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Abstract: Today’s wearable medical devices are becoming popular because of their price and ease
of use. Most wearable medical devices allow users to continuously collect and check their health
data, such as electrocardiograms (ECG). Therefore, many of these devices have been used to monitor
patients with potential heart pathology as they perform their daily activities. However, one major
challenge of collecting heart data using mobile ECG is baseline wander and motion artifacts created
by the patient’s daily activities, resulting in false diagnoses. This paper proposes a new algorithm
that automatically removes the baseline wander and suppresses most motion artifacts in mobile ECG
recordings. This algorithm clearly shows a significant improvement compared to the conventional
noise removal method. Two signal quality metrics are used to compare a reference ECG with its
noisy version: correlation coefficients and mean squared error. For both metrics, the experimental
results demonstrate that the noisy signal filtered by our algorithm is improved by a factor of ten.

Keywords: ambulatory electrocardiogram; signal processing; empirical mode decomposition; adap-
tive filter; noise removal

1. Introduction

Electrocardiogram (ECG) is one of the most used medical tools for cardiologists
to detect heart anomalies. It is easy to use, painless for patients, and can collect heart
information from many angles so that the cardiologists can make more accurate diagnoses.
There are many types of electrocardiogram inputs such as one-lead, three-lead, and twelve-
lead, etc. Among these lead systems, one-lead and three-lead ECG devices are often used
for continuous heart monitoring. Today’s rapid development of cloud technology allows
new medical products such as QardioMD [1], Vivalink [2], and Astroskin Smart Shirt [3] to
measure numerous physiological indicators simultaneously and transmit this information
to a remote database in the so-called cloud. Using this mobile technology, one can evaluate
a patient’s condition as they perform their daily activities. It has been shown [4] that early
detection of heart anomalies is critical to reducing the effects of severe heart conditions such
as infarcts, angina, arterial fibrillation, and sudden cardiac arrest. Most mobile commercial
healthcare devices can measure 1-lead or 3-lead ECG in addition to respiration rate, blood
oxygenation, some approximation of blood pressure, and much more. Many mobile devices
can continuously measure and transfer to the cloud patient’s health data for 24 to 48 h.
Even though 1-lead and 3-lead ECGs contain less information than the standard 12-lead
ECG, 24-h continuous monitoring is sufficient to detect heart anomalies [5].

The commercial personal medical device possesses many advantages such as ease
of use, long-term body monitoring, and easy access to personal health data. However, it
also has some important limitations. One of the major drawbacks is that the collected ECG
is frequently contaminated with noise, making the ECG interpretation impossible. The
standard 12-lead ECG device in clinics requires measuring the patient at rest, but most
mobile healthcare devices use a rubber band to press the sensor onto the patient’s chest;
therefore, the sensor is more likely to be affected by body motion. Body motion introduces
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two major noise types to the ECG signal: baseline wander (Figure 1) and motion artifact
(Figure 2).

Figure 1. Baseline wander affected ECG signal.

Figure 2. Motion artifact affected ECG signal.

As shown in Figures 1 and 2, ECG signals are distorted by artifacts that have nothing
to do with the heart functions. In some cases, artifacts could even mimic true arrhythmia,
leading to false diagnostics [6]. Therefore, noise removal is a necessary step for any ambu-
latory ECG monitoring applications to be useful. This paper proposes a new noise removal
method that automatically suppresses the baseline wander and motion artifact. The new
algorithm consists of an adaptive empirical mode decomposition and reconstruction al-
gorithm capable of removing baseline wander and some motion artifacts, followed by an
adaptive filter algorithm that uses an accelerometer to further reduce the motion artifacts.
In Section 2.1, we will review the current state-of-the-art of noise removal techniques for
ambulatory ECG. Section 2.2 describes the proposed algorithm. Then, in Section 3, the
experimental testing setup and the results are presented. We then conclude in Section 4 by
reviewing the advantages of our approach.
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2. Materials and Methods
2.1. Related Work

There are four conventional methods for removing baseline wander and motion
artifacts [7] that one can find in the literature. In the following sub-sections, we explain
each technique and its implementations. Moreover, we will discuss the advantage and
disadvantages of each method.

2.1.1. Digital Filters

Digital filters are widely used to remove the unwanted frequency components in
signals. The combination of different digital filters is called a filter bank. It combines
various digital filters such as low-pass filter, high-pass filter, band-pass filter, notch filters,
differentiator, and normalizer, etc. The ECG signal frequency component without noise
range from 0.1 to 100 Hz [8]. To extract the pure ECG signal information, low bound and
high bound filters must be applied according to the based ECG signal’s frequency range.
One of the filter bank advantages is that it is straightforward to implement and is highly
efficient. However, its drawback is that fixed digital filters could introduce nonlinear phase
distortion and key points displacement, which could cause deformation on important
waves of the ECG signal such as QRS complex [9]. Moreover, the parameters of the digital
filter are tuned specifically for one dataset. It may not work well for the data collected from
other devices. Furthermore, the digital filter does not perform well in removing the noises
that have a similar frequency to the ECG signal.

