
sensors

Article

Engineering Approaches for Programming Agent-Based IoT
Objects Using the Resource Management Architecture

Fabian Cesar Brandão 1 , Maria Alice Trinta Lima 1 , Carlos Eduardo Pantoja 1,2,* , Jean Zahn 2

and José Viterbo 2

����������
�������

Citation: Brandão, F.C.; Lima,

M.A.T.; Pantoja, C.E.; Zahn, J.;

Viterbo, J. Engineering Approaches

for Programming Agent-Based IoT

Objects Using the Resource

Management Architecture. Sensors

2021, 21, 8110. https://doi.org/

10.3390/s21238110

Academic Editor: Andrei Gurtov

Received: 26 October 2021

Accepted: 29 November 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Federal Center for Technological Education (CEFET-RJ), Rio de Janeiro 20271-110, Brazil;
fabiancpbm@gmail.com (F.C.B.); maria.trinta@aluno.cefet-rj.br (M.A.T.L.)

2 Institute of Computing, Fluminense Federal University (UFF), Niterói 24220-900, Brazil;
jeanozahn@gmail.com (J.Z.); viterbo@ic.uff.br (J.V.)

* Correspondence: pantoja@cefet-rj.br

Abstract: The Internet of Things (IoT) allows the sharing of information among devices in a network.
Hardware evolutions have enabled the employment of cognitive agents on top of such devices,
which could help to adopt pro-active and autonomous IoT systems. Agents are autonomous entities
from Artificial Intelligence capable of sensing (perceiving) the environment where they are situated.
Then, with these captured perceptions, they can reason and act pro-actively. However, some agent
approaches are created for a specific domain or application when dealing with embedded systems and
hardware interfacing. In addition, the agent architecture can compromise the system’s performance
because of the number of perceptions that agents can access. This paper presents three engineering
approaches for creating IoT Objects using Embedded Multi-agent systems (MAS)—as cognitive
systems at the edge of an IoT network—connecting, acting, and sharing information with a re-
engineered IoT architecture based on the Sensor as a Service model. These engineering approaches
use Belief-Desire-Intention (BDI) agents and the JaCaMo framework. In addition, it is expected
to diversify the designers’ choice in applying embedded MAS in IoT systems. We also present a
case study to validate the whole re-engineered architecture and the approaches. Moreover, some
performance tests and comparisons are also presented. The study case shows that each approach
is more or less suitable depending on the domain tackled. The performance tests show that the re-
engineered IoT architecture is scalable and that there are some trade-offs in adopting one or another
approach. The contributions of this paper are an architecture for sharing resources in an IoT network,
the use of embedded MAS on top IoT Objects, and three engineering approaches considering agent
and artifacts dimensions.

Keywords: embedded multi-agent systems; IoT; edge computing

1. Introduction

The Internet of Things (IoT) is a network that links objects on the Internet, enabling
large-scale data sharing and remote control of physical devices to implement distributed
systems [1]. Once connected to the IoT, physical devices become a network object, and
their resources could be available for other interested persons or even objects. One of
the IoT’s challenges is how to interact with different heterogeneous devices using differ-
ent technologies and architectures to communicate with the network and expose their
resources.

Moreover, cognitive embedded systems on top of devices at the edge of a system
could add autonomy, intelligence, and improve data processing and decision making.
A Multi-Agent System (MAS) is a system composed of cognitive agents capable of acting
pro-actively and autonomously and communicating with other agents and entities to
achieve common or conflicting goals in a situated environment, which could be simulated
or a physical one [2]. Agents can perceive the environment to collect perceptions from it

Sensors 2021, 21, 8110. https://doi.org/10.3390/s21238110 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0614-0592
https://orcid.org/0000-0002-4740-1800
https://orcid.org/0000-0002-7099-4974
https://orcid.org/0000-0002-6636-6836
https://orcid.org/0000-0002-0339-6624
https://doi.org/10.3390/s21238110
https://doi.org/10.3390/s21238110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238110
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238110?type=check_update&version=1


Sensors 2021, 21, 8110 2 of 25

using sensing mechanisms such as sensors and act upon it using actuators in the case of
physical environments. MAS are often used as cognitive embedded systems at the edge of
some systems and architectures [3–5].

Usually, the works integrating IoT solutions in a physical environment using embed-
ded agents or MAS in the edge generally adopt centralized architectures [6], do not offer
heterogeneity in hardware or software, or are tied to a specific domain [7]. Some proposed
architectures integrating IoT and MAS could overcome some of these issues. The Resource
Management Architecture (RMA) [8] provides a methodology for exposing IoT Objects
enhanced with embedded MAS in the IoT, guaranteeing the hardware heterogeneity and
abstracting technical details of the device from applications.

However, when agents try to access information available in physical environments by
interfacing to sensors and actuators, they could be overloaded in perceiving and processing
a massive amount of perceptions available. Every piece of information captured by agents
from the environment using their sensors is considered a perception. Agents could use these
real-world perceptions coming from sensors for activating plans or keeping the mental
state of some situation. Therefore, the deliberation process will possibly be affected by
techniques and strategies to deal with these issues, such as applying perception filters [9],
dealing with the active perception process [10], or adopting sensors and actuators as
artifacts in a MAS [4]. Since artifacts are physical or virtual entities that provide functions
or services that agents can use to achieve their goals [11], we assert that artifacts could be
adapted, improved, and combined to provide engineering options when creating MAS on
top of IoT Devices at the edge.

Thus, the objective of this work is to propose three engineering approaches for pro-
gramming agent-based IoT Objects at the edge of a system using an extended and improved
version of the RMA. The engineering approaches use an embedded MAS to control an
IoT Object, allowing specialized tasks for agents. Some of them can be responsible for
communication, other for interfacing hardware, or any task necessary to achieve their
collective goals as an IoT Object. It brings advantages and performance gain in the de-
liberation process compared to traditional approaches where only one agent controls all
IoT Objects’ functionalities. In addition, an embedded MAS can employ virtual artifacts
to access hardware or communicate with RMA since it can create its own internal and
virtual environment, representing a real physical environment inside the IoT Object. The
embedded MAS is independent, so its agents can communicate with agents from other
embedded MAS. It can also share information with the RMA, which will be available to be
consumed by clients in an application layer of the adopted architecture.

Each approach varies in how the embedded MAS in IoT Objects behave while ac-
cessing a cyber-physical environment. The first approach considers agents interfacing
hardware directly and processing information to send improved knowledge to the IoT
architecture. Artifacts play a major role in the others engineering approaches. A virtual
representation of sensors and actuators is assembled in IoT Objects as Artifacts, named
in this paper as Physical Artifacts since they directly access physical resources. They can
share information with the embedded MAS or directly to the RMA to relieve some agents’
processing costs.

In this paper, the Agents and Artifacts are programmed using JaCaMo [12], which
combines agent and environment dimensions in the same framework. It uses the Belief-
Desire-Intention (BDI) [13] model as a cognitive model. BDI agents can achieve goals based
on desires and intentions, activated by beliefs acquired from the environment (perceptions)
or communication with other agents (messages). Desires and Intentions are achieved
through plans and actions. The RMA employs the ContextNet [14] in all its layers for
establishing an IoT Server, a shareable data infrastructure, and a scalable network. The
contributions of this paper are the refactored and extended RMA for sharing IoT Objects’
resources for clients in an IoT network, the capability of adopting embedded MAS, on top
of IoT Objects, as the cognitive system to provide intelligence, pro-activity and autonomy,
and give designers options in how to engineer IoT Objects by adopting three strategies



Sensors 2021, 21, 8110 3 of 25

to program the embedded MAS in the RMA. Communicator agents and Physical and IoT
Artifacts are presented for the JaCaMo framework and an extended version of RMA.

This paper is structured as follows: Section 2 shows some related works; Section 3
presents the RMA; in Section 3.1 some definitions necessary to understand the paper
are introduced; in Section 3.2, the engineering approaches using the extended RMA are
proposed; Section 3.3 presents the RMA extension and the approaches’ implementation;
in Section 4, a case study is presented adopting a home garden scenario; and Section 5
presents the final considerations.

2. Related Works and Motivations of This Work

The IoT has motivated several works in distributed computing intending to share
the resource information of connected objects aligned with the advance of hardware
technologies. Mainly, agents have been deployed on microprocessors, such as Raspberry
Pi [15,16]. These agents may be either static or capable of moving from board to board,
creating a network and a distributed MAS. Concerning this point, static agents could
be overloaded if the amount of information coming from sensors exceeds its processing
power and mobile agents will also rely on storage and memory capacity. Even though
agents are autonomous and proactive, they cannot perform two actions at the same time
in two different actuators or sensors, for example. An Embedded MAS could employ
specialized and dedicated agents for splitting the responsibility of achieving a goal: for
example, agents to deal with communication or a small group of sensors.

Many challenges arise when employing embedded agents or even embedded MAS.
Agents have to deal with the heterogeneity of hardware (sensors, actuators, boards, etc.)
and sources (other agents or MAS, applications, etc.). There is also a direction to create
decentralized MAS to insert intelligence in IoT systems [17]. One of the main challenges is
how to deal with the heterogeneity of IoT devices and performance. It is not a simple task to
provide an architecture to integrate and control smart devices in IoT [18]. It becomes worse
when considering agents and MAS since they could be logically developed using different
frameworks or adopting different communication protocols. Moreover, an embedded MAS
can be considered a fully autonomous embodied agent when interfacing hardware, such as
a robot that employs an MAS. Even in robotics, cooperation between robots is a challenge
to be faced since many of them are pre-configured in design-time [19].

