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Abstract: With the wide application of convolutional neural networks (CNNs), a variety of ship
detection methods based on CNNs in synthetic aperture radar (SAR) images were proposed, but there
are still two main challenges: (1) Ship detection requires high real-time performance, and a certain
detection speed should be ensured while improving accuracy; (2) The diversity of ships in SAR
images requires more powerful multi-scale detectors. To address these issues, a SAR ship detector
called Duplicate Bilateral YOLO (DB-YOLO) is proposed in this paper, which is composed of a Feature
Extraction Network (FEN), Duplicate Bilateral Feature Pyramid Network (DB-FPN) and Detection
Network (DN). Firstly, a single-stage network is used to meet the need of real-time detection, and
the cross stage partial (CSP) block is used to reduce the redundant parameters. Secondly, DB-FPN
is designed to enhance the fusion of semantic and spatial information. In view of the ships in SAR
image are mainly distributed with small-scale targets, the distribution of parameters and computation
values between FEN and DB-FPN in different feature layers is redistributed to solve the multi-scale
detection. Finally, the bounding boxes and confidence scores are given through the detection head of
YOLO. In order to evaluate the effectiveness and robustness of DB-YOLO, comparative experiments
with the other six state-of-the-art methods (Faster R-CNN, Cascade R-CNN, Libra R-CNN, FCOS,
CenterNet and YOLOv5s) on two SAR ship datasets, i.e., SSDD and HRSID, are performed. The
experimental results show that the AP50 of DB-YOLO reaches 97.8% on SSDD and 94.4% on HRSID,
respectively. DB-YOLO meets the requirement of real-time detection (48.1 FPS) and is superior to
other methods in the experiments.

Keywords: synthetic aperture radar (SAR); deep learning; duplicate bilateral feature pyramid
network (DB-FPN); multiscale ship detection

1. Introduction

Automatic ship detection plays an important role in both civil and military fields, such
as port management, fishery development supervision, and maritime rescue [1], etc. The
imaging process of Synthetic Aperture Radar (SAR) is less affected by environmental factors,
can detect hidden objects, and has the ability of the all-weather and all-day operation [2].
With the successful launch of SAR satellites such as TerraSAR-X, Sentinel-1 and Gaofen-3,
ship detection of SAR images has become a worldwide research hotspot [3–5]. At the
same time, with the rapid increase in the data volume of SAR images to be processed,
the requirements for accuracy and real-time performance of detection algorithms are also
increasing. At present, the space-borne SAR system can achieve a high resolution of less
than one meter [6], and the size differences of identifiable target ships increase, which
poses a higher challenge to the multi-scale detection capability of the detection algorithms.

Traditional SAR image ship detection methods are mostly based on concrete features
and traditional image processing techniques, and are mainly classified through image
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segmentation, handcraft feature extraction and other methods for detection, such as the
Constant False Alarm Rate (CFAR) [7], Histogram of Oriented Gradient (HOG) [8], Haar [9]
and so on. Traditional detection methods rely on experience and have low computational
speed [10]. Modern abstract-features-based methods like CNN have developed rapidly in
the field of computer vision due to their powerful representation capabilities and automatic
feature extraction. At present, detection methods based on CNN can be divided into
two categories: two-stage detectors and single-stage detectors. Two-stage detectors such as
Faster R-CNN [11], R-FCN [12] and RepPoints [13], etc., obtain higher detection accuracy by
extracting a region of interest (ROI), but the larger amount of calculation makes it difficult
to meet real-time detection [10]. Single-stage detectors such as SSD [14], YOLO [15] and
FCOS [16], etc., complete detection tasks based on direct position regression and directly
predict the coordinates and confidence of boundary boxes from the whole image, without
generating ROI in the detection process. Therefore, the single-stage detectors are faster
than the two-stage detectors, but the accuracy is often inferior to the two-stage detectors.