2.1.2. Discrete Wavelet Transform

Discrete wavelet transform (DWT) was first introduced by Mallat in 1989 [10]. It
can be used to analyze non-stationary signals, such as ECG [11]. In [12], Poungponsri
combines the DWT with an artificial neural network to remove a wide range of noise. DWT
decomposes the signal into detail coefficients to approximate the signal using a wavelet
mother function. Each coefficient corresponds to a different frequency range. Therefore, by
observing the extracted approximation and detail coefficients, one can easily distinguish
the coefficients that contain the ECG signal and the coefficients that contain the signal
noise. One could only apply noise removal methods such as a digital filter to the noisy
coefficients as the coefficients with the ECG signal will not be affected. Despite the great
advantages of DWT, some drawbacks make it hard to use in practice. The first DWT
requires to set and select the number of coefficients manually. The second is how to find the
most suitable wavelet mother function, which could be different for different ECG signals.
These limitations make it hard to automate such an algorithm.

2.1.3. Empirical Mode Decomposition

Empirical mode decomposition (EMD) is an adaptive and entirely data-driven tech-
nique that obtains the oscillatory modes present in the data [13]. It was first introduced
by Huang in 1998. Similar to DWT, EMD decomposes the ECG signal into many sub-band
signals. The high-frequency components of the EMD decomposition are called intrinsic
mode functions (IMF), and the low-frequency components are called residual. Unlike
DWT, which relies on the mother wavelet functions, EMD does not need to find the best
wavelet function or set the number of IMFs since this method is fully data-driven. In
2006, Weng applied the EMD method to the ECG signal to remove high-frequency noise
with minimum signal distortion [14]. In 2008, Blanco proved the EMD method could
be used for baseline wander correction [15]. However, the number of IMFs may differ
for different ECG signals, implying that the IMFs do not have a fixed frequency range.
Therefore, human intervention is often required to separate clean and noisy IMFs for
signal reconstruction.



Sensors 2021, 21, 8169 4 of 33

2.1.4. Variational Mode Decomposition

The variational mode decomposition (VMD) was proposed by Dragoniretskiy and
Zosso in 2013 [16]. It was an alternative approach to the empirical mode decomposition.
Unlike the EMD method, the VMD method decomposes the signal from low frequency to
high-frequency, where the residual contains the highest frequency component. Therefore,
when dealing with the high-frequency noise in the signal, the VMD method performs better
than the EMD method [17]. In 2016, Mohan applied the VMD method for the powerline
interference on the ECG signal. However, since the VMD method is a variant of the EMD
algorithm, human intervention is also required for clean IMF selection.

2.1.5. Adaptive Filter

Adaptive filtering (AF) takes the original noisy signal and a reference noise signal as
input. It then automatically adjusts the filter weights based on the reference noise signal to
improve the signal reconstruction. There are three types of AF: least mean square (LMS)
filter, normalized least mean square filter (NLMS), and recursive least squares filter (RLS).
In 1991, Thakor et al. [18] first introduced the LMS adaptive filter to remove the baseline
wander, 60 Hz power line noise, muscle noise, and motion wander. One shortcoming of the
LMS adaptive filter is that it is sensitive to input scaling. Therefore, a power normalized
least mean squares adaptive filter (NLMS) has been proposed to solve this problem by [19].
The last adaptive filter type is the recursive least square (RLS) adaptive filter. The RLS
algorithm has excellent performance when working in time-varying environments but
at the cost of increased computational complexity and some stability issues [20]. The
above-mentioned approaches work well when the noise is limited to a fixed frequency
range. However, if the noise’s frequency is continuously changing, such as those created by
motion wander, these methods may not work and their performance with the fixed noise.
However, by using a better reference noise signal that is sensitive to motion, one can design
an adaptive filter that can automatically cancel the noise for different ECG frequencies.
Many researchers, such as [21,22], use accelerometer data frequently associated with mobile
commercial ECG sensors to implement those filters.

2.2. Proposed Algorithm

To automatically reduce the baseline wander and motion artifact, we have developed
a new algorithm. The new algorithm consists of two parts: a preprocessing step and a
filter step. The preprocessing step contains ECG signal preprocessing (Section 2.2.2) and
unusable ECG signal detection (Section 2.2.3). The filter step consists of an adaptive empir-
ical mode decomposition and reconstruction step that could automatically decompose the
signal without human input (Section 2.2.4) to reduce motion wander, a motion-sensitive
adaptive filter (Section 2.3) that uses a 3-axis accelerometer that automatically selects the
best reference noise signal to remove motion artifacts, and a variational mode decom-
position and reconstruction method (Section 2.3.1) to remove high-frequency noise. The
complete block diagram of the algorithm can be seen in Figure 3.

