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Abstract: The employment of smart meters for energy consumption monitoring is essential for
planning and management of power generation systems. In this context, forecasting energy consump-
tion is a valuable asset for decision making, since it can improve the predictability of forthcoming
demand to energy providers. In this work, we propose a data-driven ensemble that combines five
single well-known models in the forecasting literature: a statistical linear autoregressive model
and four artificial neural networks: (radial basis function, multilayer perceptron, extreme learning
machines, and echo state networks). The proposed ensemble employs extreme learning machines as
the combination model due to its simplicity, learning speed, and greater ability of generalization in
comparison to other artificial neural networks. The experiments were conducted on real consumption
data collected from a smart meter in a one-step-ahead forecasting scenario. The results using five
different performance metrics demonstrate that our solution outperforms other statistical, machine
learning, and ensembles models proposed in the literature.

Keywords: energy consumption; smart metering; forecasting; Box and Jenkins models; neural
networks; ensembles

1. Introduction

The interest in energy consumption in residential buildings has increased over the
past years due to advances in home technology, economic technologies, and population
growth [1]. Consumption profiles contribute with the elevated consumption since time
indoors has increased due to the possibility of a home office [1]. Moreover, residential
energy constitutes over 27% of global energy consumption [2,3] and over 40% of the
consumption in United States and European Union [4].

Considering the amount of energy required in residential buildings, the employment
of smart meters has become an important feature for planning and management of power
generation systems [5]. Smart meters not only enable occupants to have insights of their
own consumption patterns, but also provide useful information to energy suppliers in order
to perform better planning of energy load. In this scenario, energy forecasting is considered
an important tool for planning and decision making processes [6]. Its main challenge,
however, is the high volatility of data concerning individual households. Consumption
data can present different patterns since it can be influenced by external factors such as
consumer profiles, weather, and the season of the year [7]. Moreover, the choice of an
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appropriate model can also affect the quality of forecasts. In fact, according to [2], only a
1% reduction in forecasting errors can have positive impacts in the economy.

Traditional linear forecasting models such as the autoregressive integrated moving
average (ARIMA) and exponential smoothing (ETS) have being explored in the context
of energy forecasting in smart meters [8,9]. ARIMA models assume a linear correlation
structure among past data. As a result, it presents reduced accuracy when dealing with
nonlinear data. In contrast, nonlinear models such as artificial neural networks (ANNs)
and support vector machines (SVMs) can deal with nonlinear patterns in time series, but
it may not deal with all patterns equally well due to problems of model misspecification,
overfitting, and underfitting [10].

In the light of the limitations of linear and nonlinear models when individually em-
ployed and the high volatility characteristics presented in smart meter data, hybrid systems
have being proposed in order to overcome such limitations and produce more accurate
forecasts [2,4]. In particular, ensemble models take into consideration a pool of forecasting
models, where the forecasts are combined in order to improve the forecasting quality.
However, in order to achieve an improvement in performance, the pool of forecasting
models must be accurate, uncorrelated, and diverse [11]. The intuition is that the strengths
of a model may compensate the weaknesses of another, mitigating the risk of selecting a
single unsuitable model.

There are two important steps in building ensemble systems: model generation and
forecast combination. An ensemble can be composed of multiple models of the same
method (homogeneous ensemble) or by different methods (heterogeneous ensemble).
However, different diversity generation approaches can be employed to improve the
accuracy of the ensemble. Diversity generation methods, such as bagging, perform random
sampling bootstraps of the original training data in order to train each model. They are
often employed in homogeneous ensembles [12]. In heterogeneous ensembles, the diversity
is achieved through the employment of different forecasting methods. The combination of
forecasts can be trainable or non trainable. Nontrainable combination models comprehend
several statistical operators such as mean, median, and mode. Combination through the
median and mode is less sensible to the presence of outliers than by the mean [13].

Trainable combinations can explore the flexibility of nonlinear models such as ANNs
and SVRs in such a way that a meta-data is created based on the predictions produced by
the pool of forecasters. In this way, the combination based on nonlinear trainable methods is
trained on training data, allowing the combinator to generalize to unseen data, performing
combinations of future forecasts of the base models. This strategy maps nonlinear relations
between forecasts, but also brings an overhead of parameters, which might increase the
computational complexity of the overall hybrid system.

Taking into consideration the volatility in energy consumption data from smart meters,
the limitations of the forecasting models proposed in the literature and the computational
complexity required in the training phase of nonlinear trainable combinations, this work
proposes a heterogeneous ensemble composed of a pool of models with different charac-
teristics, combined using an extreme learning machine (ELM) [14] model. We use ELM
in our solution since it presents less computational complexity and fewer configurable
parameters than traditional machine learning methods such as ANNs and SVRs [14].