At present, the research on applying CNN to SAR ship detection has been rapidly
developed. Li et al. [17] released the first open SAR ship detection dataset (SSDD) and
proposed an SAR ship detection method based on improved Faster R-CNN. Pan et al. [18]
proposed a SAR ship detector called MSR2N with a rotating bounding box, but the com-
plexity of the network makes it slow. Chen et al. [19] proposed a single-stage detector that
can achieve high accuracy in inshore scenes, but it is still difficult to meet the needs of
real-time detection. Bao et al. [20] proposed two pretraining techniques called optical ship
detector (OSD) and optical-SAR matching (OSM) to transfer the characteristics of ships
in earth observations and plentiful texture features from optical images to SAR images.
Some researchers used attention modules to improve the accuracy of detectors, such as
Hu et al. [21] and Jiang et al. [22], but this method usually brings a large computational cost.
Zhang et al. [23] designed a detector called ShipDeNet-20 based on the idea of grid division,
where the detector network is composed of only 20 layers, showing high superiority in
terms of speed, but the accuracy is not satisfactory. Therefore, how to improve the accuracy
while maintaining real-time detection is one of the urgent problems to be solved in SAR
ship detection.

In addition to maintaining the balance between speed and accuracy, how to improve
multi-scale detection capability is also the bottleneck of ship detection. Different ship
types of SAR images from different sources have different resolutions, resulting in nearly a
thousandfold difference between the maximum and minimum pixel areas of ships in the
same data set [24]. Feature fusion networks such as FPN [25], PANet [26] and BiFPN [27]
can improve multi-scale target detection by fusing feature maps of different scales. Existing
studies have applied the improved Feature fusion network to ship multi-scale detection.
Wei et al. [28] designed a high-resolution feature pyramid network (HRFPN) to make
full use of multi-scale feature maps. Guo et al. [29] used an extended feature pyramid
network (EFPN) to enhance semantics information and improve the detection capability of
small-scale ships. Yang et al. [30] designed a task-wise attention feature pyramid network
(TAFPN) to obtain stronger semantic information and multi-scale feature maps. The above
detectors have improved the multi-scale detection capabilities by improving the feature
fusion network. However, for ship targets with large differences in scale, the existing
feature fusion network is still difficult to meet the requirements of SAR ship detection in
actual scenes.

To sum up, the following two problems in the application of deep learning methods
in the automatic detection of ships need to be further improved: (1) improve the accu-
racy while maintaining real-time detection; (2) multi-scale objective applicability of the
algorithm. Therefore, DB-YOLO was proposed. In order to ensure real-time detection,
a single-stage detection method was selected as the basic network, and we reduced the
parameters and calculation in a Feature Extraction Network (FEN) through a cross stage
partial (CSP) [31] structure. Then, two methods are proposed to improve multi-scale detec-
tion: (1) design a new feature fusion network called Duplicate Bilateral Feature Pyramid
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Network (DB-FPN), which enhances the fusion of spatial information and semantic infor-
mation through the duplicate structure and the bilateral fusion network; (2) optimize the
distribution of parameters and calculations of C3 to C5 layers in FEN and DB-FPN, so as to
strengthen the extraction ability of features in the lower layer.

The main contributions of this paper mainly include the following aspects:

(1) A CNN-based single-stage ship detector is realized, which can reach a higher standard
in both accuracy and speed.

(2) FEN is designed and reduced the complexity of the network through the residual
structure. At the same time, the distribution of parameters and calculations of the C3
to C5 layers were optimized in view of the fact that the size of ships in SAR images is
mainly small and medium.

(3) DB-FPN is designed to improve the multi-scale detection capabilities of ships; it
enhances the fusion of spatial information and semantic information and makes full
use of feature maps at different locations through feature multiplexing.

(4) Compared with the other six state-of-the-art methods on SSDD [17] and HRSID [32]
data sets, the results show that DB-YOLO has better effectiveness and robustness.

The rest of this paper is divided into four sections. Section 2 introduces the proposed
method. In Section 3, experiments and results in two data sets are introduced to verify
the effectiveness of the DB-YOLO, and it is verified in a real Sentinel-1 scenario. Finally,
Section 4 come to a conclusion.

2. Proposed Method

The overall framework of DB-YOLO consists of three parts, as shown in Figure 1:
Feature Extraction Network (FEN), Duplicate Bilateral Feature Pyramid Network (DB-FPN)
and Detection Network (DN). Firstly, FEN is constructed based on the feature network of
CSP block to generate multi-scale feature maps. Then, based on the multi-scale feature
fusion network DB-FPN, the feature maps output by FEN are fused to obtain better spatial
and semantic information. Finally, the DN can be used for classification and regression
based on feature maps of different scales. The loss function is described at the end of
this section.
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Figure 1. Overall architecture of the proposed method DB-YOLO. It consists of the Feature Extraction
Network, Duplicate Bilateral Feature Pyramid Network and Detection Network.