2.2.1. Data Acquisition

In this research, we used the Astroskin smart shirt [3] and the VIVALNK wearable
ECG device [2] for ECG collection. The Astroskin smart shirt can collect a 3-lead ECG at
250 Hz and a 3-axis accelerometer data at 50 Hz. The VIVALNK wearable ECG device can
collect a single lead ECG at 128 Hz and a 3-axis accelerometer data at 5 Hz. During the
experiment, the ECG signals collected by the VIVALNK ECG device are up-sampled to
250 Hz. Both devices could collect lead II ECG signals and accelerometer signals. The test
subject was a healthy male adult of age 32 with no heart problem. Each device was worn
by the subject for one hour consecutively. During the one hour, the test subject was free to
do his daily activities, including resting, sitting, walking, and cycling. During the resting
time, the subject was sitting but not moving his upper body for 5 min. The resting signals
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were used as the reference signal. The data were collected from the author of this research
paper, and therefore, ethical approval was not necessary.

Figure 3. Block diagram of the proposed algorithm.

Since the device could not record the noise source or a clean signal for the algorithm
to compare, the reference signal is used as the ground truth signal to compare the ECG
signal before and after applying the proposed noise removal algorithm. Figure 4 is the
reference signal collected from the Astroskin smart shirt, and Figure A21 is the reference
signal collected from Vivalnk, which can be seen in the Appendix A. The reference signal
in Figure 4 is 10 s long. It contains 12 heartbeats, and its average RR interval is 0.824 s.
The reference signal in Figure A21 is 10 s long with 11 heartbeats, and the average RR
interval is 0.922 s. During the data collection, the sitting time mainly includes working
with computers and eating. Active time includes walking on flat ground, going up and
downstairs, and cycling on a stationary bike. During the test for each device, the total
sitting time was around 25 min, the total walking time was 15 min, and the total cycling
time was 15 min. One reason that the signals are split into 10-s segments is that the
proposed algorithm requires enough QRS sequences in the segment for training and
classification. Another reason is to allow the algorithm to adapt to changing ECG signals
without losing performance.
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Figure 4. The reference signal from Astroskin smart shirt.

2.2.2. ECG Signal Preprocessing

Once the data are collected, a preprocessing step is needed. First, the ECG signal
is normalized using the z-score normalization method [23], and the 3-axis accelerometer
is also normalized using a min–max normalization method. The z-score normalization
method normalized the original data x based on its mean value µ and standard deviation
vσ using the following equation:

x̂ =
x− µ

σ
(1)

The min–max normalization method normalized the signal into [0, 1] using the follow-
ing equation:

x̂ =
x−Min(x)

Max(x)−Min(x)
(2)

where x̂ is the normalized signal, x is the original signal, Min(x) is the minimum value of
the signal, and Max(x) is the maximum value of the signal. After the normalization step,
the accelerometer signal is over-sampled with the following steps.

• The process first inserts p (for example, p = 250) zeros to up-sample the signal.
• Then the new signal is filtered by an FIR anti-aliasing filter to match the shape of the

original signal. In this part, the Kaiser window method was used to approximate the
ideal anti-aliasing filter.

• Finally, q (for example, q = 50) samples in the up-sampled signal are discarded to
obtain the final signal.

The p is the target sample frequency, and the q is the original sample frequency. Then
with the same length for the ECG signal and the accelerometer signal, they are segmented
into 10-s segments where the noise removal algorithm is applied.

2.2.3. Detection of Unusable Signal with Support Vector Machine (SVM)

Following the preprocessing step, some sections of the signals were unusable. This
may be because, during the ECG collection step, the patient’s movement may be too
pronounced, resulting in lost heartbeat information for some signal segments, which is
meaningless to continue the noise removal process. Therefore, the purpose of this step is to
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detect if the signal segments are too noisy. The standard to distinguish a usable signal and
an unusable signal is to find if the number of QRS complexes on the ECG signal is the same
as the expected number of QRS complexes. If the number of QRS complexes on the ECG
signal is less than 60% of the expected number, the segments will be considered unusable.
To achieve this objective, a support vector machine (SVM) model was trained using eight
features. A support vector machine (SVM) is a computer algorithm that learns a classifier
function from labeled data that can then be used to classify new unlabeled data [24]. The
SVM algorithm has been proven to be very accurate and efficient for binary classification in
many applications, such as [24–26]. Another major reason for using SVM is that the SVM
does not require a lot of training data. During the training, the kernel function used for the
SVM is Gaussian, which the following equation can express:

G(xj, xk) = exp(−||xj − xk||2) (3)

where G(xj, xk) is element (j, k) of the Gram matrix, and xj, xk are the vectors representing
observations j and k in x.

In Figures 5 and 6, the frequency plots show the frequency range for a usable 10-s long
ECG signal segment and an unusable 10-s long ECG signal segment. By comparison, one
can see that the difference between the two ECG signals is significant. To extract features
from the ECG signal, the EMD algorithm, described in Section 2.1, was applied to the ECG
signal. During the EMD algorithm, the signal is decomposed into many IMFs, and the
first three IMFs contain the most information of the ECG signal. Based on the study of
the frequency spectrum, 90% of the frequency components were chosen to represent each
signal. These frequency components count from 0 to a frequency i and are performed by
summation of each frequency power component (power0 to poweri) until they correspond
to 90% of the total signal power. The 90% frequency concentration of the original signal (f0)
and its corresponding IMF1 (f1), IMF2 (f2), and IMF3 (f3) were calculated. In addition, 90%
of the frequency components of the reconstructed signal (rf0) are obtained from adaptive
empirical mode decomposition and reconstruction (AEMDR) described in Section 2.2.4,
and its corresponding IMF1 (rf1), IMF2 (rf2), and IMF3 (rf3) were calculated. Finally, the
following feature vector f0, f1, f2, f3, rf0, rf1, rf2, rf3 is used to represent the ECG signal
and to train the SVM model. Figure 7 describes the detail of the feature extraction and
training process.