More specifically, the proposed method presents the following advantages:

• The diversity of the ensemble is introduced by the employment of different forecasting
methods such as autoregressive (AR), multilayer perceptron (MLP), extreme learning
machine (ELM), radial basis function (RBF), and echo state network (ESN).

• The combination step employs an ELM model in order to map nonlinear relations
between forecasts and to perform more accurate combinations.

• The proposed method is versatile, since different forecasting methods can be used in
the pool, and then combined by the ELM.

Our solution is employed in the context of smart metering data and compared with
traditional models and different forecasting combination methods proposed in the liter-
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ature. The experiments are conducted taking into consideration different consumption
patterns present in the data. The results demonstrated that the proposed method achieved
better results than single models and other ensembles with different combinations.

The remainder of this article is structured as follows: Section 2 presents an overview of
the related works, Section 3 details the proposed ensemble method and its components. The
experimental setup and results are discussed in Section 4 and the Conclusion is presented
in Section 5.

2. Related Work

The development of systems based on ML models has been highlighted in the energy
forecasting area [15]. In this area, electricity load and energy consumption forecasts have
received great attention due to their relationship to demand, supply, and environmental
issues [16,17]. In general, electricity load forecasting tasks have a major impact on the
planning, operating, and monitoring power systems. The accuracy of the forecasts can
impact operation costs since an overestimation can increase the number of generators
employed and produce an unnecessary reserve of electricity. The underestimation of
electricity load can put at risk the system’s reliability due to insufficient load required to
attend the demanding market [18]. In the same way, electricity consumption forecasting
models can improve energy efficiency and sustainability in diverse sectors such as in
residential buildings [19–21] and in industry [22,23].

In order to achieve accurate electricity load forecasts several machine learning (ML)
models have been employed in this task [24–26]. Models such as ANNs based on wavelets [24],
long short-term memory (LSTM), random forests [25], and ensembles [26] have been
investigated.

Likewise, energy consumption forecasting systems based on ML models have been
used in the literature. Culaba et al. [19] employed a hybrid system based on clustering and
forecasting using K-Means and SVR models, respectively. Deep learning models such as
convolution neural networks (CNN) were employed by [20] for energy consumption fore-
casts in the context of new buildings with few historical data. Pinto et al. [21] used ensemble
models to forecast energy consumption in office buildings. Walther and Weigold [22] per-
formed a systematic review of the literature on energy consumption forecasting models in
the industry.

Considering the literature of energy consumption forecasting on smart metering
data, several ML methods have been investigated. In this context, Gajowniczek and
Zabkowski [27] employed MLP and SVR models to forecast the consumption on individual
smart meters. For that, their solution extracts features related to the meter’s consumption
history (e.g., average, maximum and minimum load) and the temperature inside the house.
They argued that they do not perform a traditional time series modeling due to the high
volatility of their data.

Zhukov et al. [28] investigated the effects of concept drift in smart grid analysis. A
random forecast algorithm for concept drift was employed, and an ensemble using the
weighted majority vote rule was used to combine the outputs of individual learners. The
proposed method was compared to other algorithms in the concept drift detection context,
obtaining promising results.

Electricity pricing and load forecasting are important tasks in smart grid structures
due to the improvements of efficiency in the management of electric systems [17,29,30].
In this scenario, Heydari et al. [29] proposed a hybrid system based on variational mode
decomposition (VMD), gravitational search algorithm (GSA), and general regression neural
networks (GRNN). The VMD performs the series’s decomposition into several intrinsic
mode functions (IMFS), while the GSA performs a feature selection in the time series.
Furthermore, considering the importance of electricity load forecasting in electric systems,
this task can also be performed in individual households through the employment of smart
metering technologies [31,32]. In this way, Li et al. [33] employed a convolutional long
short-term memory-based neural network with selected autoregressive features to improve
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forecasting accuracy. Fekri et al. [32] used deep learning models based on online adaptive
recurrent neural networks, considering that energy consumption patterns may change over
time. In addition, several load forecasting applications have been addressed, such as peak
alert systems [34], where a modified support vector regression is employed, using smart
meter data and weather data as input.

Another work that deals with smart metering forecast [7], investigated the effects of
factors such as seasonality and weather condition for electricity consumption prediction
using different ML models: regression trees, MLP and SVR. Their findings show that:
regression trees obtain the lowest root mean squared error (RMSE) values in almost all
evaluated scenarios; adding weather data does not improve the results; and a historical
window of one year to train the models is enough to achieve low-error forecasts.

Sajjad et al. [35] propose a deep-learning model for hourly energy consumption fore-
cast of appliances and houses. The input data is processed using min-max normalization or
z-score standardization, which is fed into a convolutional neural network (CNN) followed
by a recurrent neural network (RNN), specifically a gated recurrent unit (GRU). Finally, a
dense layer on top of the GRU outputs the prediction. They do not provide, however, any
details about their strategy of selecting the hyper-parameters of the network.