2.1. Feature Extraction Network

The flowchart of FEN is shown in Figure 2. Firstly, inspired by the backbone of
YOLOv5, a Focus module is added at the front of the FEN to improve the feature extraction
ability and reduce the loss of information during the down-sampling process. Secondly, a
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convolution layer with the kernel of 3 × 3 and the step size of 2 is used for down-sampling
to concentrate information in channel space. After that, features were enhanced by the CSP
block, and the above steps were repeated until the size of the feature map is 1/32 of the
input image. Finally, the spatial pyramid pooling (SPP) [33] module at the end of the FEN
was used to increase the receptive field to improve the scale invariance of the image.
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Figure 2. Flowchart of the Feature Extraction Network (FEN). A single block in the figure represents
a single operation. The first number after the name of the block represents the channel of feature
maps output by the block. The kernel and stride of the Conv block are set to 3 × 3 and 2, respectively.
The n in the CSP block is the number of series-connected Res blocks.

At the beginning of the network, the input picture is sliced through the Focus module,
which splits every four adjacent pixels in a picture into four channels and concentrates the
information in the channel space, thus expanding the input channel by four times. The
Focus layer can avoid information loss in the process of image down-sampling and retain
more complete information for subsequent feature extraction. The specific structure of the
Focus module is shown in Figure 3.
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Figure 3. Structure of the Focus module. Left and right are the feature map before and after
operation, respectively.

The CSP block integrates the feature maps before and after the network through the
residual structure, which alleviates the gradient redundancy problem of large CNNs from
the perspective of network architecture. CSP block reduces the parameters and calculations
through feature reuse, which not only improves the speed and accuracy but also reduces
the size of the model.

The CSP block is divided into two parts: CSP structure and Res block. The CSP
structure firstly divides the input into two branches, respectively, passing through a 1 × 1
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convolution layer while reducing the number of channels to half of the input, and one
of the branches passes through the Res block. Then the two branches are merged by
concatenation, and finally, the number of channels is modified to the set value through
a 1 × 1 convolution layer. The Res block is the residual network, whose first layer is a
1 × 1 convolution layer, and the second layer is a 3 × 3 convolution layer. Then feature
maps before and after the network are fused by the residual structure. The stride of the
convolution layer in the Res block is 1, and the size and channel of the input and output
feature map remain unchanged. Meanwhile, in order to avoid over-fitting and enhance
the nonlinear learning ability of the model, batch normalization (BN) and the activation
function are added after each convolution layer. The CSP block used in this paper is shown
in Figure 4.
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In view of the high proportion of small ships in SAR images [32], the number of Res
blocks in C3 and C4 layers is increased by strengthening the feature extraction capability in
the lower layer of the FEN, while the number of Res blocks at the C5 layer that contributes
less to small ship detection but needs to occupy a large amount of calculation is reduced. In
this paper, the number of Res blocks in layer {C2, C3, C4, C5} is set as {1, 4, 4, 1}. At the same
time, in order to further improve the utilization of the feature map and reduce redundancy,
the number of channels in layer {C3, C4, C5} is set as {128, 256, 512}. In addition, since
the ships in SAR image are mainly a small size, in order to prevent the loss of semantic
information caused by a too deep network, C5 is seen as the highest layer in the network.

At the end of the FEN, SPP [33] is used to increase the receptive field to improve
the scale invariance of the image and reduce over-fitting. SPP is independent of the
CNN structure design, and it uses different sizes of kernels for max-pooling and then
concatenates them in series to improve the robustness and accuracy of the network. At the
same time, the SiLU activation function is used to improve the non-linear learning ability
of the network and prevent falling into a local minimum during the training process.

2.2. Duplicate Bilateral Feature Pyramid Network

In view of the large size variation difference of ships in high-resolution SAR images,
and the existing feature fusion network is difficult to meet the needs of multi-scale ship
detection, DB-FPN is proposed to obtain multi-scale feature maps with stronger semantic
and spatial information. DB-FPN performs better on ships of different sizes, and the
detailed structure is shown in Figure 5.
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the number of Res blocks.