Figure 5. Time and frequency form of a usable ECG signal and its IMFs.
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Figure 6. Time and frequency form of an unusable ECG signal and its IMFs.

Figure 7. Block diagram of feature extraction and the SVM model training process.
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The data for training and testing were collected from both the Astroskin smart shirt
and the VIVALNK wearable device. There were 81 unusable ECG segments and 162 usable
ECG segments in the training data set. There were 75 useless ECG segments and 75 usable
ECG segments in the testing data set. All ECG signal segments were randomly picked
from the 1-hour long ECG record. The confusion matrix and the performance are shown in
Table 1. The evaluation metrics used are explained here:

• TP: Number of correctly detected usable signals,
• FP: Number of incorrectly detected unusable signals,
• TN: Number of correctly detected usable signals,
• FN: Number of incorrectly detected unusable signal,
• Sensitivity(SEN) = TP/(TP + FN),
• Specificity(SPC) = FN/(FP + TN),
• Accuracy(ACC) = (TP + TN)/(TP + FP + TN + FN).

Table 1. Confusion matrix and performance.

TP FP TN FN SEN SPC ACC

99 2 48 1 99% 96% 98%

2.2.4. Adaptive Empirical Mode Decomposition and Reconstruction (AEMDR)

The first step of the algorithm is the adaptive empirical mode decomposition and re-
construction (AEMDR). The purpose of this step is to remove as much low-frequency noise
as possible, but in the meantime, the algorithm is trying to preserve the QRS complex as
well. The AEMDR is divided into two parts. The first part deals with signal decomposition,
and the second part deals with signal reconstruction. For the signal decomposition part,
a standard empirical mode decomposition (EMD) algorithm is used. The IMF’s and the
lowest frequency component are decomposed using the following rules:

• The number of extremes and zero-crossings must be equal or differ at most by one;
• All local maxima and minima must be symmetric to zero.

After signal decomposition, one wants to reconstruct the high-frequency components
as the clean signal and the low-frequency as an estimate of the signal noise. The original
EMD algorithm decomposes the signal into x IMFs, but x is not a fixed number. Thus, to
separate clean and noisy IMFs, human intervention is often needed. We are proposing an
automatic method to select the clean and noisy IMFs for signal and noise reconstruction to
solve this problem.

To achieve our goal, we used the Pan–Tompkins algorithm [27] to detect the QRS
complex’s number on the original signal and all the IMFs. The Pan–Tompkins algorithm
uses a filter bank that consists of band-pass filters, a differentiator, a squaring filter, and a
moving window integrator to reduce the signal noise so that only R wave information is
present [7]. The statistical terms are explained as follow:

• The total QRS complex is the number of QRS complexes detected from the original
signal with the Pan–Tompkins algorithm.

• The true positive (TP) is the number of QRS complexes detected on the IMFs and also
detected on the original signal.

• The false positive (FP) is the number of QRS complexes detected on the IMFs but not
on the original signal.

Then we applied the following rules to all IMFs to select the clean ones:

• The IMF is selected when its TP is larger than 50% of the total QRS complex;
• The IMF that satisfies the first condition but has FP that is larger than 50% of the total

QRS complex will be applied to the AEMDR method again;
• For the signal reconstruction, if the IMFs meet two conditions: TP is larger than 50%

of the total QRS complex; FP is less than 50% of the total QRS complex, then it is
considered as a clean IMF; otherwise, it is considered as a noisy IMF.
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Using the rules discussed earlier, the selected clean IMFs contain more QRS complex
information than the noise. Once the clean IMFs and noisy IMFs are selected, the algorithm
will proceed with the reconstruction. The decomposition and the IMF selection result can
be seen in Figure 8. In the figure, the green IMFs are selected clean signals, the red IMFs are
discarded noise signals, and the x-axis, y-axis are sample numbers and normalized voltage
correspondingly. This algorithm will produce a clean signal and a noise signal using the
following equations:

x(n) =
k

∑
i=1

ci(n) (4)

s(n) =
k

∑
j=1

cj(n) + r(n) (5)

where x(n) is the clean signal, s(n) is the noise signal, ci(n) and cj(n) the clean IMFs and
the noisy IMFs, respectively, m is the number of clean IMFs, and the k is the number of
noisy IMFs, r(n) is the residual signal. The acquired clean and noise signals are the desired
input and reference input processed by the adaptive filter.

Figure 8. The original signal, clean IMFs, noisy IMFs and residual.