Similarly, Wang et al. [36] employ an long short-term memory (LSTM) model that
outputs quantile probabilistic forecasts. For training, the network minimizes the average
quantile loss for all quantiles. The input of the network is composed of the historical
consumption, the day of the week and hour of the day of the data point to be predicted.
Similar to [35], the process of selection of nodes and layers of the network is not presented.

In addition, hybrid systems have gained attention due to their ability to increase
the accuracy of the single ML models [16,37]. These systems are developed aiming to
overcome the limitations of single ML models regarding misspecification, overfitting, and
underfitting [10]. In this sense, Somu et al. [38] employed the K-means clustering-based
convolutional neural networks and long short term memory (KCNN-LSTM) to forecast
energy consumption using data from smart meters. In this work, the K-means is employed
to identify tendency and seasonal patterns in the time series, while the CNN-LSTM is used
in the forecasting process.

Chou and Truong [39] proposed a hybrid system composed of four steps: linear time
series modeling, nonlinear residual modeling, combination, and optimization. The param-
eter selection process for the models employed in the first three steps is performed through
a Jellyfish Search (JS) optimization algorithm [40]. Bouktif et al. [41] employed a genetic
algorithm (GA) and particle swarm optimization (PSO) to search for hyperparameters of
the LSTM in load forecasting tasks.

The proposed hybrid system differs from the hybrid systems proposed in the literature
since it employs a GA to perform the optimization of the residual forecasting model and
the combination model. Furthermore, the optimization also selects the most relevant lags
to reduce model complexity and enhance forecasting accuracy.

3. Proposed Ensemble Method

Ensembles are elaborated in order to improve the final response from of the single
trained models (specialists) combining their outputs [42]. The idea is that each single model
presents a better performance for some subset of the input data. Hence, a combination
model can use each best single output to generate a more accurate final response [43,44].
Figure 1 summarizes the general idea of the proposed ensemble, presenting its two main
steps: training and test.

In the training step, the single and combination models are adjusted to improve some
performance measure. First, the single models (M1, M2, . . . , M5) are trained from training
instances (Xtr) that contain the time lags of the time series and the respective desired output.
Then, the combination models are trained to fuse the single models’ forecasts in order to
minimize the difference between the desired output and the ensemble forecast according
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to the performance measure. Each combination model receives a data set that combines
the forecasts of the training pattern of the single models for each desired output of Xtr.

In the test step, given an unseen test pattern Xq, every single model generates one
forecast X̂M

q+1. This set of forecasts is then passed to the combination model, which generates

the final forecast X̂q+1.
In our solution, the pool of single models employed by the proposed ensemble method

comprises the statistical linear AR and four well-known ML models: MLP, ELM, RBF, and
ESN [45] The AR model assumes a linear correlation structure in the data; therefore it can
not perform nonlinear mappings. MLP, ELM, RBF, and ESN are flexible, data-driven, and
able to perform nonlinear mappings. The MLP employs a multilayered architecture in
order to learn from data, while the ELM uses a single hidden layer. The ESN has feedback
loops of information in the hidden layer. The RBF is based on the locality learning principle
since Gaussian functions are often employed as activation functions in the hidden units.
Thus, these models represent different architectures in the energy consumption literature
and were chosen due to promising results in time series forecasting tasks, especially those
related to electricity [45–49].

In the proposal, the combination of the forecasts is performed using an ELM model.
Therefore, since the combination is performed by a trainable method, the data set used for
its training process is composed of the predictions of the pool (XM1

tr , XM2
tr , XM3

tr , XM4
tr , XM5

tr )
and the target output value. After the training process is complete, the ELM model
performs the combination of the forecasts achieved by the pool in the test set (X̂M1

q+1, X̂M2
q+1,

X̂M3
q+1, X̂M4

q+1, X̂M5
q+1) to generate the final forecast of the system X̂q+1.

M1

M2

M3

M4

M5

ELMSmart 
Metering 

Data

Xtr

Xtr
M1^

Xtr
^

Pool of Forecasting Models
Training Step

Xq
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^
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Figure 1. Model of the proposed ensemble.
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Considering that ML models may present problems such as model mispecification,
overfitting, and underfitting [10], ensemble methods can further increase the accuracy of
the base models through of combination approaches. The errors could be decomposed
to assure an adequate performance of the method, it is a crucial condition that the single
models also present accurate performance and diversity in the response [50–52].

Let f̄ be the ensemble and Xq+1 be the target output, the overall forecasting error of
the ensemble can be decomposed as presented in Equation (1), where the first term of the
right hand side of the equation represents the difference between the forecast and the target
output, which is often referred to as bias, whereas the latter term represents the stability of
the model in unseen samples, and is often referred to as variance.