In addition, some approaches search for autonomy and some intelligence level in the
edge of the network by adopting architectures [20]. There is an architecture that aims to
provide intelligent and adaptable home systems using the Fog computational concept [21],
which does not focus on the agent approach. It address some issues, such as the limitation
of resources in IoT devices, data volume, heterogeneity, loss of connection, and others. It
has two layers: the Cloud Layer and the Fog Layer, where the former is responsible for
the flow, processing, and analysis of data. The latter implements some of these features
to distribute the responsibilities and remove the overload that could exist in the Cloud
Layer. However, the architecture is dedicated to data processing and does not provide a
heterogeneous way to address the gap between hardware and agents.

When considering agent-based IoT architectures, some solutions provide services,
communications, and configurations for dedicated applications and domains such as
shopping malls [20], cattle [22], co-working buildings [23], and a manufacturing scenario in
an industrial environment [24]. In addition, agent-oriented programming languages such
as Jade [25] and Jason [10] play a major role in several solutions [26–28].The Agent-based
Cooperating So (ACOSO) works as an IoT middleware to provide agents as devices and
several agents as an MAS [29,30]. The ACOSO supports the development of cognitive MAS
for IoT. Basically, each smart object is abstracted to a cooperating Jade agent. It runs over
a three-layered architecture: application, transport, and net and physical, where agents
can manage sensors and actuators; reason using local and distributed databases; and
access a communication system to interact with smart objects and other structures. These
architectures centralize the MAS on a server side or adopt one agent per sensor. There



Sensors 2021, 21, 8110 4 of 25

are some issues with centralizing the cognitive system in a server, such as technological
dependency. Some solutions would not work correctly if the agent lost communicability
with other agents. Embedded MAS should provide real autonomy, pro-activity, and
independence without considering centralized technologies. They should send information
to an IoT server but still monitor and reason at the edge of the system by manipulating
their sensors and actuators.

Particularly, a multi-agent architecture proposed for the fast and efficient management
of data coming from basic hardware devices in the IoT provides services in a layer to
fulfill requirements of a given environment [28]. There is local processing not to transmit
all data produced in the edge to the cloud server considering reductions in time and the
cost of processing. Embedded reactive agents manage the information generated from
the IoT Systems, and they communicate to each other adopting the MQTT protocol. The
embedded multi-agent that manages the industrial wireless sensor network has embedded
agents in its nodes [27]. It considers active nodes where the data will only be transmitted if
requested. Otherwise, passive nodes use an acknowledged time-based data transmission
process. Table 1 shows a brief comparison of all related works. It considers the platform
used in each solution, the domain applied or if it is generic (it could be reused and it is not
tied to a specific domain), and the agent composition where it was employed one agent per
device or an embedded MAS.

Table 1. Comparison between the related works.

Work Platform Domain Agent Composition

[16] Jade Crop Irrigation Agent per Device
[18] Hardware and Android Smart Home Agent per Device
[19] Jade Robotics Agent per Device
[20] CVL—SelfStar MAS Software Product Line Agent per Device
[22] PANGEA Catlle Agent per Device
[23] ATMega and ESP8266 Co-working Agent per Device
[26] Jade Vehicles Agent per Device
[27] Jade Wireless Sensors Network Agent per Device
[28] Jade Generic Agent per Device
[29] Jade Generic Agent per Device
This JaCaMo Generic Embedded MAS

In this paper, we propose an uncoupled and decentralized architecture to employ MAS
on top of IoT Objects and mechanisms to allow communication between hardware, agents,
and the IoT network, abstracting all the technical details from users and designers and
also between the the proposed architecture’s layers. The Embedded MAS have dedicated
agents to deal with sensors and actuators, others to communicate with the IoT server and
devices, and finally, some agents for general purposes. As said before, employing multiples
and specialized agents at the edge of the system could reduce bottlenecks in accessing
sensors and actuators and even reduce processing time on the server side since it tends
to be less requested. The architecture is generic enough and prepared to couple with any
domain since they follow a simple protocol for exchanging messages between edge objects
and the IoT server.

Although the novelty of using embedded MAS as a cognitive system to provide au-
tonomy and some intelligence for devices that can operate independently from centralized
servers and still reason and communicate, it brings challenges that different programming
strategies could tackle. Then, we present three novel engineering approaches to build
IoT Objects embedded with MAS, including the agent dimension, and the endogenous
environment dimension (artifacts), using the BDI model. An engineering approach could
perform better than another depending on the solution domain that the designer must
create. For example, it is possible to merge active nodes (from the agents’ point of view)



Sensors 2021, 21, 8110 5 of 25

and passive nodes (from the IoT server’s point of view) into a device. This configuration
could be interesting in a situation where agents should reason and give fast answers in the
edge without communicating to the server-side (active node) and the device still needs to
transmit data to the server (passive node).

3. Resource Management Architecture

The RMA is an architecture for sharing the devices’ sensors and actuators on the IoT
using a model that allows exposing these resources to be consumed by clients [8]. For this,
the architecture maintains information about these sensors and actuators in a centralized
layer. The RMA was designed inspired by the Sensor-as-a-Service (SaaS), an emerging
cloud computing model allowing sensors and actuators to share data on the Internet of
Things to be consumed and commercialized by applications and third parties [31].

The architecture allows any person to adopt devices in some environment to access
information and autonomously or remotely control it. The device works pervasively by
means of their sensors and actuators managed by an embedded system, which provides
all the functionalities for interfacing hardware, receiving commands, and sending data to
an IoT server. The owner of a device places it in a room, for example, and then configures
it to connect to a server-side application to share sensory information and to be virtually
available for clients applications and other users, or just privately. Sometimes the owner
might want to keep all his devices available for himself, maybe because it contains personal
or sensible data (i.e., a hospital room). Otherwise, it could be publicly available for anyone
who wants specific information, such as the temperature or the weather condition in a
particular spot.

All devices sends their identification, composition, localization, and available function-
alities when connected to the IoT Server. The server-side application stores all these data in
a database and maintains them while the device is connected. If the device goes offline for
any reason, the server-side application turns the device unreachable until it reconnects. In
addition to managing the connection and reconnection, the server-side application is also
responsible for managing all the data received from devices’ sensors and clients’ command
requests (i.e., turn the lights of a room on or off). The same database stores the devices’
data to be consumed whenever a client desires, and it redirects the command requests to
the proper device, which holds the target actuator.

Clients access applications to consume information from virtualized devices. They
can remotely control them by accessing mobile phones, web services, or applications,
which connect directly to the database where the data were previously stored. These client
applications also interact with the server-side application to send command requests to be
performed in devices. For example, if someone forgets to turn off a light when leaving his
house in the morning, it could verify the light status and send a command request to turn
off the light at anytime. The Figure 1 shows the RMA overview.

Figure 1. The RMA overview.



Sensors 2021, 21, 8110 6 of 25

The RMA plays an essential role in defining the engineering approaches since it pro-
vides a decoupled layered architecture that could be explored to implement edge comput-
ing using MAS. The RMA allows multiple device connections to share data, communicate
with each other, and all data shared using the RMA can be consumed by application clients,
reinforcing the potential of using it. By adopting MAS at the edge of the system on top
of devices, some data processing can be performed directly on the device, decreasing
the server-side usage for these situations. It could also reduce the response time for any
situation captured by sensors since agents can act proactively.

The use of MAS on top of IoT Systems offers several challenges that few works
tackled during the years. The MAS should be autonomous and interface controllers,
sensors, and actuators. It also needs to communicate to a server-side application and other
devices. In addition, it must observe and provide constructions for all the dimensions
of the agent paradigm, which facilitates integration between the environments and the
MAS architecture.

The proposed engineering approaches provide ways for how to embed an MAS on top
of devices considering hardware interfacing, communication, performance, and the agent’s
dimension. These approaches consider specialized agents created and adapted to deal with
sensors and actuators interfacing and IoT communication. In addition, artifacts could play
the same role as these agents, increasing the possibilities of designing the embedded MAS.
Depending on the problem addressed, one could employ agents, artifacts, or both, which
is a novelty when considering embedded agents and IoT systems.

3.1. Definitions and Working Details

To fully understand the RMA, it is important to define its central concepts, components,
and how they work together. The architecture works around the notion of Devices that
communicate with the server-side application to provide Resources such as environmental
sensors and actuators. Then, we define Device and Resources as follows:

Definition 1. A Device is a composition of hardware parts and an embedded system built together
with a particular purpose for interacting upon some physical environment. These hardware parts
are electronic components responsible for sensing and acting in the physical environment where the
Device can be situated.

Definition 2. Resources are the sensors and actuators used in Devices.

For example, in a home garden scenario, Devices could exist with proper sensors
and actuators to monitor all information about a plant, such as soil moisture and weather
prediction. Then, sensors are responsible for collecting data from the physical environment,
and actuators act by performing actions that could change the physical environment.
Moreover, the home garden owner could activate an irrigator from a distance by sending
commands to the Device using a client application. Then:

Definition 3. Commands are all actions that can be performed by a Resource when it is an actuator.

The Device uses an embedded system, which may reason or not, to control, process,
and momentarily store and share the Resources’ data using some communication infras-
tructure. Devices are heterogeneous, which means they can use different technologies
for software, controllers, boards, and Resources. A non-cognitive system is responsible
only for exchanging data between the hardware and the IoT and consequently it does not
perform decision making in the edge of a system. Conversely, a cognitive system can offer
reasoning and decision making for the edge of a system, and it could also send improved
information instead of just replying to data coming from sensors. When adopting the
agent approach, for example, agents can reason and interact with each other based on
information gathered from a physical environment.



Sensors 2021, 21, 8110 7 of 25

Definition 4. An Embedded MAS is an agent-based system embedded in a device and responsible
for the device’s autonomy, pro-activity, and communication by controlling and accessing actuators,
sensors, and communication infrastructures.

In the home garden scenario, an IoT Object embedded with a non-cognitive system
will send the raw data of the soil and local temperature to an IoT server. It will receive com-
mands from a distance of the home garden owner to be executed. In cognitive-controlled
IoT Objects, agents of an embedded MAS could access these data and reason about the
necessity of irrigating the soil if it is dry without waiting for the owner’s command. Then:

Definition 5. An IoT Object is a Device connected to exchange messages specifically with the
RMA and to share its Resources with application clients.