2.2.5. Motion-Sensitive Noise Signal Generation

The motion-sensitive noise signal generation step is a preparation step for the follow-
ing adaptive filter described in Section 2.3. Finding the best reference noise input is always
the most challenging task for an adaptive filter application. Removing baseline wander and
motion artifacts is harder since it is almost impossible to obtain the noise source from body
motion. Some researchers [21,22] explore the possibility of using accelerometer data as
the reference noise signal. The accelerometer is standard equipment for many commercial
mobile healthcare devices. It can capture the user’s body movement and is used mainly
for fall detection. Even though the accelerometer data are related to the motion artifact, it
does not perform well when we directly apply it to the adaptive filter. Therefore, we have
proposed an algorithm to combine the noise signal extracted from AEMDR analysis with
the collected accelerometer signals. By doing so, we could simulate the actual noise on the
ECG signal.

The motion noise consists of baseline wander and motion artifacts. The baseline
wander noise is a low-frequency noise that is caused by respiration and body motion.
The motion artifacts are in the same frequency range as the ECG waves and are caused
mainly by the movement of the ECG leads. Our adaptive EMD decomposition and recon-
struction algorithm preserves the high-frequency of the original ECG signal and discards
the low-frequency noise signal. The discarded noise signal contains the baseline wander
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information. Then by using the low-frequency noise signal from the AEMDR analysis, the
motion artifacts, and the activity signal collected by the accelerometer, one can create a
reference signal that the adaptive filter can use.

The next step is to select the activity signal with the highest positive correlation
coefficient and the lowest negative correlation coefficient to discriminate unrelated activity
signals that interfere with the adaptive filter. The reason for choosing the highest positive
correlation coefficient and the lowest negative correlation coefficient is that the two signals
are unrelated when the correlation coefficients are closer to zero. We want the reference
noise signal to be correlated to the original signal as much as possible. The correlation
coefficient is computed using the following equation:

ρ(A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA
)(

Bi − µB
σB

) (6)

where A and B represent the two signals, and µ and σ are the mean and standard deviation
of the corresponding signals, N is the total length of the signal.

The activity signals consist of an activity signal on x-axis(Ax), activity signal on y-
axis(Ay) and activity signal on z-axis(Az). The 3-axis combined activity signal Axyz is
calculated using the following equation:

Axyz =
√

A2
x + A2

y + A2
z (7)

The selected activity signals are combined with the noise signal generated by the EMD
algorithm to generate a new noise signal as follows:

X(n) = s(n) + activityxyz/x/y/z(n) (8)

where X(n) is the final reference noise signal, s(n) is the noise generated by the EMD
algorithm, and activityxyz/x/y/z(n) is the activity signals in the x, y, and z direction, and
for all directions by xyz. One can see in Figure 9 an example of the combined noise signal.

Figure 9. Activity signals, EMD noise signal, and the motion-sensitive reference signal. The y axis is
the normalized voltage, and the x axis is the sample number.

2.3. Adaptive Filter

Once the motion-sensitive noise signal is generated, we can proceed to the next step.
This step processes the original signal by an adaptive filter. This step aims to suppress the
noise that has a similar frequency as the QRS complex. An adaptive filter is a linear filter
where the transfer function is controlled by variable weights that are adjusted according
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to an optimization algorithm. The closed-loop nature of an adaptive filter uses feedback
in the form of an error signal to refine its transfer function, in our case, the combination
of the reference noise signal that is sensitive to motion. Generally speaking, the closed-
loop adaptive process involves using a cost function, which is a criterion for optimum
performance of the filter. One can see in Figure 10 the architecture of our adaptive filter. The
measured ECG signal m(n) is composed of the desired signal d(n), which is contaminated
by an additive noise ŷ(n) and is defined by:

m(n) = d(n) + ŷ(n). (9)

The main goal of the adaptive filter is to find a noise signal y(n) from a modified
reference noise signal X(n) that can minimize the effect of the additive noise ŷ(n), which is
defined by:

m̂(n) = d(n) + ŷ(n)− y(n). (10)

Taking expectation of both sides and realizing that the measured ECG m(n) is uncor-
related with ŷ(n) and y(n) as expressed by:

E[m̂2] = E[d2] + E[(ŷ− y)2] + 2E[d(ŷ− y)] (11)

where E[d(ŷ− y)] = 0. The signal power E[d2] will be unaffected as the filter is adjusted to
minimize E[m̂2]:

min[m̂2] = E[d2] + min E[(ŷ− y)2]. (12)

When the filter is adjusted to minimize the output noise power E[m̂2], the output noise
power E[(ŷ− y)2] is also minimized. Since the output signal remains constant, minimizing
the total output power maximizes the output signal-to-noise ratio.

In our implementation, we used the well-known LMS algorithm [28] to optimize the
filter parameters for the following reasons. Compared to LMS, NLMS solves the limitation
of the LMS with inputs scaling. In our experiment, all signals are scaled, and therefore, the
limitations of the LMS filter will not affect the result. We also compared the performance of
LMS and RLS algorithms. Both produced a similar result, but because the LMS algorithm
complexity 2N + 1 is much lower than the recursive least square (RLS) algorithm 4N2 [29],
and the fact that the LMS algorithm converges much faster than the RLS algorithm, we
decided to use the LMS algorithm [28]. The LMS algorithm is based on the steepest descent
algorithm that adapts the coefficient sample to the sample toward the optimum vector on
the performance surface [30]. The LMS algorithm [28] can be described as:

W(k + 1) = W(k) + 2µX(k)[m(k)− X(k)TW(k)] (13)

where W(k) is the weight of the filter of size M at iteration k, where M is the filter order. X(k)
is an input vector of size M at iteration k of the corresponding samples from the reference
noise signal X(n), m(k) is the value of the input signal at iteration k, the parameter µ is the
learning rate (step size). Since m̂(n)− d(n) = ŷ(n)− y(n), this is equivalent to causing the
output m̂(n) to be a best least squares estimate of the signal d(n).