E{(f̄(X)− Xq+1)
2} = (E{f̄(X)} − Xq+1)

2 + E{(f̄(X)− E{f̄(X)})2}. (1)

The employment of ensemble methods through averaging forecasts allows a decrease
of the variance without increasing the bias term, therefore increasing the generalization
capacity of the forecasting system [53]. The literature presents many different combiners,
such as average, weighted voting, and using ML methods [50–52].

The following sections describe in further details the single and combination models
employed in the proposed ensemble method.

3.1. Single Model: Autoregressive Model

The autoregressive Model belongs to the framework of the linear Box and Jenkins
methodology. It is one of the most widely known approaches due to its good results
presented in the literature and simple parameters’ adjustment, with is based on a closed
form solution [54].

Let xt be a sample of a time series, and xt−p its p-th lag (delay). We define the autore-
gressive model of order p (AR(p)) as the weighted combination of p lags of observation xt,
as in Equation (2) [54]:

Given any value xt of a time series, the delay p is defined with xt−p. An autoregressive
process of order p (AR(p)) is defined as the linear combination of p delays of observation
xt, with the addition of a white Gaussian noise at, as showed in Equation (2):

x̃t = φ1 x̃t−1 + φ2 x̃t−2 + . . . + φp x̃t−p + at (2)

where at are white Gaussian noises (shocks) or the inherent error of the prediction,
x̃t = xt − µ (µ is the average of the series), φp is the weighting coefficient for the lag p.

The solution of the Yule–Walker equations is given in matrix form by Equation (3):

Φp = P−1
p ρp (3)

in which we can expand the elements as in Equation (4):

Pp =


1 ρ1 . . . ρp−1
ρ1 1 . . . ρp

. . . . . . . . . . . .
ρp−1 ρp−2 . . . 1

ρp =


ρ1
ρ2
...

ρp

Φp =


φ1
φ2
...

φp

 (4)

where ρp is the coefficients of the autocorrelation function of the series.

3.2. Single Model: Multilayer Perceptron (MLP)

Undoubtedly, the multilayer perceptron (MLP) is the most used artificial neural
network architecture for nonlinear mapping due to its versatility and applicability [43].
Endowed of a set of artificial neurons organized in at least three multiple layers (input,
hidden, and output layers), the MLP is a feedforward neural model.
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The training of an MLP consists of tune the weights of the neuron to provide an
adequate mapping between the inputs and the desired response [55,56]. The literature
presents many methods to adjust an MLP, usually based on unconstrained nonlinear
optimization. The most known method is the steepest decent algorithm in which the
gradient vector is calculated using the backpropagation algorithm [57,58]. However, in this
work we address the modified scaled conjugated gradient, a second order method [47].

The steps involved in the training of the MLP consists of two main iterative phases.
The first one is a forward progression, in which the inputs data is propagated in the
neural model until the achievement of the outputs. Next, the instant error regarding such
outputs is calculated, using the desired output response. In the second step, the weights are
adjusted from the output layer to the input layer, following the assumed optimization rule.
In this sense, the error provided by the MLP in the next iteration is smaller. The kind of
adjustment that uses a desired signal lies in the framework of the supervised training [59].

3.3. Single Model: Echo State Networks (ESN)

Designed in 2001, the echo state networks (ESN) are a kind of recurrent neural net-
work since they have feedback loops of information in the hidden layer. This intrinsic
characteristic may bring gains in the performance of the neural models when the inputs
present temporal dependence, as in time series forecasting [60,61].

Recurrent models present different response depending on their internal state. The
convergence proof of the ESN shows that the most recent inputs and the previous states
influences more the output response of the network. Hence, Jaeger [60] used the term echo
to describe the echo state propriety [62], which demonstrates the conditions for the network
to present echo states.

Similar to MLP, the original ESN presents three layers. The hidden layer is named
dynamic reservoir. This layer presents fully interconnected neurons, which are responsible
to generate the nonlinear characteristic. The output layer combines the responses of the
reservoir. Only the reservoir presents feedback loops in the original proposal. For each
new input ut+1 the internal states of the ESN are updated following Equation (5):

xt+1 = f(Winut+1 + Wxt) (5)

where xt+1 are the states in time t + 1, f(·) = ( f1(·), f2(·), f3(·), . . . , fN(·)) the activations
of reservoir neurons, and Win the weights of the input layer.

The output response yt+1 is according to Equation (6):

yt+1 = Woutxt+1 (6)

in which Wout ∈ RL×N is the matrix containing all weights of the output layer, and L is the
number outputs.