The RMA is divided into three layers:

• Device Layer: comprises IoT Objects, which can (i) connect and register in the RML as
part of a specific physical environment when it starts running; (ii) share all data of its
Resources with the RML, and; (iii) receive Commands to be performed in the physical
environment.

• Resource Management Layer (RML): is responsible for registering IoT Objects’ pri-
mary information and their Resources’ data, exposing IoT Objects on an IoT network
to be consumed by clients, and receiving Commands from clients and redirecting
them to the specific IoT Objects. The RML comprises the Resource Management Com-
ponent (RMC), which handles the IoT Objects’ registering, Resources’ data sharing,
and Commands received from the Application layer. In addition, RML is composed
of the Virtualized Components Database (VCDB), a database responsible for storing
data from all IoT Objects and physical environments. The Environment is the vir-
tual representation of a physical environment inhabited by one or more IoT Object.
Furthermore, every Command request that arrives for the RML is forwarded to the
specific IoT Object.

• Application Layer: Client applications access the RML to consume the virtualized
Resources as a service. The home garden owner can interface RML using an appli-
cation, for example, to monitor a specific physical environment (a living room) or
resource (a specific plant), and send back Command requests to be performed at IoT
Objects actuators. These applications can be web services, middleware, and mobile
and desktop applications, including MAS applications.

Considering the home garden, when the owner turns on the IoT Object, it connects
and registers itself in the RML in a pre-defined virtual environment. For example, the IoT
Object could be configured to be situated in a living room or a balcony. Once it is connected
and registered, it can send soil and temperature data to the RML, which stores them to be
consumed by the home garden owner. In addition, it can receive commands to turn on and
turn off the irrigator from the owner. In this case, the RML redirects the commands to the
specific IoT Object.

RMA abstracts technical details from IoT Objects and the Application layer in RML.
Then, clients can access and consume data from different IoT Objects without knowing
which kind of hardware was employed in the design of the IoT Object. The same is valid
for the IoT Object’s software side. It is indifferent to the RML or even the Application layer
if the embedded system uses a cognitive system or not. The RML gathers data and stores
them in the VCDB while redirecting Commands for IoT objects to perform at actuators. This
communication is based on a text-based protocol for exchanging messages between layers.

When applying an embedded MAS, it is possible to provide some reasoning on the
edge of the IoT Object. Since agents can reason about the data collected from sensors—
instead of just replying to them to the IoT cloud instance, the RML—some actions can
be performed autonomously at the edge of the system. Moreover, agents can learn or
teach other agents from the direct interaction with other IoT Objects since they can share



Sensors 2021, 21, 8110 8 of 25

beliefs, desires, and plans. For example, if the owner of the home garden and an IoT Object
enhanced if an embedded MAS acquires a new sensor for its IoT Object, it could learn from
another IoT Object which shares the same type of sensor by exchanging messages and
plans.

However, RMA does not provide all mechanisms and approaches combining the IoT
and MAS to create effective systems since it does not consider all possible constructions of
the multi-agent approach, such as artifacts at the environment level. Artifacts can improve
the modeling by adding an abstraction in representing sensors and actuators that could
directly impact the agents’ performance when accessing and processing perceptions coming
from these resources. In the next section, we refactor the current RMA to expand design
possibilities using embedded MAS and explore them considering agents and artifacts—or
even agents’ societal layers—on the edge of IoT systems.

3.2. The MAS Engineering Approaches

The RMA is composed by three independent layers that provides all the necessary
concepts and structures for creating a network of IoT Objects capable of sharing resources
for clients applications. The Device layer is where the design of IoT Objects and the engi-
neering approaches of the system happen. It includes defining the hardware technologies
employed, and the embedded systems programming (reactive or cognitive, for example).
The strategy adopted by the designer may influence the way in which the system deals
with the physical environment while it is sensed and how to interact with the top layer to
share its sensing information.

In Figure 2, it is possible to observe the Device Layer composition, including the
new proposed MAS engineering approaches (Agent, Agent and Artifact, and IoT Artifact).
Independent from the engineering approach adopted, each IoT Object is composed of at
least one microcontroller (hardware) connected to several sensors and actuators responsible
for sensing and acting in a physical environment. The microcontroller is interfaced by
a double-layered serial interface, which manages the message exchanges between the
hardware and the Embedded System.

Figure 2. The extended Resource Management Architecture (RMA) and the three engineering ap-
proaches in the Device layer: the Agents, Agents and Artifacts (A&A), and the IoT Artifacts Approaches.

The Non-cognitive approach for designing IoT Objects in the RMA uses an embedded
system to interface the physical environment and communicate with RML, resulting in an



Sensors 2021, 21, 8110 9 of 25

approach that does not provide autonomy and pro-activity during the decision-making
process. It works only as a data repeater sending the data gathered from sensors to the
RML. Then, we realized that is important to flexibilize the options that the designers could
employ to produce solutions in the edge of the system. The three engineering approaches
present different ways of including cognition using MAS. In a system composed of several
IoT Objects, each one of them can adopt its own approach. Since the layers are uncoupled
and use text-based communication, the adopted technology is irrelevant for the functioning
of the architecture. We describe the three engineering approaches as follows:

• Agent Approach: it uses an MAS as the embedded system that is capable of process-
ing the gathered information from sensors and decide about the Command request
execution coming from the RML instead of transferring this responsibility to upper
layers. For this, the MAS comprises Physical Agents capable of interfacing the physi-
cal environment and a Communicator Agent to exchange messages with RML and
communicate with other IoT Objects. Once the information is stored in the RML, it
can be consumed by clients.

• Agent and Artifact (A&A) Approach: it works in the same way as the Agent approach
but employing Physical Artifacts instead of Physical Agents for sensing and acting
upon the physical environment. These artifacts access the sensors’ values as observable
properties and control actuators using operations accessible to any agent. Therefore, a
specific type of agent to interface the Hardware is not necessary. The Communicator
Agent maintains its role in this approach.

• IoT Artifact Approach: as in the A&A approach, some artifacts continue to collect data
from sensors and operate actions in actuators. However, some artifacts themselves
communicate directly with the RML and are then named IoT Artifacts. Therefore,
there is no need for the Communicator agent anymore. In this approach, the MAS is
only responsible for the reasoning in the edge by accessing the observable properties
of available artifacts and operating them.

The engineering approaches are transparent to the garden owner in the home garden
scenario since the differences are purely technological considering the agents adopted. For
example, in the three cases, the Embedded MAS of the IoT Object situated in a plant could
verify autonomously if the plant needs water. In addition, the owner can send actions to
be executed (e.g., turn on the irrigator) by the IoT Object. In this case, the only difference
is if agents or artifacts will treat the action request. Then, one can adopt the approaches
considering the available hardware, the system domain, the expected performance, and the
IoT Objects behavior in the physical environment. Then, it is important to analyze what
each approach can offer and the differences between them.

In the Agent approach, as only one type of agent—the Physical agent—collects all
values from the physical environment, it needs to transfer all the gathered information
to other agents that use these values to interpret and improve the understanding of what
was sensed before sending them to the RML. Moreover, some agents can use these inter-
pretations to reason about the hardware controlling and send their conclusion to Physical
agents that act in the physical environment without waiting for the interference of third
parts (clients applications by the RML). In addition, actions coming from RML will only be
executed if the MAS endorses and forwards them to actuators. The communicator agent
allows the embedded MAS to communicate with the RML for registering the IoT Object,
sending Data, and receiving Actions. Sometimes, continuously sending data to the RML
could be unnecessary or costly. Therefore, it is up to the IoT Objects to decide whether or
not to send information to the RML.

However, this approach can generate some performance problems since the entire
MAS depends only on the Physical Agents to collect information from sensors and send
action commands to actuators. Thus, depending on the problem tackled, it can overload
these agents, and some bottlenecks would arise since the data are captured in every execu-
tion of the agent’s reasoning cycle, leading to a constant interfacing with the Hardware.



Sensors 2021, 21, 8110 10 of 25

It could be expensive considering energy efficiency, which is also a concern in embedded
systems.

Adversely, in the A&A approach, any agent can access the artifacts anytime depending
on the agents’ needs and the availability of artifacts. It is important to remark that two
agents cannot access one artifact at the same time. Although these kind of artifacts could
unload agents that interface hardware, some information processing may still be affected
because it still has to be collected, processed, and sent to the RML by communicator agents.
Depending on the application domain, a hybrid approach could be interesting where agents
could even process data and act in the hardware by accessing artifacts and the sensors’
information would be sent directly to the RML by artifacts instead of Communicator agents.

In the IoT Artifact approach, the Communicator Agent is not responsible for com-
municating with the RML and there are no agents interfacing the physical environment,
thus the MAS does not interfere in how data is exchanged between the IoT Object and
the RML. However, agents can still collect data from the sensors and perform actions on
the actuators using artifacts. In this case, agents access data from the artifact’s observable
properties, and actions are executed when agents perform artifact operations. Then, agents
can reason and produce internal conclusions to control the IoT Object at the edge of the
system. However, raw information will be sent directly to the RML. Therefore, the IoT
Artifact approach should be used when an IoT Object just needs to share raw data and
perform clients’ actions directly in the RML, and it is still necessary to employ a certain
degree of autonomy and pro-activity in the edge.

As said before, it is possible to employ in the same system all three proposed ap-
proaches in different IoT Objects, and it is up to the designer when to adopt one or another
approach. The designer must observe the latency of the information according to the
domain of the application, the response demanded by the application layer, the complexity
of the information (raw or reasoned data), and the autonomy of the IoT Object for example.
In the following sections, we describe the RMA refactoring and extension, and we detail
some behaviors of the architecture.