The LMS update algorithm will update the filter weights by minimizing the power of
the error signal (m(n)− y(n))2. To sum up, using the LMS algorithm, the adjustable filter
learns the noise signatures from the original ECG signal. Then, it converts the input noise
signal to a new noise signal that can be subtracted from the original ECG signal.

The adaptive filter needs to set two main parameters: learning rate (step size) and the
filter order. We have performed a series of experiments to test the best value or range for
these two parameters. The learning rate we have tested ranges from 0.005 to 0.05, and the
filter order ranges from 1 to 28. Based on the result of our experiments, the learning rate
(step size) is set to 0.01, and the filter order is set to be 10.
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Figure 10. Block diagram of our noise removal adaptive filter.

2.3.1. Variational Mode Decomposition and Reconstruction (VMDR)

Finally, the last step of the proposed algorithm is the variational mode decompo-
sition and reconstruction (VMDR) [16]. The objective of this process is to remove the
high-frequency noise on the filtered signal to make the signal more smooth. The variational
mode decomposition and reconstruction are divided into two parts: standard variational
mode decomposition and the other is selecting clean IMFs for reconstruction. In the decom-
position part, the standard VMD method is applied. The variational mode decomposition
(VMD) method is similar to the empirical mode decomposition method. It decomposes
the signal into K different intrinsic mode functions(IMFs). The second part is finding
the clean IMFs for reconstruction. As stated in Section 2.1.4, the VMD method produces
high-frequency residual signal. This is also proven in our experiment shown in Figure 11.
In the figures, the x-axis is the sample number, and the y-axis is the normalized voltage.
Therefore, for the signal reconstruction, the high-frequency residual signal was discarded.

Figure 11. The original signal, IMFs, and residual signal by the VMD method.
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The reason for choosing this method to filter out the high-frequency noise is that,
unlike the EMD method, the VMD method is more sensitive towards the high-frequency
components [17].

3. Validation Metrics and Result Discussions

As described in Section 2.2.1, the data used in this experiment were collected using
Astroskin smart shirt and VIVALNK wearable devices. The raw 3-lead ECG signal and
its corresponding 3-axis accelerometer signal were acquired for 8 h. However, during the
noise removal process, the ECG signals are split into 10-s segments. There were 372 10-s
segments obtained from the Astroskin smart shirt and 330 10-s segments acquired from
the Vivalnk. After the prediction of the SVM model, 328 segments from the Astroksin
and 320 segments from Vivalnk were labeled as usable. There were many unusable ECG
segments from Astroskin Smart Shirt because its sensors were not attached to the human
body resulting in a loss of contact with the subject’s skin. There was a total of 648 ECG
segments of 10-s to be analyzed. However, it is unrealistic to present all of them in this
paper. Therefore, we have selected one clean segment and three noisy segments from both
devices. The following sections will explain the metrics we used to show how the proposed
algorithm improves signal quality. There are three metrics we use to illustrate objectively
how the signal was enhanced. These are the histogram of the difference, the correlation
coefficients, and the mean square error between the test signal and the reference signal.

To compare the proposed algorithm to the conventional algorithm for motion artifact
removal, we have also implemented several noise removal methods based on [21,31].
The reference noise removal algorithms are: a zero-filtering Butterworth high pass filter
(IIR) with a cut-off frequency of 0.5 Hz and a filter order of 2, a moving average filter
(MA) with window length set as sample f requency

2∗0.5 ; a discrete wavelet transform (DWT) with a
Daubechies wavelet of order 8 and 9 levels of decomposition, and the last detail coefficient
was discarded; an empirical mode decomposition (EMD) with the previous two intrinsic
mode functions discarded; a variational mode composition with k equal to the number of
IMFs from the EMD method and with the last two IMF discarded as well; and an adaptive
filter using only the activity signal (AF).

3.1. Visual Result and the Histogram of the Difference between Test Signal and Reference Signals

This section shows the visual result and the histogram of the difference between the
test signal and the reference signal. In Figure 12, one can view the result after each step.
Figure 12a shows the original signal. The signal contains baseline wander and motion
artifacts. Figure 12b is the filter result after the AEMDR step. One can see that the baseline
wander was removed, and almost all QRS complexes were in the same baseline. However,
the motion artifacts remain in the signal. Then, after applying the adaptive filter step, as in
Figure 12c, most of the motion artifacts were compensated for. Finally, the VMD method
removes the high-frequency noise components in Figure 12c and produces the final result
in Figure 12d.