Inspired by PANet [26], the secondary fusion framework features of up-bottom and
bottom-up are used in the feature fusion network in this paper. In the process of merging
from top to bottom, the C5 layer in FEN first halves the number of channels through a 1× 1
convolution layer and doubles the size of the feature map through up-sampling. Then
concatenate it with the C4 layer in FEN, so the features are enhanced by the CSP block and
the number of channels is halved to generate a feature map with the same size as the C4
layer. Then repeat the above process to generate a feature map of the same size as the C3
layer. In the process of bottom-up fusion, a convolution layer with the kernel of 3 × 3 and
stride of 2 is used to adjust the size of the feature map, and then it is concatenated with the
feature map of the same size in the up-bottom fusion process. After feature extraction by
the CSP block, feature maps of the same size as the C4 layer are generated. Then repeat the
above process to generate a feature map of the same size as the C5 layer. Similar to the FEN
proposed above, the sensitivity of DB-FPN to small ships can be improved by increasing
the number of Res blocks in the C3 and C4 layers.

Inspired by EfficientNet [27] and DetectoRS [34], duplicate architecture is designed to
make the whole DB-FPN contain two series sub-networks, and each sub-network has the
same structure. In order to fully reuse the parameters of the network front-end and reduce
redundancy, the number of channels {C3, C4, C5} in the feature map is set to {128, 256, 512},
and finally, the outputs of each sub-network are concatenated together. Benefiting from
feature multiplexing, the path between the layers of same size in the network is shortened,
and the flow of information between different layers is enhanced.

2.3. Detection Network

In order to generate the vector of class, bounding box and confidence, in the third part
of the proposed method (Detection Network, Figure 1), the detection head of YOLO [15]
is used as the detection module. The feature maps of the three scales correspond to the
three detection heads, respectively. The detection heads of different scales are used to
detect ships of different sizes, and they are finally superimposed together. In addition,
non-maximum suppression (NMS) [35] is introduced to extract bounding boxes with higher
confidence so as to eliminate redundant bounding boxes.
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2.4. Loss Function

CIoU Loss [36] is used as the loss of bounding box. Compared with other methods,
such as DIoU Loss [36] and GIoU Loss [37], CIoU Loss has a faster convergence speed and
better performance. The composition of the Loss function can be expressed as Equation (1):

Loss = λcoordLcoord + λcon f Lcon f + λclsLcls (1)

where Lcoord, Lcon f and Lcls indicates the error of coordinate, confidence and classifica-
tion, while λcoord, λcon f and λcls are the weight coefficients of coordinate, confidence and
classification, respectively.

In the coordinate loss, IoU is usually as the metric, and its formula is as follows:

Lcoord =
S×S

∑
i=0

B

∑
j=0

Iobj
ij (1− CIoU) (2)

CIoU = IoU − d2

c2 − αv (3)

IoU =

∣∣∣∣B ∩ Bg

B ∪ Bg

∣∣∣∣ (4)

α =
v

(1− IoU) + v
(5)

v =
4

π2

(
arctan

wg

hg − arctan
w
h

)2
(6)

where Iobj
ij represents the j-th anchor of the i-th cell containing the target. B is the predicted

bounding box, and Bg is the ground-truth bounding box. C is the smallest box covering B
and Bg, and c is the diagonal length of C. d is the distance of central points of two boxes. α
is a positive trade-off parameter, and v measures the consistency of the aspect ratio. wg

and hg (w and h) are the width and height of Bg (B), respectively. The visualization of
coordinate error of CIoU losses is shown in Figure 6.
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The confidence loss function is calculated as Equation (7):

Lcon f = λobj

S×S

∑
i=0

B

∑
j=0

Iobj
ij (N − Ng)2 + λnoobj

S×S

∑
i=0

B

∑
j=0

Inoobj
ij (N − Ng)2 (7)

where N and Ng are the confidence scores of the prediction box and ground truth, respec-
tively. Iobj

ij and Inoobj
ij indicate whether the ship in j-th anchor box of the i-th cell, respectively.

λobj and λnoobj represent the weight for whether the anchor contains the ship, respectively.
The classification loss function is calculated as Equation (8):

Lcls =
S×S

∑
i=0

B

∑
j=0

Iobj
ij [pg(n)log(p(n)) + (1− pg(n))log(1− p(n))] (8)

where Iobj
ij represents the ship in j-th anchor of the i-th cell, n is the target category and p(n)

and pg(n) are the predicted category and ground truth category, respectively.