3.3. Extending the RMA and Implementing the Approaches

The RMA provides a way to expose IoT Objects’ resources accessible to client applica-
tions hiding technical details of hardware and software. The Device layer comprises all
IoT Objects in the edge of a system. Previously [8], the Device layer had no practical way
to create an IoT Object, allowing the embedded MAS to interact with the RML. Therefore,
RMA needs mechanisms to support the three proposed approaches considering embedded
MAS in the edge in terms of generic domain, performance, and data availability.

In the Agent and A&A Approaches, the Communicator Agent is responsible for
communicating with the RML from the Device Layer. This agent needs to adopt a com-
munication infrastructure to connect, send information, and receive Commands from the
upper layers. Since the Communicator Agent concept [3] was created for allowing two
distinct MAS to communicate, it does not consider communication with RMA.

In the IoT Artifacts approach, Physical Artifacts need to send and receive information
for both MAS and RML. In the A&A approach, artifacts are only able to interface hardware
and agents take place in reasoning and communicating with RML. Then, it is necessary to
adapt and implement all those behaviors in Communicator Agents and Physical Artifacts
to communicate with RML for creating our proposed approaches.

3.3.1. The Extended RMA

Despite the three approaches being employed specifically in the Device layer, the
RML also impacts in their functioning. Then, all possible constructions of the proposed
approaches using RMA are defined in a general class model comprising all levels. An IoT
Object needs its own independent cycle from other layers that is capable of dealing with
a cognitive embedded system or not, as well as IoT Artifacts. In addition, algorithms for
initializing and registering IoT Objects are necessary for dealing with the data transfer



Sensors 2021, 21, 8110 11 of 25

to RML. The RML also needs a mechanism to maintain historical data in some domains
where it is necessary to inform client applications of past sensors’ values. It is expected that
RMA will gain more robustness to deal with IoT Objects improving the message exchange
process between the Device Layer and the RML, and adopting a NoSQL database based
on documents. Thus, we present contributions in (i) the class model, (ii) the IoT Object’s
initialization process and cycle, (iii) the database technology, (iv), and the protocol used to
exchange text information.

The class model allow defining how Resources, Commands, Devices, and IoT Objects
are related in some Environment, as well as the format of messages that are persisted
in VCDB as Data and Actions. Figure 3 shows the class diagram of the RMA, its main
attributes and methods, and how these classes are associated with each other. Then, a
Device is associated with an Environment, and this Environment can have a set of Devices
allocated to it; in addition, a Device has one or more Resources. Each Resource can generate
Data representing the sensors’ readings and receive Actions representing the actuators’
Commands. In this case, actuators can have one or more Commands that define the
possible hardware operations. Both the Data and Action models provide the historical
storage of a given resource in the RML.

Finally, an IoT Object is a Device capable of communicating with the RML and both
have the same composition—hardware parts and an embedded system—as said before.
Technically in the model, a Device class holds all attributes for identifying any device in
the RMA. However, as only IoT Objects can connect and communicate with RML, it is
necessary to use the IoT Object class. Thus, all IoT Objects are Devices implicitly. Each class
is detailed as follows:

• Environment: It represents a physical environment where one or more Device can be
situated in. It has a name, a description, and the maximum capacity of IoT objects in the
physical environment.

• Device: It represents the hardware composition with one or more Resources and
an embedded system. The Device class is identified by a deviceName, and has a
name, which is the device’s nickname accessed by application clients and it does not
necessarily needs to be unique; a description, which holds basic information about a
Device; a Universal Identification (UUID) in the IoT network (UUID, a gatewayUUID);
a delay time between sending data to the RML (cycleDelayInMillis); and a date that
represents the time of the last update of this Device in the RML (lastUpdate).

• Resource: It represents the IoT Objects’ sensors and actuators in the RMA. As in the
Device, the resourceName, name, and description identify, nickname, and holds basic
information about Resources, respectively. It also has a serial port for communication
with the IoT Object’s microcontroller (port) and a measurement unit of the information
coming from sensors or actuators (dataUnit). Every actuator must have at least one
Command associated.

• Command: It represents an operation that a Resource can execute when it is an
actuator. For example, if a motor is a Resource, it could have Commands “on” and
“off”. A Command has as attributes a command name (command) and a description.

• Data: It represents a value measured in a Resource according to a unit of measure
(dataUnit) in an instant of time. Data references only one Resource and it represents
values of any type, including nominal or quantitative values.

• Action: It represents a Command execution request that must be performed by an
IoT Object’s actuator. For this, it is necessary to address the Command, the respective
Resource, and the Device where the Action needs to be performed.

• IoTObject: It defines the initialization process of the IoT Object, its cycle, and the
Action’s execution. The initialization process connects the Device to the RML, but if
this Device does not exists in VCDB yet, it is registered. The cycle is the process that
builds a Data buffer and sends it to the RML to be stored by VCDB and consumed by
clients. The action’s execution defines how Actions will be performed in the hardware.
The void connect (String rmlIP, int rmlPort) method performs the connection request to



Sensors 2021, 21, 8110 12 of 25

the RML, and the confirmation arrives in the newMessageReceived (Message message)
method as a message. If the Device is connected, the cycle starts. The void startCycle()
method is a loop that gathers Resource’s Data—using List<Data>buildDataBuffer()
method—and sends them to RML. The void onAction (Action action) is responsible
for effectively executing the Action based on the approach chosen by the system’s
designer. Finally, each cycle can be delayed using a predefined time (cycleDelayInMillis
in Device) considering that some Resources do not necessarily vary their values in a
short period of time to be constantly updating the RML.

Figure 3. The extended RMA model.

The starting point of RMA is the Device layer since the RML virtualizes IoT Objects and
clients look up for specific Resources in some Environment. Then, for the whole architecture
to work, IoT Objects need to be registered in the RML before anything else. Once there is
an RML instance on the server side, IoT Objects need to connect and register themselves to
start sending Data and become available for clients’ Actions. IoT Objects and Devices can
operate completely independent of any architecture, since they employ embedded systems
with different cognitive levels. When applying embedded MAS, some of server-side
processing can be transferred to the edge, increasing the IoT Object’s autonomy.

The IoT Object’s initialization process is represented by the Algorithm 1, which is
responsible for connecting it in the RML. Firstly, the IoT Object informs its basic identi-
fication information, resources, and commands before sending any resource data to the
upcoming layers. In case of the first time that the IoT Object connects with the RML, it will
be registered in VCDB; otherwise, the existent IoT Object will be updated. The IoT Object
is mounted based on information extracted from the configuration file, which holds all
information provided by the IoT Object designer: identification, resources, and commands.
In addition, the IoT Object must acquire an available RML’s IP address and port, usually
informed by the designer as well.

The IoT Object needs an UUID for uniquely identify it in the RML. This identification
is generated by the RML the very first time the IoT Object connects itself. If it is not
the first time, the IoT Object retrieves the UUID from previous connections before trying
to reconnect. Then, the IoT Object sends the connection request to RML—using all this
information—and waits for the acknowledge message. The RML verifies whether is the
first IoT Object’s connection or not. In case of the first connection, the RML generates
the UUID and stores the IoT Object’s information in VCDB. Otherwise, the RML returns
the existing UUID and updates the IoT Object’s information. In both cases, it sends the
acknowledge message back. After the end of this process, the IoT Object is able to start its
cycle for sending Data to the RML and receive Actions.



Sensors 2021, 21, 8110 13 of 25

Algorithm 1. The IoT Object’s initialization process algorithm.

1: procedure initialize(ip, port, configurationFile)
2: rml ← connection(ip, port)
3: if UUID == null then
4: UUID ← rml.askForUUID()
5: end if
6: device← readDeviceFile(con f igurationFile)
7: acknowledge← rml.connect(UUID, device)
8: if acknowledge then
9: startCycle(rml)

10: end if
11: end procedure

Each IoT Object has a cycle (Algorithm 2) that starts when an acknowledge message
arrives from the RML. The cycle is responsible for performing Actions coming from upper
layers and sharing Resources’ Data with the RML while it is connected. Firstly, The
startActionListener method activates a listener that detects the arrival of Actions from the
RML. For every message arriving, the IoT Object sends the requested command to the
microcontroller using the onAction method. In each step, a list of Data is retrieved by the
buildDataBuffer method and then sent to the RML. Finally, the cycle could be delayed by
assigning a value in milliseconds using the cycleDelayInMillis attribute. Depending on the
system’s domain, the designer can use the cycleDelayInMillis to regulate the Data latency of
an IoT Object while communicating with the RML.

Algorithm 2. IoT Object’s Cycle.

1: procedure startCycle(rml)
2: startActionListener()
3: while connected do
4: onAction(action)
5: data[]← buildDataBu f f er()
6: rml.send(data[])
7: wait(cycleDelayInMillis)
8: end while
9: end procedure

The Algorithm 3 describes how the RMC deals with new messages coming from IoT
Objects and Clients. The RMC is a specific component that deals with all requisitions
and messages that the RML receives. Then, the IoT Object sends its basic information
(identification in the network, name, description, and delay in milliseconds), and a list of
available Resources and Commands. It also sends messages containing Resources’ Data
from their sensors. The Clients send Action requisitions addressing the IoT Object that will
perform it. Therefore, each message received is decoded to identify its proper treatment
and forwarded to the specific destination (IoT Objects or the VCDB).

In case of the IoT Object’s basic information, Resources, and Commands, the RMC
will send an acknowledge message back to the IoT Object. If it is performing its first
access, the RMC will register all the IoT Object’s information in VCDB and send back an
auto-generated UUID. In case of Resources’ Data, the RMC will register these Data and
update the time and date of this latest access in VCDB. Finally, in case of Client’s Action,
the RMC stores this message in VCDB, identifies the respective addressee, and sends this
Action to the target IoT Object.



Sensors 2021, 21, 8110 14 of 25

Algorithm 3. RMC algorithm for receiving messages.