The weights of an ESN in the dynamic reservoir are not adjusted in the training
phase. The Moore–Penrose pseudo-inverse operator (Equation (9)) is used to determine
the coefficients of Wout.

To create the dynamic reservoir, we use the original idea from Jaeger [60]. In this case,
the weight matrix is composed of 3 possible values, which are randomly chosen according
to the following probabilities:

Win
ki =


0.4 with a probability of 0.025
−0.4 with a probability of 0.025
0 with a probability of 0.95

(7)

3.4. Single Model: Radial Basis Function Network (RBF)

The radial basis function networks (RBF) is another classic ANN architecture. It has
only one hidden and one output layer. In the hidden layer, all kernel functions (activation)
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are radial-based, and the Gaussian function is the most used [59]. This function is in
Equation (8):

ϕ(u) = e−
(u−c)2

2σ2 (8)

where c the center of Gaussian, and σ2 the corresponding variance which is a function of
the center position.

To adjust an RBF, it is necessary to follow two steps. In the first stage the synaptic
weights of the intermediate layer are determined, and the center is adjusted to the value of
the base variance of each function. This stage is adjusted by an unsupervised clustering
approach [59]. In this work, we used the K-Medoids method. The second step involves the
calculation of the weights of the output layer [63]. There are some possible approaches to
perform this task. The most usual is the use of the backpropagation algorithm, as in MLP.
Another possibility is the direct application of the Moore–Penrose pseudo-inverse operator
(Equation (9)) [59], which is the one we chose in this work.

3.5. Single Model: Extreme Learning Machine (ELM)

Extreme learning machine (ELM) is a feedforward neural network architecture similar
to the traditional MLP. The main difference lies in the training procedure, while we adjust
all neural weights in the MLP, in the ELM, just the output layer is trained using a supervised
approach. In addition, the ELM presents just one hidden layer [14].

In this sense, the neurons in the hidden layer are randomly generated and stands
untuned. The training of an ELM is summarized in finding the weights of the output layer
Wout that lead the networks response to the smallest error regarding the desired output
d [14]. The usual way to solve this task is use a closed form solution, the Moore–Penrose
pseudo-inverse operator. Besides the small computational cost involved in its application,
the operator ensures minimum mean square error between the network response and the
desired output. This solution is in Equation (9):

Wout = (XT
hidXhid)

−1XT
hidd (9)

in which Xhid ∈ R|x|×NN is the matrix containing all outputs of the hidden layer for the
training set, and NN is the number of neurons in the output layer [14].

4. Experimental Evaluation

In the next sections, the experimental protocol and results are described. Section 4.1
presents the data set used in the experiments, Section 4.2 details the preprocessing and
postprocessing stages used in the forecasting process, Section 4.3 describes the procedure
of parameters selection and Section 4.4 shows the performance metrics used in the experi-
mental evaluation. Sections 4.5 and 4.6 present the simulation results and some remarks
are discussed, respectively.

4.1. Data Description

The energy consumption data used in this investigation were collected by a smart
meter installed in a residential building located in New Taipei City (Taiwan) [64]. The
residents are two adults and three children. The floor total area occupied is 350 m2.

The sampling used was 15 min for 30 days, from 22 June 2015 to 26 July 2015. Thus,
four samples are recorded in one hour, with 96 points in one single day (24 h), and totaling
2880 points in 30 days. It is important to highlight that the original data set presented one
missing sample, which was completed using the average of the neighbor points.

The data set was divide into three subsets, maintaining the temporal order: training
(1824 samples or 19 days), validation (384 samples or four days), and test (672 samples or
seven days). The AR model adjustment considered the first two subsets as one. Table 1
shows the statistical description of the whole series and the respective subsets.
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Table 1. Mean and standard deviation of the sets.

Set Number of Samples Mean (kWh) Standard Deviation

Whole Series 2880 0.20077 0.10115
Training 1824 0.20794 0.10238

Validation 384 0.19789 0.10065
Test 672 0.18296 0.09579

4.2. Preprocessing and Postprocessing Stages

Energy consumption time series can be sampled weekly, daily, hourly, or minutely.
As mentioned, the data used in this work was sampled every 15 min. This series presents
a seasonal pattern every 96 points or an entire day. We performed a deseasonalization
procedure that transforms the original series into approximately stationary, with zero
mean and standard deviation close to one. This process changes the statistical behavior
of the series, which may improve the output response of the forecasting models. In
addition, the linear models from the Box and Jenkins methodology assume that the series
is stationary [62]. The deseasonalization is given by Equation (10):

zi,s =
xi,s − µ̂s

σ̂s
(10)

in which zi,s is the new standardized value of the i element of the original series xi,s, µ̂s is
the average of the elements of the series considering the seasonal pattern s, and σ̂s is the
standard deviation.