To set a standard for the histogram of the difference, we have chosen another clean
signal taken from the Astroskin smart shirt as an example shown in Figure 13. This figure
demonstrates the histogram between two clean signals. Therefore, one can compare the
histogram of the denoised signal to Figure 13. If the histogram is similar to the one in
Figure 13, then it should be considered as a better denoising result.
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Figure 12. (a) Original signal, (b) signal after the AEMDR step, (c) signal after the adaptive filter step,
(d) signal after the VMD step.

Figure 13. (1) Clean example signal, (2) histogram of the difference.

One major challenge while calculating the difference is that the heartbeats of the
two signal segments were not matched. We annotated all R peaks on both the reference
signal and the test signal to solve this problem. Then all RR intervals on the test signal
were re-sampled to have the same length as the RR intervals in the reference signal.
Finally, the difference between the reference signal and test signal was calculated using the
following equation:

D(n) = R(n)− T(n) (14)

where D(n) is the difference signal, R(n) is the reference signal, and T(n) is the test signal.
Figure 14 shows the filter result from the proposed algorithm. To compare our algo-

rithm to other traditional algorithms, Figures A1–A6 show the filter result by the Butter-
worth high pass filter, moving average filter, discrete wavelet transform, empirical mode
decomposition, variational mode decomposition, and adaptive filter with an accelerome-
ter signal.
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Figure 14. (1) Test signal, (2) histogram of the difference.

3.2. Correlation Coefficient

In addition to visual results and the signal-to-noise ratio, we have introduced another
metric to validate the algorithms. This metric computes the correlation coefficient between
the reference and the test signal. The correlation coefficient ranges from −1 to 1. As the
coefficient is closer to 1, the two signals have a more positive relationship. On the other
hand, as the coefficient is close to −1, the two signals have a negative relationship. If
the coefficient is closer to 0, then the two signals have no relationship. The correlation
coefficient is calculated using the following equation:

ρ(R, T) =
1

N − 1

N

∑
i=1

Ri − µR
σR

Ti − µT
σT

(15)

where R, T refer to reference signal and test signal, N is the number of samples of the signal
(the two signals have the same length), µ is the mean of the signal, and σ is the standard
deviation of the signal.

3.3. Mean Squared Error

Another metric we have used to compare the algorithms is the mean squared error,
which measures the difference between two vectors. If the two vectors are more similar,
then the value is close to 0. The mean squared error can be calculated using this equation:

MSE =
1
n

N

∑
i=1

(R− T)2 (16)

where R, T refer to reference signal and test signal, and N is the number of samples of
the signal.

3.4. Results Discussion and Comparison

In Table 2, the first column refers to the figures shown in Section 3.1. The remaining
columns show the corresponding mean square error (MSE) and the correlation values
between the reference and filtered noisy signals. The bold number indicates the best
performance among all noise removal methods. The figures for each example can be found
in Appendix A.
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Table 2. Comparison between different noise removal methods.

Figure Metric Original IIR MA DWT EMD VMD AF Proposed

Figures 14 and A1–A6 CORR −0.0337 0.2962 0.3169 0.3303 0.4540 0.4395 0.4594 0.5369

Figures 14 and A1–A6 MSE 0.0419 0.0326 0.0307 0.1357 0.0090 0.0260 0.0086 0.0047

Figures A7–A13 CORR 0.0651 0.3072 0.3442 0.2507 0.4981 0.4712 0.4988 0.5902

Figures A7–A13 MSE 0.0163 0.0129 0.0123 0.3053 0.0066 0.0092 0.0065 0.0040

Figures A14–A20 CORR 0.1316 0.1846 0.2186 0.1307 0.2719 0.3047 0.3660 0.4243

Figures A14–A20 MSE 0.1091 0.0425 0.0369 0.1000 0.0412 0.0302 0.0092 0.0054

Figures A22–A28 CORR 0.1557 0.3438 0.3181 0.1638 0.1881 0.3031 0.2929 0.4409

Figures A22–A28 MSE 11.1281 1.3549 10.2285 8403 3.0299 0.9603 0.5916 0.1647

Figures A29–A35 CORR 0.2992 0.4227 0.4393 0.3129 0.4220 0.4759 0.4867 0.6011

Figures A29–A35 MSE 4.0803 0.7239 0.7073 3.7537 0.9917 0.3016 0.3188 0.1144

Figures A36–A42 CORR 0.2875 0.4844 0.4523 0.051 0.3839 0.5292 0.4867 0.5242

Figures A36–A42 MSE 5.8771 0.3676 0.4371 5.6547 0.3931 0.4822 0.3188 0.1304

According to Sections 3.1–3.3, both the visual results and the metrics in Table 2 show
that the proposed algorithm can remove the baseline wander and suppress motion artifacts
to a limit. The histogram of the proposed algorithm always shows a normal Gaussian
distribution, which is more similar to the clean signal example in Figure 13.