1: procedure newMessageReceived(message)
2: switch message do
3: case deviceIn f o
4: if isNotRegistered(deviceIn f o) then
5: registerDevice(deviceIn f o)
6: send(UUID)
7: end if
8: sendAcknowledge(deviceIn f o)
9: case data[]

10: saveInVCDB(data[])
11: setLastIoTObjectAccess(date)
12: case action
13: saveInVCDB(action)
14: device← action.getTarget()
15: sendAction(device, action)
16: end procedure

The algorithms describe how IoT Objects and the RMC exchange messages in the
RMA. These messages follow a text-based protocol, which defines three types of possible
formats between RMA layers: Device, Data, and Action.

Before any IoT Object performs the initialization process algorithm, it needs to access
a configuration file—in JSON format and defined by the IoT Object’s designer—containing
all its information to build the Device message. In this paper, we adopt the deviceName as
the identifier attribute for identifying an IoT Object in the RMA without knowing its UUID,
which is a 128 bits value to be manipulated by clients, users, or designers. In this way, it is
easier for clients to find IoT Objects using a direct name instead of UUID. Then, the UUID
only addresses the IoT Objects in the IoT network, while deviceName is used in RMA. When
the RMC receives this type of message, it creates the Device object, updates the VCDB, and
gives back an acknowledge message in Device’s message format.

The Data message represents the values sensed by Resources. To build this message,
the IoT Object reads the sensor, mounts a Data object, and sends it to RML. When the RMC
receives this message, it stores the resources’ measured values into the VCDB to be accessed
later by clients’ applications. The Action message represents a request for executing some
command by an IoT Object’s actuator. When the RMC receives any client command, it
creates an Action object, converts it into an Action message, and sends it to the VCDB. Both
Data and Action messages are stored in VCDB to maintain historical data of Resources as a
dataset for future data mining and analysis.

Finally, in this refactored RMA, the VCDB uses a NoSQL database (MongoDB) to
improve database operations performance. In addition, the messages adopt the JSON
format to simplify the communication and the process of exchanging messages. We
conducted some tests for evaluating the refactoring performance considering some aspects
of how RML deals with connectivity and messages in Section 4.3.

3.3.2. The Communicator Agent Extension

The Communicator Agent [3] is an agent architecture created for the JaCaMo Frame-
work [12] that allows agents to exchange messages in an IoT network. However, this agent
extension does not deal with the RMA components. Then, we developed a new Commu-
nicator agent capable of communicating with RML. It works as the bridge between the
IoT Object and the RML. It sends the IoT Object registration request, Data to RML, and
receives Actions to be executed in actuators. Every embedded MAS will have only one
Communicator agent to uniquely identify the IoT Object in the IoT network and RMA
since it is also capable of communicating with other embedded MAS connected in the IoT



Sensors 2021, 21, 8110 15 of 25

network, and it needs to be reachable for clients. Finally, it was adapted to deal with the
Device’s configuration file to become able of sharing its resources with RML.

The extended Communicator Agent can perform two new internal actions: connect-
ToRml and sendToRML. Internal actions are pre-defined functions with a specific purpose
that agents can perform anytime during their life cycle. These new actions do not affect
the physical environment, and they are intended to communicate with RML. Each internal
action is detailed as follows:

• connectToRml: It is responsible for establishing a connection with RML. It has three
parameters, the IP address, the RML serial port, and the Device’s configuration file.
When this internal action is called, the connection to the RML is established, and the
IoT Object becomes part of the architecture. In fact, it implements the IoT Object’s
initialization process described in Algorithm 1.

• sendToRML: It is responsible for sending the Resources’ Data to the RML. All this in-
formation is stored in the agent’s belief base, where agents keep all their observations,
information received by communication, and perceptions. Considering this, Physical
agents gather information from Resources and send them to the Communicator agent,
which stores the data as beliefs until this internal action is called. If a second Data
from the same Resource arrives from Physical agents before the first one has been sent
to RML, the internal action will consider the most recently received. For example, if
the Communicator agent already has a resource’s Data named temperatureSensor(cold)
in its belief base and receives a new temperatureSensor(hot), the latter will be selected.
It implements the sending behavior described in Algorithm 2 (lines 5 and 6).

When a Communicator Agent connects in the RML, it initializes a listener who will
receive all Actions sent by RML and convert them into intentions. In the Belief-Desire-
Intention (BDI) model, an intention is a desire that an agent has compromised itself in
achieving. All desires are expressed as plans, composed of a serialized steps known as
actions—including sending messages to other agents or acting upon the physical environ-
ment for example—allowing agents to achieve their goals [32].

Finally, during the Communicator’s reasoning cycle execution, Data are sent to the
RML using the sendToRML internal action, and Actions are received. They could be
forwarded to be executed or not, depending on the agent’s deliberation. This process
implements the behavior of the IoT Object’s cycle defined in Algorithm 2.

3.3.3. The IoT Artifact Extension

The Physical Artifact [4] is used by agents to interface with the hardware’s sensors and
actuators without affecting agents’ reasoning performance. However, Physical Artifacts do
not have support for RMA. Therefore, we extended the architecture of Physical Artifacts
for connecting and communicating directly to the RML, without modifying their ability to
interface hardware. In addition, agents still access these artifacts for acquiring information
and controlling actuators. Every embedded MAS can have more than one IoT Artifact
to handle several microcontrollers, but only one will identify the IoT Object in the RML
because it needs be reachable by clients.

The IoT Artifact has a new method and two new external actions that can be managed
by agents as follows:

• enableIoT: This method allows the IoT Artifact to become an IoT Object in the RMA and
communicate directly with RML. Thus, it implements the IoT Object’s Initialization
Algorithm 1 and Cycle Algorithm 2. For this, it uses the Device’s configuration file—to
share its resources with RML—and network address information to initializes the IoT
Object in the RML and start its Cycle.

• percepts: The external action responsible for reading hardware sensor’s data. It uses a
serial interface to gather sensor’s data and convert them into Observable properties—
artifacts’ variables that can be perceived by agents. All agents who access this artifacts



Sensors 2021, 21, 8110 16 of 25

will have the data converted as beliefs. Finally, it implements the Data buffer building
process of IoT Object’s Cycle Algorithm 2 (line 5).

• act: It is the external action responsible for sending a command to an actuator using a
serial interface. All agents who want to control the actuator will inform the artifact
of the Resource’s Command name. Finally, it implements the onAction process of IoT
Object’s Cycle in Algorithm 2 (line 4).

In the A&A approach, the Communicator Agent is responsible for communicating
with RML and Artifacts for interfacing hardware. Nevertheless, in the IoT Artifact ap-
proach, the Communicator Agent is no longer used. Instead, the IoT Artifact assumes the
control of the information flowing between the RML and the hardware. Even so, agents
can still read Data accessing Physical Artifacts’ Observable properties and perform actions
using the act operation.

3.3.4. Technologies Employed

The RMA employs different technologies for integrating all three of its layers. They
allow embedded systems to manage and control hardware, IoT Object communication with
RML, and client requisitions. Our architecture demands an IoT infrastructure that should
be provided by any IoT middleware that deals with device connection and reconnection,
message exchanges from clients instances (in our case, IoT Objects and Clients) to the
cloud, security issues, and scalability. The IoT middleware plays a major role since it is
responsible for the main functionalities that allow virtualization and data consumption by
clients. We adopted the ContextNet [14] middleware as the IoT infrastructure for RMA.

ContextNet is a middleware that provides a context service in the publish/subscribe
model for large-scale collaborative applications between entities such as smartphones,
vehicles, autonomous mobile robots, etc. Its communication and context distribution
capabilities are implemented in the Scalable Data Distribution Layer (SDDL). ContextNet
also deals with the main data communication issues, such as fault tolerance, network load
balancing, support for disconnecting nodes, and security. The data transfer occurs using
two protocols: MR-UDP for exchanging messages between the gateway and clients [33]
and OMG DDS for data distribution within the network core [34].

The embedded system could also employ any technology available since it complies
with the protocol and adopts a client instance of the IoT middleware chosen. In our case,
we chose the JaCaMo framework as the cognitive embedded system because it has two
dimensions used by IoT Objects—Agents and Artifacts—and provides an organizational
model [35] that could be used in future approaches. We adopt the Javino [36] as the
serial interface for accessing sensors and actuators since it was developed specifically for
embedded systems for Java and JaCaMo.

Both RML and Client’s application adopts ContextNet as part of their implementation.
The former uses a server instance to receive data messages from IoT Objects and actions
from clients. The latter just uses a client instance for sending actions. All data consumed
by clients are retrieved directly from VCDB, which uses a NoSQL database, the MongoDB.

4. Experimental Evaluation

The three proposed engineering approaches aim to provide more autonomy by adopt-
ing embedded MAS in the edge of an IoT system using the RMA. Since the RMA construc-
tions and all approaches are intended to run on real devices in physical infrastructure, we
present a study case in a home garden scenario where all characteristics proposed in this
paper are implemented in hardware, presented, and discussed. After that, we perform
some latency tests to evaluate if there is any difference by adopting one or another approach
considering our scenario.

4.1. A Home Garden Scenario

The essential resources for a plant to survive are water and light, but for any plant to
reach a high level of productivity, these resources must be adequately balanced not to lack



Sensors 2021, 21, 8110 17 of 25

or exceed. Other aspects must also be observed when cultivating plants, such as the soil pH
level and soil moisture. All this information can be used to understand whether the plant
will survive and bear fruit or wilt and die. Thus, in a scenario where an inexperienced user
is trying to start a vegetable garden in his house, a device that gathers essential information
about the garden environment could help this user once it is possible to obtain all the
available information from a distance and also interact with this garden.