3. Experiments and Results
3.1. Experiment Settings

The experiment environment was performed on a PC with Intel core i7-10750H
CPU, GeForce RTX 2060 Max-Q (6GB storage), CUDA 11.0, CUDNN 8.0, and the PC
operating system was Ubuntu 18.04 LTS. The deep learning framework was Pytorch 1.7.
The optimizer used stochastic gradient descent (SGD) to train the network. The initial
learning rate was 0.01, and the final learning rate was 0.002. The data augmentation method
of image mosaic and image flipping were used in the initial image processing.

3.2. Data Sets

In the experiment stage, two SAR ship data sets (SSDD [17] and HRSID [32]) were
selected to verify the effectiveness of DB-YOLO. SSDD and HRSID, including rich scenes
of offshore, inshore, harbor and islands, and the specific parameters of the two data sets
were shown in Table 1. The characteristics and training schemes of SSDD and HRSID data
sets would be introduced as bellowing (Table 1), respectively.

Table 1. Descriptions of existing two datasets used in experiments.

Data Sets SSDD HRSID

Polarization HH, HV, VV, VH HH, HV, VV
Image number 1160 5604
Ship number 2551 16,965

Image size (pixel) 500 × 500, etc. 800 × 800
Resolution (m) 1–15 0.5, 1, 3

Size of ships
(nums)

Small 1529 9242
Medium 935 7388

Large 76 321

(1) SSDD:
SSDD is the first open image data set for SAR ship detection (from RadarSat-2,

TerraSAR-X and Sentinel-1 satellites), and it has been widely used in the study of SAR ship
detection. The SSDD data set has a total of 1160 images (including 2551 labeled ships), and
the image resolution ranges from 1 m to 15 m. The image size is mainly 500 × 500 pixels.
In the experiments, 70% of the entire data set was randomly selected as the training set,
20% as the verifying set and 10% as the testing set.

(2) HRSID:
The images in HRSID are from Sentinel-1 and TerraSAR-X, including three single

optimal resolutions of 0.5, 1, and 3 m. HRSID has a total of 5604 images (including 16,965 la-
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beled ships) with the size of 800 × 800 pixels. Compared with SSDD, the HRSID image
set owns higher resolution and richer ship characteristic information. In the experiments,
HRSID used the same scheme as SSDD to generate training, verifying and testing sets.

3.3. Evaluation Indexes

Evaluation indexes included precision, recall, precision–recall curve (PRC) and average
precision (AP). Precision represented the proportion of ships that were correctly detected in all
positive detect results, and recall represented the proportion of ships that were correctly detected
in the ground truth. The definition was expressed as Equations (9) and (10), respectively:

precision =
TP

TP + FP
(9)

recall =
TP

TP + FN
(10)

Average precision was calculated by using the integral area of the PRC. AP50 was the
average precision calculated when IoU was 0.5, and AP was the average of the precision
obtained by IoU at intervals of 0.05 from 0.5 to 0.95. The F1 score integrated precision
and recall into a single indicator, evaluating the performance of the detection method
comprehensively. The definition was expressed as Equations (11) and (12), respectively:

AP =
∫ 1

0
P(R)·dR (11)

F1 = 2· precision·recall
precision + recall

(12)

3.4. Results and Discussion

In this section, the validity of FEN and DB-FPN modules in DB-YOLO was tested,
and then the effects of DB-YOLO were compared with Faster R-CNN [11], Cascade R-
CNN [38], Libra R-CNN [39], FCOS [16], CenterNet [40] and YOLOv5s on SSDD and
HRSID datasets, respectively.

3.4.1. Effect of FEN

In order to analyze the influence of Res blocks number in CSP blocks of layer C3–C5
in FEN on ship detection, the experiment results are shown in Table 2. As can be seen
from the results, on the baseline of YOLOv5s ({3, 3, 1}), with the increase in n in the C3–C5
layers, the detection accuracy was improved. However, when the n of layer C5 increased
from 1 to 3, the number of parameters increased by 22.8%, but the accuracy was almost
unchanged. This was because layer C5 had the largest channel, and for small ships, the
target information at the high-level feature maps was relatively vague, so it was difficult
to improve the accuracy by increasing the n of the C5 layer. When n of layer C3–C4
increased from 3 to 4, the number of parameters only increased by 3.5%, but the precision
increased from 63.0 to 66.5, which was much higher than the effect of increasing the n in
layer C5. When n of layer C3–C4 was greater than 4, the increase in accuracy decreased
with the increase in n, but the number of parameters and the amount of computation
increased linearly (when n increased by 1, the number of parameters increased by 0.8 M
and the FLOPS increased by 4.2 G), the cost performance of n decreased when it continued
to increase thereafter. In order to maintain the balance between real-time and accuracy,
{4, 4, 1} was selected as the value of n in the CSP block of the C3–C5 layer in this paper.
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Table 2. Experiment of the effective of different number of Res block in CSP block.