Therefore, the proposed algorithm can preserve the QRS complex information and
perform best when the QRS complex is complete in the ECG signal. The algorithm may
not reconstruct the P wave and T wave completely when the noise signal contaminates
these two waves, such as in Figure 14. However, if the body motion causes the entire
heartbeat to move, this algorithm can put the moved heartbeat back in its location, such as
the result examples shown in Section 3.1. According to Table 2, one can see that the signal
filtered by the proposed algorithm has a lower MSE and a higher correlation coefficient
compared to the algorithms found in the literature. Moreover, based on over 600 segments
of 10 s each, the average processing time is 1.5201 s per segment using an average computer
programmed in Matlab.

As stated previously, the proposed algorithm clearly shows that one can compensate
for baseline wander and motion artifacts on the ECG signal. However, the experimental
results are preliminary since only the author’s data were collected and tested. In the future,
more subjects need to be tested in a larger clinical trial that would include healthy and
cardiac patients. This trial is in preparation at the Mazankowski Alberta Heart Institute
but can only be started once the danger related to the COVID-19 pandemic is reduced to a
safe level for patients.

4. Conclusions

A new method that can automatically remove the baseline wander and reduce the
motion artifacts is presented. The algorithm contains five major steps. The first one is
the usable ECG signal detection step (Section 2.2.3). This step keeps the ECG signal that
can be read and discards unreadable signals using a trained SVM model. The second step
is an adaptive empirical mode decomposition and reconstruction algorithm (AEMDR)
(Section 2.2.4). It can separate the signal components that contain QRS complex and the
components that contain low-frequency noise, such as baseline wander. This step produces
an ECG signal and a noise signal. The third is the motion-sensitive signal generation, which
combines accelerometer signals and AEMDR extracted noise signals together to form a
motion-sensitive signal (Section 2.2.5). This signal is used as the reference signal for the
adaptive filter in the fourth step (Section 2.3). This step removes motion artifacts that have a
similar frequency range as the QRS complex and produces a cleaned signal. The last step is
the variational mode decomposition and reconstruction (VMDR). The method can remove
the high-frequency components that are left in the ECG signal to produce a smoother signal
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(Section 2.3.1). The results in Sections 3.1–3.3 clearly show improvements in the quality of
the test ECG signals compared to various algorithms found in the literature. In addition,
the ECG recordings were collected from two different ECG devices: Astroskin smart shirt
and the Vivalnk ECG device. Therefore, the proposed noise removal method is robust and
can be used for different medical-grade sensors.
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Appendix A

The appendix contains all the figures that could not be shown in the main pages.

Figure A1. (1) Test signal, (2) histogram of the difference.

Figure A2. (1) Test signal, (2) histogram of the difference.
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Figure A3. (1) Test signal, (2) histogram of the difference.

Figure A4. (1) Test signal, (2) histogram of the difference.

Figure A5. (1) Test signal, (2) histogram of the difference.
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Figure A6. (1) Test signal, (2) histogram of the difference.

Figure A7. (1) Test signal, (2) histogram of the difference.

Figure A8. (1) Test signal, (2) histogram of the difference.
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Figure A9. (1) Test signal, (2) histogram of the difference.

Figure A10. (1) Test signal, (2) histogram of the difference.

Figure A11. (1) Test signal, (2) histogram of the difference.
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Figure A12. (1) Test signal, (2) histogram of the difference.

Figure A13. (1) Test signal, (2) histogram of the difference.

Figure A14. (1) Test signal, (2) histogram of the difference.
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Figure A15. (1) Test signal, (2) histogram of the difference.

Figure A16. (1) Test signal, (2) histogram of the difference.

Figure A17. (1) Test signal, (2) histogram of the difference.
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Figure A18. (1) Test signal, (2) histogram of the difference.

Figure A19. (1) Test signal, (2) histogram of the difference.

Figure A20. (1) Test signal, (2) histogram of the difference.



Sensors 2021, 21, 8169 25 of 33

Figure A21. The reference signal from the Vivalnk ECG device.

Figure A22. (1) Test signal, (2) histogram of the difference.

Figure A23. (1) Test signal, (2) histogram of the difference.
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Figure A24. (1) Test signal, (2) histogram of the difference.

Figure A25. (1) Test signal, (2) histogram of the difference.

Figure A26. (1) Test signal, (2) histogram of the difference.
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Figure A27. (1) Test signal, (2) histogram of the difference.

Figure A28. (1) Test signal, (2) histogram of the difference.

Figure A29. (1) Test signal, (2) histogram of the difference.
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Figure A30. (1) Test signal, (2) histogram of the difference.

Figure A31. (1) Test signal, (2) histogram of the difference.

Figure A32. (1) Test signal, (2) histogram of the difference.
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Figure A33. (1) Test signal, (2) histogram of the difference.

Figure A34. (1) Test signal, (2) histogram of the difference.

Figure A35. (1) Test signal, (2) histogram of the difference.
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Figure A36. (1) Test signal, (2) histogram of the difference.

Figure A37. (1) Test signal, (2) histogram of the difference.

Figure A38. (1) Test signal, (2) histogram of the difference.
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Figure A39. (1) Test signal, (2) histogram of the difference.

Figure A40. (1) Test signal, (2) histogram of the difference.

Figure A41. (1) Test signal, (2) histogram of the difference.
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Figure A42. (1) Test signal, (2) histogram of the difference.
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