An inexperienced user could also forget to water the plants or could be too busy
to do that. In this case, a cognitive system embedded in a device could bring some
advantages since it can obtain information, process it, and make the necessary changes
autonomously, benefiting the home garden. It can makes the plants’ care easier by making
human intervention unnecessary to perform simple tasks. In addition, any user could
also be far from his garden in a critical moment, for example, if the day is too hot and it
is necessary to turn on the irrigator manually. Then, functionalities in this home garden
for controlling actuators and verifying information remotely would be interesting and
necessary. For this to happen, the device must be connected to some network, making
it possible to share data, make it available to the user, and allowing the user to send
commands to be executed by the device. Thus, this user will adopt the RMA for managing
its home garden.

Therefore, we assembled an IoT Object composed of an actuator for irrigation and
four sensors to measure the soil’s pH level, soil moisture, luminous incidence, and tempera-
ture (Figure 4). The sensors and actuators are connected to an ATMEGA 328 microcontroller,
which in turn is connected to a Raspberry Pi Zero. This board stores the Embedded MAS
that interfaces hardware and communicate with the RML. All the data collected by the
MAS are used for the decision making that aims to guarantee the home garden’s survival.
In all engineering approaches, this decision process is performed by agents in the IoT
Object. In the Agents and A&A approaches, even if the home garden owner sends actions,
agents can deliberate before redirecting these actions to the microcontroller. For example,
if the soil is already wet, it is not necessary to irrigate again. However, in the IoT Artifact
Approach, the user has more control, and agents do not interfere in Actions, which will
all be executed by the IoT Artifact. The IoT Object’s technological architecture is seen in
Figure 5.

Figure 4. The IoT Object in the garden scenario is composed of an actuator for irrigation and sensors
to measure soil’s pH level, soil moisture, luminous incidence, and temperature.

We adopt this home garden scenario as Proof-of-Concept of the engineering ap-
proaches presented. For this, one embedded MAS was implemented for each approach
using the IoT Object hardware configuration (presented above). Moreover, the RML was
executed in a regular machine, with an i7 processor and 8 GB of RAM. The IoT Object was
executed in a Raspberry Pi Zero, with a Broadcom BCM2835 of 1 GHZ and 512 MB of RAM.
For the scenario, all the clients’ Actions were performed using a Graphical User Interface
(GUI) in JavaFX to create Actions in VCDB.



Sensors 2021, 21, 8110 18 of 25

Figure 5. The technological view of components considering the IoT Objects employed in tests and
the Engineering approaches in extended RMA.

4.2. The Embedded Processing Cost Tests

The scenario ran as proof-of-concept worked as expected, achieving the purpose of
managing a home garden autonomously by the IoT Objects and dealing with some user’s
actions when necessary. However, it is important to observe that the Embedded MAS
running on top of IoT Objects could influence the system performance. In fact, knowing the
impact that an intelligent system on the edge of an IoT system causes could help designers
and programmers choose the best approach to tackle certain domains. One way is to
measure the cognitive system processing cost during the execution of the scenario.

Considering this, during the proof-of-concept execution, we considered the following
business rules: the temperature cannot be below 10 ◦C or above 35 ◦C to ensure the
plantation will stay alive in the home garden scenario, and the Ph level must be between
5 and 5.8. In addition, the moisture must be at an acceptable level to not drown or dry
the plant. The Embedded MAS uses these business rules to decide when to turn on the
sprinkler or send an alarm to the client. The MAS will turn on the sprinkler when the agent
perceives the soil as dry and will turn it off when the soil is wet or raining. Finally, the
MAS notifies the clients about the sprinkler operation status and the moisture, Ph, and
temperature status (whether it is out of range or not).

The Embedded MAS Processing Cost (EMPC)—representing the time agents and
artifacts from the Embedded MAS take to interface hardware, reason, and communicate—
is calculated differently for each approach, considering Physical and Communicator agents,
Physical Artifacts, and IoT Artifacts. The EMPC includes the time from the hardware
collected data until the message is sent to the RML. Each approach implements the business
rules described previously and has its EMPC measured based on 200 messages sent to
RML. The Table 2 shows the results obtained based on the following configuration:

1. Agent Approach: It employs one Physical Agent using ARGO, a JaCaMo exten-
sion [37] for interfacing hardware and collecting information from the home garden; a
mediator agent, which receives the information collected from the Physical Agent and
processes them; and one Communicator Agent, which receives the information from
the mediator and sends to the RML. The EMPC is composed of the Physical, Mediator,
and Communicator Agents’ processing cost. The time capturing begins when the
Physical Agents gather hardware perceptions and stops when the Communicator
Agent sends information to the RML.



Sensors 2021, 21, 8110 19 of 25

2. A&A Approach: It uses a Physical Artifact to collect data from the physical envi-
ronment; one Mediator Agent, which accesses the Physical Artifact and processes
information collected; and one Communicator agent, which receives the information
from the mediator and sends it to the RML. The EMPC is composed of the Data arrival
at the Physical Artifact, the Mediator Agent capturing and reasoning cost, and the
Communicator cost of sending the information to the RML.

3. IoT Artifact Approach: It employs a Physical Artifact to collect and send the data to
RML and a MAS to process the data and make decisions locally. The MAS analyzes
the data and interfaces only with the Physical Artifact, not interfering in collecting or
sending data to the RML. For this approach, the EMPC is calculated considering the
Data arrival at the Physical Artifact and when Data leave this artifact.

Table 2. Performance tests’ results of the engineering approaches after 200 messages sent.

Physical Agent IoT Artifact Comm. Agent
EMPC BEMPCavg sd avg sd avg sd

Agent 1.6452 0.5207 - - 3.2457 1.3523 4.8910 3.9998
A&A - - 0.4209 0.2134 3.6688 1.0355 4.0897 1.7628
IoT Art. - - 2.0438 0.9211 - - 2.0438 2.0438

The codification of both agents and artifacts uses all traditional commands from
JaCaMo and those presented in this research. In the Agent Approach, the Physical agent
uses the customized internal actions to open the perceptions capture and select which serial
port to access. In addition, it can act directly in hardware by using the internal action act.
The mediator agent is a typical agent who deals with all the information received from the
Physical and Communicator agents. The Communicator agent uses the sendToRml new
internal action to send information from its belief base to the RML. It also connects to the
RML by using the connect to RML new internal action. Considering the hardware and
RML interface, everything else is transparent for the IoT designer and MAS programmer.
Figures 6 and 7 show an adapted and reduced version of the implementation.

Figure 6. The Agent Approach code.



Sensors 2021, 21, 8110 20 of 25

In the A&A Approach, there is no Physical agent. Only the Mediator and Communica-
tor agents exist, but the former one is slightly different. The difference is that the Mediator
agent is configured to access the Physical Artifact to update the beliefs by accessing the
external action percepts and activate actuators by accessing the external action act. The
Communicator agent remains the same. In the IoT Artifact Approach, the Mediator agent
is responsible for accessing the IoT Artifact and acting upon it if necessary. There is no need
to employ communicator agents since the data transmission is in charge of IoT Artifacts.
In addition, the IoT Artifact also performs hardware interfacing. Using Physical or IoT
Artifacts is the same as using typical artifacts in JaCaMo. All hardware interfacing and
data transmission are transparent from the point of view of agents.

Figure 7. The A&A and IoT Artifact Approach codes.

Comparing the Agent and the A&A approach, physical agents are the most costly
because they need to interface hardware, process the captured perceptions as beliefs, and
deliberate which plan activate while performing its reasoning cycle. An artifact does not
have to deliberate which plan activates based on perceptions coming from sensors. It is
accessed by any agent who needs to access data or perform actions using actuators. In
addition, in the Agent approach, the Communicator agent receives data from Physical
agents and processes them as beliefs, whereas in the A&A approach, it accesses the artifact
to gather the available information also as beliefs. In both cases, the cost is practically the
same. The EMPC from approaches that use agents (Agent and A&A approach) doubles
compared to the IoT Artifact approach because, in the latter one, artifacts send data directly
to the RML without any processing or interference from the MAS.

Analyzing the approaches and their applicability, the Agent and the A&A approaches
are suitable when the system needs more autonomy in the edge, and improved data must
be sent to RML instead of raw data. Non-cognitive systems usually send just raw data,
which is the exact value coming from sensors. Agents can improve this information by



Sensors 2021, 21, 8110 21 of 25

reasoning upon it and getting into an elaborated conclusion. For example, a temperature
sensor provides a value, but it does not inform if it is hot or cold. The main difference
between these approaches is that, in the Agent approach, dedicated agents deal with
hardware interfacing and reasoning (centralized behavior). In the A&A approach, all
agents from the Embedded MAS can access the available artifacts if they are not busy
(decentralized behavior). The IoT Artifact approach is applicable when there is a need to
send data directly to the RML, but it is still important to maintain MAS interference in the
edge locally (independent behavior).

4.3. The RMA Performance Tests

The RMA performance tests calculate the elapsed time between the IoT Object and
RML’s communication. The objective is to analyze the communication and processing
latency of the extended RMA by implementing the new algorithms and a NoSQL database.
The results of this test will be discussed and compared with the classic RMA (presented in
Section 3) performance tests.

We created 50 simulated IoT Objects and 1 RML server. We obtained the timestamps
for sending messages to the RML, the RML reception, and VCDB data registering for each
IoT Object. These messages can come from the initialization process or the Data buffer of
the IoT Object’s cycle. The test produced two different results: messages generated with a
one-second time interval and a five-second time interval. For each result, 3500 messages
were registered.

We built the same correlations performed for the classic RMA from the test result to
analyze and compare them. The test result is shown in three charts: one relating the number
of IoT Objects with the time of sending messages to RML adopting a one-second time
interval (chart a from Figure 8), another one doing the same relation but with a five-second
time interval (chart b from Figure 8), and the last one relating the RML processing time in
seconds with the total amount of messages arrived at it (Figure 9).