All steps involved in the forecasting process of the consumption time series are
summarized in Figure 2. The preprocessing stage is initiated after defining the time lags
of the series, which are the inputs of the models. After that, deseasonalization is applied.
Finally, a procedure to normalize the data into the interval [−1,+1] is performed. This
normalization is mandatory for neural models that use hyperbolic tangent as activation
function. After the preprocessing stage, the forecasting model generates the prediction
based on the normalized inputs.

Smart 
Metering 

Data

Deseasonalization Normalization

Xt

Preprocessing Phase
Xt

D

Xt
N

Forecasting Model

Reverse 
Transformation Reseasonalization

Posprocessing Phase

Xt+1
^

Xt+1
N

Xt+1
N^

^

Figure 2. Stages of preprocessing and postprocessing employed in the modeling of the forecasting
method.
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In the postprocessing stage, the normalization and deseasonalization are reversed,
leading to time series data to the original domain. With forecasts in the original domain at
hand, the comparison with the actual series is performed to evaluate the models’ errors.

4.3. Experimental Setup

In this investigation, the experimental evaluation was performed using as single
methods AR, MLP, ELM, ESN, and RBF. The proposed ensemble method also was compared
with three distinct combination approaches: the mean and the median of the single models’
outputs (non-trainable methods), and MLP [45,65].

As a baseline, we applied the seasonal autoregressive integrated moving average
model (SARIMA) from the Box and Jenkins family [54], a classic linear model widely
used in time series analysis. The parameters of the model were defined following the
methodology proposed by Hyndman and Khandakar [66,67].

The parameters of the models addressed in this work were defined following some
premises:

• The coefficients of the AR model were calculated using the Yule–Walker equations, a
closed-form solution [54];

• All artificial neural networks used hyperbolic tangent as activation function of the
hidden neurons [59];

• The number of neurons in the hidden layer was determined by previous empirical
tests, considering a range of [3:500].

• All models were implemented in Matlab®.

Finally, The partial autocorrelation function (PACF) was applied to define the number
of temporal lags used as inputs of the single models. Its application reveals that the
first seven lags are significant, being adequate to solve the task. Therefore, all models
employed a sliding window containing seven input lags in the forecasting of the electricity
consumption dataset [54,68].

4.4. Error Metrics

For performing a comparative analysis among the forecasting models we adopted
five error metrics: mean squared error (MSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean squared error (RMSE), and index of agreement (IA),
which are described in Equations (11) to (15), respectively [67]:

MSE =
1
N ∑(xt − x̂t)

2, (11)

MAE =
1
N ∑|xt − x̂t|, (12)

RMSE =

√
1
N ∑(xt − x̂t)2, (13)

MAPE =
100
n ∑

∣∣∣∣ xt − x̂t

xt

∣∣∣∣, (14)

IA = 1−

N
∑

t=1
(xt − x̂t)2

N
∑

t=1
(|x̂t − x|+ |xt − x|)2

. (15)

In all equations, N is the number of samples, xt is the actual data, and x̂t is the
predicted sample in time t. The MSE is a quadratic error measure which penalizes higher
errors, but is sensible to outliers. The RMSE is less sensible to outliers, since the root
square of the MSE is calculated. Likewise, MAE offers an error metric closer do the scale of
the data. Furthermore, MSE, RMSE, and MAE are scale dependent error metrics [67]. In
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contrast, MAPE and IA are not scale dependent. Note that all metrics must be minimized,
except IA, which must be maximized in the range [0, 1].

4.5. Results

Table 2 shows the values of the five error metrics (MSE, MAE, MAPE, RMSE, and IA)
attained by the evaluated models for each day of the week. It is possible to observe that the
approaches based on ensemble reached the best results in most of the cases (27 out of 35).
The proposed ensemble ELM attained the best error values in 19 out of 35 comparisons.
These results show the superiority of the proposal regarding statistical and ML models of
the literature. The proposed ensemble obtained the best value in all weekdays in at least
one performance metric. For instance, on Wednesday, Thursday, and Sunday, the ensemble
ELM achieved the best values in majority of the performance measures. The single model
ESN and the ensemble MLP reached the second-best result with the lowest error value in 5
out of 35 cases.

Considering the maximum value on all days of the week in Table 2, the ensemble ELM
attained the best performance in terms of MAE, MAPE, and IA. Regarding the minimum
value on all days of the week, the proposed ensemble achieved the best results in the MAE
and IA metrics. The numbers show that the forecasts generated by the proposed ensemble
presented stability on the different weekdays. These findings corroborate the hypothesis
that supports the adoption of the ensemble in the forecasting task.