{C3, C4, C5} Params(M) FLOPs(G) P R F1 AP50 AP

{3, 3, 1} 22.8 52.9 63.0 91.5 74.6 91.1 63.1
{3, 3, 3} 28.0 57.1 63.0 91.7 74.7 91.4 63.1
{4, 4, 1} 23.6 57.1 66.5 91.8 77.1 91.7 63.7
{5, 5, 1} 24.4 61.3 66.8 92.0 77.5 91.8 63.8
{6, 6, 1} 25.2 65.5 67.0 92.1 77.6 91.8 63.8

3.4.2. Effect of DB-FPN

By comparing the effects of different feature fusion networks under the same condi-
tions, the effectiveness of DB-FPN and the improvement effect of multi-scale ship detection
were verified. In the experiment, the calculation cost and detection effect of FPN [25],
PANet [26] BiFPN [27] and DB-FPN were compared, and the results were shown in Table 3.
As can be seen from the results, DB-FPN improved AP by 1.1% (from 63.2% to 64.3%)
compared to FPN. By adding the bottom-up path, DB-FPN better integrated the spatial
information in the lower layer with rich semantic information in the deep layer. At the
same time, feature multiplexing shortened the path between the layers of the same size
in the network, increased the information flow between different layers, and was more
conducive to the detection of ships of different scales. The effectiveness of DB-FPN was
proved by contrast experiments.

Table 3. Experiment results of different feature fusion network.

Method Params(M) FLOPs(G) P R F1 AP50 AP

FPN 7.2 20.8 67.8 91.1 77.8 91.6 63.2
PANet 8.3 22.1 68.4 91.3 78.2 91.9 63.6
BiFPN 8.1 21.4 68.1 91.4 78.0 91.8 63.9

DB-FPN 11.6 29.8 68.6 91.8 78.5 92.2 64.3

3.4.3. Comparison with the State-of-the-Art Methods

To verify the performance of DB-YOLO, the calculation results were compared with
the other six state-of-the-art methods in the same conditions on SSDD and HRSID data sets,
respectively. The two-stage detectors included Faster R-CNN [11], Cascade R-CNN [38]
and Libra R-CNN [39], the single-stage detectors include FCOS [16], CenterNet [40] and
YOLOv5s. The input images were fixed to 1280 × 1280 pixels, and the training procedure
had 400 epochs. The experiment results are shown in Table 4. From an overall perspective,
the DB-YOLO had stable performance and achieved real-time detection.

Table 4. Experiment results of different method on SSDD and HRSID. The best results were highlighted in bold.

Method
Params

(M)
FLOPs

(G) Fps
SSDD HRSID

P R F1 AP50 AP P R F1 AP50 AP

Faster R-CNN 41.4 134.4 6.9 82.4 94.5 88.0 94.3 59.3 67.2 90.5 77.1 89.5 67.6
Cascade R-CNN 67.2 153.2 6.0 84.2 95.6 89.5 96.3 61.8 68.7 91.3 78.4 90.7 69.5

Libra R-CNN 42.8 141.3 6.3 83.6 94.7 88.8 94.8 59.8 66.8 89.7 76.6 88.9 67.2
FCOS 32.1 126.0 7.8 84.7 95.8 89.9 95.8 59.6 62.9 86.1 72.7 84.5 63.4

CenterNet 16.5 72.5 13.9 83.2 96.1 89.1 95.3 60.7 65.3 92.1 78.3 91.3 68.6
YOLOv5s 7.1 16.4 63.3 83.2 97.1 89.6 97.5 63.9 66.9 94.2 78.2 93.8 69.8
DB-YOLO 10.8 25.6 48.1 87.8 97.5 92.4 97.8 64.9 72.4 94.9 82.1 94.4 72.0