Figure 8 shows two line charts (one-second and five-second time intervals) relating
the connection time in seconds—ordinate axis—and the number of IoT Objects sending
messages to RML—abscissa axis. In both, two series represent the time in seconds as a
function of the IoT Objects’ number, the black series being the results of Classic RMA and
the blue series the Refactored RMA. Figure 9 shows the chart relating the processing time
in second in the RML with 3500 messages received. This chart also contains two series: the
black for the Classic RMA and the blue for Refactored RMA.

Considering the IoT Objects connecting themselves in RML and then sending messages
with a time interval of 1 s, as the IoT Objects request to connect, they obtain a fast response
since few IoT Objects are trying to connect and send messages that the RML must deal
with. Since it is the first time that IoT Objects are requesting connections, there will not
be competition once the number of messages and IoT Objects treated by RML are low.
Once every IoT Object is connected, it starts sending messages, and the RML has to deal
with both connection requisitions and message processing. As more IoT Objects connect in
RML, the time response increases linearly, as seen from 10 to 50 in Figure 8a. There is some
instability in the IoT Objects’ connection in the Refactored RMA as they request and start
to send messages. However, the time response does not grow over as more IoT Objects
become part of the system, and it tends to stay so proving that this new refactored version
of RMA overcomes one of the main concerns of adopting the proposed architecture, the
RMA scalability.

When the time interval is increased up to 5 s, there is no difference from the former
analysis. In the Classic RMA, as the IoT Objects connect and send messages, the response
time increases significantly—from 20 to 30 IoT Objects—and then stabilizes in about 60 s.
In the Refactored RMA, the response time from the RML started at 8 s and then decreased
to below 1 second, and then it stabilizes to about 1 s, as seen in Chart b from Figure 8. The
connection response time also tends to stay the same. However, stressing the RMA with
up to thousands of IoT Objects could give a better perspective of the range of a system



Sensors 2021, 21, 8110 22 of 25

adopting the architecture. For instance, we assert that the RMA is suitable for domains
employing 50 to 100 IoT Objects since most of them do not need to send messages all the
time. First, because there is an Embedded MAS to decide whether to send some information
to RML, the information can take some time to change, for example, the temperature or if
it is raining or not.

Another characteristic observed was the message processing time in RML. Every
message that arrives from IoT Objects in RML is processed as a registering request or
Data message. Connections requests take more time to be processed than messages since
all resources and IoT Object basic information must be inserted in VCDB if it is the first
time the IoT Object registers in the RML. The Classic RMA takes about 1 s to process
the first messages, which includes the connection requests. The Refactored RMA takes a
half-second for the same processing, but peaks over 2 seconds occur. After all IoT Objects
have connected in RMA, the processing time stabilizes to about 0.2 s for the Classic RMA
and below 0.1 in the Refactored RMA. It is important to remark that a stack of messages is
to be processed as IoT Objects connect and start sending messages. Moreover, there is the
network latency between IoT Objects and RML. However, the processing time associated
only with RML is satisfactory, and it tends to stay so if the messages continue to increase,
as seen in Figure 9.

(a) (b)
Figure 8. Connection time comparison between the RMA and the refactored RMA: (a) considering
1 s interval of messages; (b) considering considering an up to 5 s interval of messages.

Figure 9. The comparison between RML’s message processing time.

5. Final Considerations Include (in a Point-Wise Manner) 3–5 Main Findings of
This Research

This paper presented three engineering approaches using embedded MAS in IoT Ob-
jects supported by an extended IoT architecture for devices virtualization. This embedded
cognitive system can reason to provide autonomy and pro-activity to the IoT Object at the
edge of the system. Adopting a whole embedded MAS into an IoT Object is not a simple
task since it is necessary to provide interfaces for hardware control, IoT communication,
and communication with other IoT Objects. Actually, traditional approaches use one agent
to control all devices’ functionalities or centralized approaches, which imply high depen-



Sensors 2021, 21, 8110 23 of 25

dency. This paper presented approaches for programming embedded MAS using JaCaMo
framework extensions capable of creating communicator agents able of sending data to an
IoT server and exchanging messages with other IoT Objects and agents to interface hard-
ware. As JaCaMo allows programming the agent’s endogenous environment dimension by
using artifacts, two extensions of artifacts were presented for controlling hardware and
sending perceptions directly to the RML of the proposed architecture.

The three engineering approaches aim to facilitate and diversify the designer’s choice
in how to assemble and employ the IoT Objects in physical environments considering some
characteristics such as heterogeneity, hardware availability, latency, data availability, and
user’s needs. In the Agent approach, the agents of the embedded MAS are responsible for
all IoT Object’s behaviors, from capturing sensors’ data to sending them to the RML. It
provides a high level of autonomy and pro-activity to the device and allows it to interfere
pervasively in the physical environment without depending on other layers. However,
sometimes agents that interface hardware could be overloaded if the number of sensors
and actuators grows. In the A&A approach, the physical artifacts presented in this paper
collect information from sensors, and the MAS is responsible for reasoning and delivers
it to the RML. It provides democratic access to sensors and actuators since any agent can
access an available artifact.

However, the communication is still specialized, where the proposed communicator
agent is responsible for interfacing with the RML in the IoT network. It still provides
autonomy and pro-activity to IoT Objects removing possible bottlenecks in accessing
hardware, but only one agent responsible for all communications with the RML and other
IoT Objects could be overloaded, as well. Finally, the IoT Artifact approach uses physical
artifacts to collect and send information to the RML. The embedded MAS is responsible
only for acting at the edge of the system for guaranteeing autonomy and pro-activity.
The information is sent directly to the RML in a raw format, without any reasoning or
interference of agents. It loses processing and reasoning but transfers to the upcoming
layers the interpretation of the data collected.

The advantage of using the Agent approach is to specialize agents to overcome pro-
cessing bottlenecks compared to single agent-based implementations. It is recommended
as an embedded system when few agents need to receive sensor data and there is no
competition for accessing the same sensors. By adopting the A&A approach, any agent
can access the physical artifact and any competition the artifact itself can deal with. In
both the Agent and the A&A approaches, the sensors data need to get to the agents before
getting to the RML, but agents can reason upon the raw data to produce a better and more
comprehensive perception. They are recommended when understanding the environment
is a priority. Last but not least, the IoT Artifact approaches sends sensors’ data directly to
RML, prioritizing the data availability instead of understanding.

We presented a case study using a home garden scenario to measure and analyze the
processing cost of the proposed engineering approach, and we also considered how long
the message takes to reach the RML and its processing cost. We considered all the Data
transitions and processing in all three approaches—from hardware to specialized agents
and artifacts and IoT Artifacts—for understanding the behaviors of each one of them. In
addition, a comparison is shown between this version and the previous one. From the
tests, it was possible to state that the engineering approaches are suitable for implement-
ing embedded MAS at the edge of an IoT system. Moreover, the presented refactored
RMA proved to be more efficient and scalable considering the response, processing time,
and projections.

For future works, it is possible to adapt the RMA for creating a mechanism for
transferring plans between the embedded MAS of IoT Objects. Since BDI agents are
capable of learning new plans at runtime—especially when using JaCaMo—a new type
of message could be created to address plans. In this case, any agent with a particular set
of sensors could ask for some plan implementation to any IoT Object with the same set
of sensors. It is an interesting issue when considering that plans could evolve during the



Sensors 2021, 21, 8110 24 of 25

lifetime of IoT Objects. Therefore, another issue that the RMA could address is Planning.
A mechanism for creating new plans or refining and improving existing ones based on
past experiences and user preferences could extend the applicability of embedded MAS
and IoT in some domains. For example, in Industrial applications, it is essential that
the manufacturing does not stop for some maintenance and setups, or it could be costly
to perform a software update in hardware, e.g., deep underwater hardware. Another
possibility is also to use Machine Learning in the RML to generate plans for the embedded
MAS. All these generated and improved plans could also be shared between IoT Objects.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES) Grant number 001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The RML developed in Java is available at https://github.com/
TuringResearch/rma-Java (accessed on 26 October 2021). The JaCaMo extension for programming
Argo and Communicator agents, Physical Artifacts, and IoT Artifacts are available at https://github.
com/TuringResearch/jacamo-4-rma (accessed on 26 October 2021). All details for installing the em-
ployed technologies are described in the readme of each repository. The performance test results files
are also available for download in the readme file of the test branch of each project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Information Resources Management Association. The Internet of Things: Breakthroughs in Research and Practice; Critical Explorations;

IGI Global: Hershey, PA, USA, 2017.
2. Wooldridge, M.J. Reasoning about Rational Agents; MIT Press: Cambridge, MA, USA, 2000.
3. Pantoja, C.E.; Soares, H.D.; Viterbo, J.; El Fallah-Seghrouchni, A. An Architecture for the Development of Ambient Intelligence

Systems Managed by Embedded Agents. In Proceedings of the Software Engineering & Knowledge Engineering, San Francisco,
CA, USA, 1–3 July 2018; pp. 214–215.

4. Manoel, F.; Pantoja, C.E.; Samyn, L.; de Jesus, V.S. Physical Artifacts for Agents in a Cyber-Physical System: A Case Study
in Oil & Gas Scenario (EEAS). In Proceedings of the 32nd International Conference on Software Engineering and Knowledge
Engineering, SEKE 2020, KSIR Virtual Conference Center, Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, 9–19 July
2020; García-Castro, R., Ed.; KSI Research Inc.: Pittsburgh, PA, USA, 2020; pp. 55–60. [CrossRef]

5. Amaral, C.J.; Cranefield, S.; Hübner, J.F.; Roloff, M.L. Giving Camel to Artifacts for Industry 4.0 Integration Challenges.
In Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection, PAAMS 2019; Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11523, pp. 232–236.