Table 3 shows the performance metrics values achieved by the models considering
all days of the week. The results show that ensemble ELM attained the best values in all
performance measures. The single ELM model obtained the second-best ranking in the
MSE, MAE, RMSE, and IA metrics. The ensemble MLP attained the second-best MAPE
value. The third-best value for the MSE, MAE, and RMSE were reached by the ensemble
mean. The single models MLP and ESN achieved the third-best value for the MAPE and
IA measures, respectively.

In order to verify if the proposed ensemble attained results statistically different from
the other models, three hypothesis tests were used for this evaluation: Friedman test,
Kruskal–Wallis test, and Wilcoxon test [69,70]. A significance level of 0.05 was employed
in all hypothesis tests.

The statistical evaluation was performed from the MSE values obtained by the models
in 30 independent executions, considering that some employed forecasting models, such
as MLP, ELM, and ESN, have their parameters randomly initialized. In the literature,
30 samples are often considered sufficiently large and representative to perform the statis-
tical analysis [71,72]. The p-values found were 2.65 × 10−39 and 1.06 × 10−43 for Friedman
and Kruskal–Wallis tests, respectively. The Wilcoxon hypothesis test was employed to
compare the results pairwise. In this case, the ensemble ELM (the best general model)
and the ELM (the best single model) were compared with each forecasting model. Table 4
shows the p-values. In summary, considering the three tests addressed, we can assure
that a change in the forecasting model led to distinct results since all p-values are smaller
than 0.05.

4.6. Discussion

Many aspects can be discussed about the forecasting responses and errors presented
in this evaluation. Table 5 was elaborated to present a ranking regarding the values of the
metrics achieved by the predictors. The column Mean presents the average of the positions
in the ranking considering all metrics, while column Rank presents a ranking ordering the
predictors.

The most important result is that the proposed ensemble ELM achieved the best
overall results considering all metrics. This result corroborates with assumptions that
support the use of the ELM as the combination model. In addition, among the first four
best predictors, we have three ensembles. However, as the results show, a change in the
combiner may lead to poor performances, as presented by the MLP.
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Comparing the single ML models, the ELM attained the best value in 4 out 5 perfor-
mance metrics. Although the ELM is the “unorganized” version of the MLP neural network
or a feedforward version of the ESN, the ELM model presented a superior accuracy among
the single approaches. Furthermore, it is the second-best predictor, overcoming 3 of 4
ensembles employed in the experimental evaluation.

Table 2. The performance results in terms of the MSE, MAE, MAPE, RMSE, and IA metrics of the proposed Ensemble and
literature models for each day of the week. The best values are highlighted in bold.

Si
ng

le

Model Measure Monday Tuesday Wednesday Thursday Friday Saturday Sunday Max Min

SARIMA

MSE (×10−3 kWh) 2.8720 2.7614 3.3822 2.9381 1.7513 2.0152 2.2561 3.3822 1.7513
MAE (kWh) 0.0325 0.0332 0.0359 0.0353 0.0217 0.0288 0.0246 0.0359 0.0217
MAPE (%) 15.8363 14.2251 17.1321 19.2733 13.2665 16.0358 14.9922 19.2733 13.2665

RMSE (kWh) 0.0535 0.0525 0.0581 0.0542 0.0418 0.0448 0.0474 0.0581 0.0418
IA 0.8400 0.8991 0.9272 0.8162 0.8970 0.9296 0.9419 0.9419 0.8162

AR

MSE (×10−3 kWh) 1.1708 1.8802 1.9812 1.8478 2.2187 3.4516 2.2879 3.4516 1.1708
MAE (kWh) 0.0225 0.0297 0.0234 0.0300 0.0281 0.0355 0.0337 0.0355 0.0225
MAPE (%) 14.3075 17.0181 14.9965 16.1628 11.8905 15.8668 19.7286 19.7286 11.8905

RMSE (kWh) 0.0342 0.0434 0.0445 0.0430 0.0471 0.0588 0.0478 0.0588 0.0342
IA 0.9355 0.9304 0.9568 0.9027 0.9202 0.9285 0.8827 0.9568 0.8827

MLP

MSE (×10−3 kWh) 1.1413 1.7036 1.8264 1.7168 2.1059 3.2103 1.9979 3.2103 1.1413
MAE (kWh) 0.0217 0.0282 0.0216 0.0286 0.0289 0.0332 0.0304 0.0332 0.0216
MAPE (%) 13.5270 15.7165 12.6500 15.4307 12.3867 14.9471 17.9853 17.9853 12.3867

RMSE (kWh) 0.0338 0.0413 0.0427 0.0414 0.0459 0.0567 0.0447 0.0567 0.0338
IA 0.9367 0.9375 0.9583 0.9100 0.9260 0.9325 0.9000 0.9583 0.9000