Experiment results on SSDD and HRSID showed that DB-YOLO achieved the best
accuracy compared with the other six methods, which proved that it could extract powerful
features to detect multi-scale ships in complex backgrounds. Compared with the baseline
YOLOv5s, DB-YOLO had a significant improvement in precision (from 83.2% to 87.8%
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on SSDD and from 66.9% to 72.4% on HRSID). This was because FEN and DB-FPN both
strengthen the sensitivity to small and medium-scale ships by redistributing the parameters
and calculations of different layers, thereby reducing the false alarm rate for islands and
other ship similar targets. Meanwhile, the AP of DB-YOLO was higher than other methods
(64.9% on SSDD and 72.0% on HRSID), which proved that DB-YOLO could maintain high
accuracy under different IoU. Among the methods tested in the experiment, YOLOv5s had
the fastest detection speed (63.3 FPS), mainly because it greatly reduced the number of
channels in the feature map and the repeated residual network. DB-YOLO achieved better
accuracy at the cost of an increase in complexity (48.1 FPS), but it still met the requirements
of real-time detection.

Figure 7 shows the precision–recall curves of different methods on SSDD and HRSID.
The precision and recall were calculated at IoU = 0.5. The precision–recall curves on the
two data sets both showed that DB-YOLO had higher accuracy than the other six methods.
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Figure 8 shows the visualization of DB-YOLO for detection results of offshore ships,
inshore ships, large-scale ships and densely distributed small-scale ships; the red box
represents ground truth, and the green box represents the detected ships. It can be seen
that DB-YOLO could achieve high accuracy in both offshore (Figure 8a–d) and inshore
(Figure 8e–h) situations because DB-YOLO could effectively distinguish complex back-
grounds. At the same time, DB-YOLO had a relatively stable performance in the detection
of large-scale ships (Figure 8i–l) and densely distributed small-scale ships (Figure 8m–p),
which meant that the improved feature pyramid network had more powerful feature repre-
sentation capabilities. In summary, although DB-YOLO had the problem of false alarms at
the edges caused by improper image segmentation (Figure 8n–p), it could still effectively
detect multi-scale ships by comparing actual ship data within the error allowable range.

3.4.4. Result of DB-YOLO on Large-Scale SAR Images

The robustness of DB-YOLO in real scenes was verified on large-scale images of
Sentinel-1, and the results were shown in Figure 9. The SAR image came from Copernicus
Open Access Hub [41], and accurate ground truth annotation was obtained through the
Automatic Identification System (AIS). There was a total of 92 ships in the two enlarged
images, among which 86 ships were correctly detected, 6 ships were missed and 2 ships
were falsely detected (Figure 9). The precision was 97.7% and the recall was 93.5%, which
proved the effectiveness and robustness of DB-YOLO in real scenes.
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4. Conclusions

In this paper, the DB-YOLO detector was constructed to detect ships in SAR images,
and it was composed of Feature Extraction Network (FEN), Duplicate Bilateral Feature
Pyramid Network (DB-FPN) and Detection Network (DN). In view of the real-time re-
quirements of SAR ship detection, a single-stage detector was proposed, and the residual
network was used to improve the detection speed. In view of the requirements of multi-
scale ship detection, the feature extraction capability of a lower level was strengthened
by optimizing the distribution of parameters and computation of different feature layers
in FEN. At the same time, DB-FPN was designed to strengthen the fusion of features and
to enhance the integration of low-level spatial location information and deep semantic
information. In addition, the path between the layers of the same size in the network was
shortened by feature multiplexing, which was more conducive to the flow of information.
Finally, experiment results of quantization and visualization on SSDD and HRSID datasets
and large-scale Sentinel-1 images demonstrated the effectiveness and robustness of the
DB-YOLO detector for multi-scale ship detection. Compared with the other six CNN-based
methods such as Faster R-CNN, Cascade R-CNN, Libra R-CNN, FCOS, CenterNet and
YOLOv5s, DB-YOLO achieved better performance.

Although DB-YOLO achieved satisfactory results in the experiment datasets, there
were still false alarms at the edges of the images caused by improper image segmentation.
In the future, the above problems would like to be explored and solved by optimizing the
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image segmentation methods and edge target detection algorithms. In view of the problem
of inshore ship missing, the next research would continue to optimize the anti-jamming
ability of the detector against complex environments through data argumentation.
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