6. Ferri, G.; Caselli, E.; Mattoli, V.; Mondini, A.; Mazzolai, B.; Dario, P. A biologically-inspired algorithm implemented on a new
highly flexible multi-agent platform for gas source localization. In Proceedings of the First IEEE/RAS-EMBS International
Conference on Biomedical Robotics and Biomechatronics, 2006. (BioRob 2006), Pisa, Italy, 20–22 February 2006; pp. 573–578.

7. Issicaba, D.; Rosa, M.; Prostejovsky, A.; Bindner, H. Experimental validation of BDI agents for distributed control of electric
power grids. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe, Turin,
Italy, 26–29 September 2018; pp. 1–6. [CrossRef]

8. Pantoja, C.E.; Soares, H.D.; Viterbo, J.; Alexandre, T.; Seghrouchni, A.E.F.; Casals, A. Exposing IoT Objects in the Internet Using
the Resource Management Architecture. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 1703–1725. [CrossRef]

9. Stabile, M.F., Jr.; Pantoja, C.E.; Sichman, J.S. Experimental analysis of the effect of filtering perceptions in BDI agents. Int. J.
Agent-Oriented Softw. Eng. 2018, 6, 329–368. [CrossRef]

10. Bordini, R.H.; Hübner, J.F.; Wooldridge, M. Programming Multi-Agent Systems in AgentSpeak Using Jason; John Wiley & Sons:
Hoboken, NJ, USA, 2007; Volume 8.

11. Ricci, A.; Viroli, M.; Omicini, A. Programming MAS with artifacts. In Proceedings of the International Workshop on Programming
Multi-Agent Systems, Utrecht, The Netherlands, 26 July 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 206–221.

12. Boissier, O.; Bordini, R.H.; Hübner, J.F.; Ricci, A.; Santi, A. Multi-agent oriented programming with JaCaMo. Sci. Comput. Program.
2013, 78, 747–761. [CrossRef]

13. Bratman, M.E. Intention, Plans and Practical Reasoning; Cambridge Press: Cambridge, UK, 1987.

https://github.com/TuringResearch/rma-Java
https://github.com/TuringResearch/rma-Java
https://github.com/TuringResearch/jacamo-4-rma
https://github.com/TuringResearch/jacamo-4-rma
http://doi.org/10.18293/SEKE2020-154
http://dx.doi.org/10.1109/ISGTEurope.2017.8260273
http://dx.doi.org/10.1142/S0218194019400175
http://dx.doi.org/10.1504/IJAOSE.2018.096434
http://dx.doi.org/10.1016/j.scico.2011.10.004


Sensors 2021, 21, 8110 25 of 25

14. Endler, M.; Baptista, G.; Silva, L.; Vasconcelos, R.; Malcher, M.; Pantoja, V.; Pinheiro, V.; Viterbo, J. ContextNet: Context reasoning
and sharing middleware for large-scale pervasive collaboration and social networking. In Proceedings of the Workshop on
Posters and Demos Track, Lisbon, Portugal, 12 December 2011; ACM: New York, NY, USA, 2011; p. 2.

15. Semwal, T.; Nair, S.B. AgPi: Agents on Raspberry Pi. Electronics 2016, 5, 72. [CrossRef]
16. Villarrubia, G.; Paz, J.F.; Iglesia, D.H.D.L.; Bajo, J. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring

Crop Irrigation. Sensors 2017, 17, 1775. [CrossRef] [PubMed]
17. Singh, M.P.; Chopra, A.K. The internet of things and multiagent systems: Decentralized intelligence in distributed computing. In

Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA,
5–8 June 2017; pp. 1738–1747.

18. Zheng, S.; Zhang, Q.; Zheng, R.; Huang, B.Q.; Song, Y.L.; Chen, X.C. Combining a Multi-Agent System and Communication
Middleware for Smart Home Control: A Universal Control Platform Architecture. Sensors 2017, 17, 2135. [CrossRef] [PubMed]

19. Siefke, L.; Sommer, V.; Wudka, B.; Thomas, C. Robotic Systems of Systems Based on a Decentralized Service-Oriented Architecture.
Robotics 2020, 9, 78. [CrossRef]

20. Ayala, I.; Amor, M.; Fuentes, L.; Troya, J.M. A Software Product Line Process to Develop Agents for the IoT. Sensors 2015,
15, 15640–15660. [CrossRef] [PubMed]

21. Zschörnig, T.; Wehlitz, R.; Franczyk, B. A Fog-enabled Smart Home Analytics Platform. In Proceedings of the ICEIS, Heraklion,
Crete, Greece, 3–5 May 2019; pp. 616–622.

22. Barriuso, A.L.; Villarrubia G, G.; De Paz, J.F.; Lozano, A.; Bajo, J. Combination of Multi-Agent Systems and Wireless Sensor
Networks for the Monitoring of Cattle. Sensors 2018, 18, 108. [CrossRef] [PubMed]

23. Gomes, L.; Almeida, C.; Vale, Z. Recommendation of Workplaces in a Coworking Building: A Cyber-Physical Approach
Supported by a Context-Aware Multi-Agent System. Sensors 2020, 20, 3597. [CrossRef] [PubMed]

24. Alexakos, C.; Kalogeras, A.P. Internet of Things integration to a multi agent system based manufacturing environment.
In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg,
8–11 September 2015; pp. 1–8.

25. Bellifemine, F.L.; Caire, G.; Greenwood, D. Developing Multi-Agent Systems with JADE; John Wiley & Sons: Hoboken, NJ, USA,
2007; Volume 7.

26. Martin, J.; Casquero, O.; Fortes, B.; Marcos, M. A Generic Multi-Layer Architecture Based on ROS-JADE Integration for
Autonomous Transport Vehicles. Sensors 2019, 19, 69. [CrossRef] [PubMed]

27. Taboun, M.S.; Brennan, R.W. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network. Sensors 2017,
17, 2112. [CrossRef] [PubMed]

28. Iglesia, D.H.D.L.; Villarrubia González, G.; Sales Mendes, A.; Jiménez-Bravo, D.M.; L. Barriuso, A. Architecture to Embed
Software Agents in Resource Constrained Internet of Things Devices. Sensors 2019, 19, 100. [CrossRef]

29. Savaglio, C.; Fortino, G.; Zhou, M. Towards interoperable, cognitive and autonomic IoT systems: An agent-based approach.
In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016;
pp. 58–63.

30. Fortino, G. Agents meet the IoT: Toward ecosystems of networked smart objects. IEEE Syst. Man Cybern. Mag. 2016, 2, 43–47.
[CrossRef]

31. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a service model for smart cities supported by internet of
things. Trans. Emerg. Telecommun. Technol. 2014, 25, 81–93. [CrossRef]

32. Bratman, M. Intention, Plans, and Practical Reason; Harvard University Press: Cambridge, MA, USA, 1987; Volume 10.
33. David, L.; Roriz, M.; Endler, M. MR-UDP: Yet another Reliable User Datagram Protocol, now for Mobile Nodes. Monogr. Ciência

Comput. 2013, 1200, 6–13.
34. Pardo-Castellote, G. Omg data-distribution service: Architectural overview. In Proceedings of the 23rd International Conference

on Distributed Computing Systems Workshops, Providence, RI, USA, 19–22 May 2003; pp. 200–206.
35. Hübner, J.F.; Sichman, J.S.; Boissier, O. Developing organised multiagent systems using the MOISE+ model: Programming issues

at the system and agent levels. Int. J. Agent-Oriented Softw. Eng. 2007, 1, 370–395. [CrossRef]
36. Lazarin, N.M.; Pantoja, C.E. A Robotic-Agent Platform for Embedding Software Agents Using Raspberry pi and Arduino Boards; 9th

Software Agents; Environments and Applications School: Niterói, Brasil, 2015.
37. Pantoja, C.E., Jr.; Stabile, M.F.; Lazarin, N.M.; Sichman, J.S. ARGO: An Extended Jason Architecture that Facilitates Embedded

Robotic Agents Programming. In Proceedings of the 4th International Workshop, EMAS 2016, Singapore, 9–10 May 2016; Baldoni,
M., Müller, J.P., Nunes, I., Zalila-Wenkstern, R., Eds.; Revised, Selected, and Invited Papers, Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2016; Volume 10093, pp. 136–155. [CrossRef]

http://dx.doi.org/10.3390/electronics5040072
http://dx.doi.org/10.3390/s17081775
http://www.ncbi.nlm.nih.gov/pubmed/28767089
http://dx.doi.org/10.3390/s17092135
http://www.ncbi.nlm.nih.gov/pubmed/28926957
http://dx.doi.org/10.3390/robotics9040078
http://dx.doi.org/10.3390/s150715640
http://www.ncbi.nlm.nih.gov/pubmed/26140350
http://dx.doi.org/10.3390/s18010108
http://www.ncbi.nlm.nih.gov/pubmed/29301310
http://dx.doi.org/10.3390/s20123597
http://www.ncbi.nlm.nih.gov/pubmed/32630575
http://dx.doi.org/10.3390/s19010069
http://www.ncbi.nlm.nih.gov/pubmed/30585212
http://dx.doi.org/10.3390/s17092112
http://www.ncbi.nlm.nih.gov/pubmed/28906452
http://dx.doi.org/10.3390/s19010100
http://dx.doi.org/10.1109/MSMC.2016.2557483
http://dx.doi.org/10.1002/ett.2704
http://dx.doi.org/10.1504/IJAOSE.2007.016266
http://dx.doi.org/10.1007/978-3-319-50983-9_8

	Introduction
	Related Works and Motivations of This Work
	Resource Management Architecture
	Definitions and Working Details
	The MAS Engineering Approaches
	Extending the RMA and Implementing the Approaches
	The Extended RMA
	The Communicator Agent Extension
	The IoT Artifact Extension
	Technologies Employed


	Experimental Evaluation
	A Home Garden Scenario
	The Embedded Processing Cost Tests
	The RMA Performance Tests

	Final Considerations Include (in a Point-Wise Manner) 3–5 Main Findings of This Research
	References

