before irradia-
tion is shown in Figure 6 (black line), and it can be seen that the Bragg wavelength is at
1549.9 nm. Then, we considered the radiation effect on the Bragg wavelength by inserting
only RI change obtained by Equation (6) due to a fast neutron fluence of 2.4 × 1021 n/cm2

at a temperature of 95 ◦C [9]. Please note that we did not consider the RIA induced RI
change as it’s quite complex and requires the full spectrum of light. It can be observed that
Bragg wavelength gives a redshift of 10.62 nm (blue line) due to the increased RI induced
by radiation. In a similar way, we input the radiation-induced grating period (linear com-
paction) change into our model while considered no change in RI. It is seen that compacted
length provides a blueshift of 11.31 nm (green line). It is well known that increased RI shifts
the Bragg wavelength to the longer wavelength side, whereas a compacted grating period
shifts it to the shorter wavelength side according to Equation (11). Then, we inserted the
radiation-induced change both in the RI and the grating period in our FBG model and ran
a simulation. An overall shift of 0.77 nm (red line) to the shorter wavelength side can be
observed, which indicates the effect of length compaction dominates over the effect of RI.
It is interesting to see that there is no reduction of Bragg amplitude due to the radiation
which is not the normal case. Experimental results indicate that radiation reduced the
amplitude of the Bragg peak [9,21], and the possible reasons might the defect generation
and eraser of gratings. As we did not consider any RIA in our simulation, the amplitude of
the Bragg peak slightly increased due to the increased RI. An overall shift of 0.77 nm led
to a temperature error of 77 ◦C by assuming the FBG temperature sensitivity coefficient
of 10 pm/◦C. It is also possible that RIA induced change in RI may further accelerate the
errors. By knowing the macroscopic changes that cause a shift of 0.77 nm for FBG, it is
possible to correct the drift.

The alteration of RI may occur due to RIC, RIA, temperature, and so on in a radiation
environment. However, Lorentz–Lorenz or point dipole theory only helps to calculate
compaction (or density) induced RI change. To understand the whole picture, it is crucial
to know the RI change caused by all possible reasons (RIA, RIC, irradiation temperature,
dopant diffusion, etc.) due to radiation. An in-line measurement of macroscopic changes,
no matter what it causes, provides the actual change in RI and length, which can be then
used to correct the sensor drift.
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5. Thermal Effects on Cavities

In this section, the thermal effects on cavities, as well as gas RI is considered, if the air
cavity is filled with helium gas. From now on, the air cavity will be called a gas cavity for
better understanding, since it is filled with helium gas. As the thermo-optic and the thermal
expansion coefficients are well defined for a pure silica-based cavity, we mainly investigate
the thermal effects on the gas cavity. Temperature relates to the pressure through the ideal
gas law expressed by

PV = mRT (14)

where P, V, m, R, and T are the pressure, volume, amount of gas, ideal gas constant, and
temperature, respectively. If the diameter of the gas cavity is 40 µm (inner diameter of
silica capillary tube) and as the cavity length of the gas cavity (117 µm) is known, V and
hence, m can be calculated at normal temperature and pressure (NTP). Then, pressure P2
at temperature T2 (300 ◦C in our case for example) is calculated. Once pressure is known,
strain and hence the change in length can be determined by using

∆L = ε × L =
P
E
× L =

FL
AE

(15)

where ε, E, F, and A are the, strain, Young’s modulus, applied force to the gas cavity, and cross-
sectional area of glass, respectively. Since the overall radius of the capillary tube is 62.5 µm and
the radius of the glass in the capillary tube is 20 µm, then A = π

(
62.52 − 202)× 10−12 m2.

The force acting on the glass due to pressure is F ∼= P × π × 202 × 10−12 m2. As the Young’s
modulus of the bare silica fiber is 69.22 ± 0.42 GPa [55], strain-induced length change
∆L can be calculated by performing some iterations until the result becomes convergent.
We obtained strain induced ∆L of 0.038 nm at 300 ◦C, which is very small compared to the
thermally induced ∆L of 11.43 nm of pure silica fiber, considering the thermal expansion
coefficient of 4.1 × 10−7/◦C. As a result, pressure induced length change can be neglected
compared to the thermally induced one.

Next, we emphasize the temperature effect on the RI of helium gas. The RI of gas can
be determined from the Lorentz–Lorenz equation, and it can be written in the form of

n2 − 1
n2 + 2

= ARρm+BRρm
2 (16)
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where ρm is the density in moles per unit volume, AR is the molar polarizability, and BR is
the second refractivity virial coefficient. To calculate the density ρm, the m is calculated first
at NTP since V is known. The molar refractivity AR for helium gas is calculated using the
following expression in [56]

AR = 0.51725407 +
1197.5410

λ2 +
3.290677 × 106

λ4 +
9.800874 × 109

λ6 (17)

where λ is the wavelength of light used. The refractivity virial coefficient BR is calculated
using the expression suggested by [56]:

BR = −0.032 − 0.0001T (18)

Please note that the above expression for BR was developed at a wavelength of
633 nm [56]. However, we used this value of BR at 1550 nm, since BR has only a small
effect on the refractive index (modify the result less than 2 × 10−10) [56]. Then, the value
of each parameter is inserted into Equation (16), and the refractive index n is calculated.
For high temperature T2 (300 ◦C in our case), thermally induced ∆L and hence the new
length is calculated using the thermal expansion coefficient of pure silica. New volume
is then determined from the new length assuming other parameters remain unchanged.
Based on the new volume, density ρm and RI n are calculated at 300 ◦C. The obtained
difference in RIs between NTP and 300 ◦C is 7.4 × 10−9, which is very small and can be
neglected. We investigated the strain induced length change and temperature induced
RI of the gas cavity and found that both are very small and can be neglected. The only
parameter remains that dominates on the interferometric fringe of the gas cavity is the
thermally induced length expansion.

We believe the active compensation technique can also be used to calculate the thermo-
optic and thermal expansion coefficients of silica-based fibers in a temperature environment.
In a similar way discussed for radiation effect, the thermal expansion from the air cavity
can be used to calculate the change in RI in the silica cavity.

6. Conclusions

A simple cascaded FPI has been proposed to calculate the RI and length compaction.
The air cavity is used to calculate the linear compaction, and then the RI is calculated from
the silica cavity by considering the same amount of linear compaction of this cavity to that
of the air cavity. However, cavity length separation for each cavity is required to perform
this job. The FFT algorithm has been utilized to get the frequency domain signal from
the total interference spectrum of the cascaded FPI. Then, two bandpass filters have been
applied to separate the individual cavity lengths from the total spectrum. This simple
active compensation technique by using just two cascaded cavities can be used to measure
RI due to RIC, RIA, temperature, pressure, dopant diffusion, or any combination of them.
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