ELM

MSE (×10−3 kWh) 1.1526 1.6701 1.7890 1.7343 2.0591 3.1423 1.8294 3.1423 1.1526
MAE (kWh) 0.0209 0.0271 0.0222 0.0285 0.0292 0.0329 0.0287 0.0329 0.0209
MAPE (%) 12.7378 15.2818 13.9267 15.4566 12.6752 14.6467 17.0593 17.0593 12.6752

RMSE (kWh) 0.0340 0.0409 0.0423 0.0416 0.0454 0.0561 0.0428 0.0561 0.0340
IA 0.9356 0.9383 0.9594 0.9091 0.9284 0.9322 0.9079 0.9594 0.9079

ESN

MSE (×10−3 kWh) 1.1806 1.5424 1.7851 1.7948 1.9928 3.3204 2.0896 3.3204 1.1806
MAE (kWh) 0.0213 0.0269 0.0220 0.0293 0.0279 0.0336 0.0305 0.0336 0.0213
MAPE (%) 12.9235 15.4666 13.9666 15.9643 11.9069 14.9907 18.2586 18.2586 11.9069

RMSE (kWh) 0.0344 0.0393 0.0423 0.0424 0.0446 0.0576 0.0457 0.0576 0.0344
IA 0.9345 0.9460 0.9605 0.9044 0.9320 0.9320 0.8964 0.9605 0.8964

RBF

MSE (×10−3 kWh) 1.7832 1.7691 3.0669 2.1245 2.2380 3.4564 2.5668 3.4564 1.7691
MAE (kWh) 0.0261 0.0287 0.0326 0.0313 0.0313 0.0368 0.0322 0.0368 0.0261
MAPE (%) 15.2994 15.4352 22.0301 17.4932 13.7047 17.3610 20.1081 22.0301 13.7047

RMSE (kWh) 0.0422 0.0421 0.0554 0.0461 0.0473 0.0588 0.0507 0.0588 0.0421
IA 0.8957 0.9364 0.9243 0.8828 0.9245 0.9242 0.8633 0.9364 0.8633

En
se

m
bl

e

Ensemble Mean

MSE (×10−3 kWh) 1.1632 1.6345 1.8150 1.7466 2.0379 3.1300 1.9460 3.1300 1.1632
MAE (kWh) 0.0216 0.0277 0.0220 0.0289 0.0282 0.0325 0.0300 0.0325 0.0216
MAPE (%) 13.0506 15.4767 13.5962 15.7273 12.1594 14.2690 17.7973 17.7973 12.1594

RMSE (kWh) 0.0341 0.0404 0.0426 0.0418 0.0451 0.0559 0.0441 0.0559 0.0341
IA 0.9342 0.9404 0.9583 0.9061 0.9289 0.9336 0.8992 0.9583 0.8992

Ensemble Median

MSE (×10−3 kWh) 1.1378 1.6290 1.8093 1.7949 2.0108 3.1865 1.9856 3.1865 1.1378
MAE (kWh) 0.0215 0.0279 0.0214 0.0294 0.0281 0.0332 0.0303 0.0332 0.0214
MAPE (%) 13.2260 15.7893 13.1504 15.9486 12.1569 14.8732 17.9705 17.9705 12.1569

RMSE (kWh) 0.0337 0.0404 0.0425 0.0424 0.0448 0.0564 0.0446 0.0564 0.0337
IA 0.9365 0.9409 0.9593 0.9046 0.9291 0.9329 0.8992 0.9593 0.8992

Ensemble MLP

MSE (×10−3 kWh) 1.1588 1.5856 1.7507 1.7038 1.9816 3.0892 1.7540 3.0892 1.1588
MAE (kWh) 0.0210 0.0266 0.0219 0.0278 0.0292 0.0319 0.0275 0.0319 0.0210
MAPE (%) 12.7435 14.9182 13.5774 15.2293 12.6736 14.1799 16.2368 16.2368 12.6736

RMSE (kWh) 0.0340 0.0398 0.0418 0.0413 0.0445 0.0556 0.0419 0.0556 0.0340
IA 0.9357 0.9428 0.9592 0.9095 0.9300 0.9328 0.9117 0.9592 0.9095

Ensemble ELM

MSE (×10−3 kWh) 1.2162 1.7898 1.5592 1.7071 1.9356 3.4034 1.5598 3.4034 1.2162
MAE (kWh) 0.0217 0.0261 0.0203 0.0278 0.0303 0.0296 0.0243 0.0303 0.0203
MAPE (%) 12.5109 15.0994 12.1248 14.8702 13.2287 13.0881 13.8786 15.0994 12.1248

RMSE (kWh) 0.0349 0.0423 0.0395 0.0413 0.0440 0.0583 0.0395 0.0583 0.0349
IA 0.9321 0.9382 0.9624 0.9124 0.9300 0.9249 0.9263 0.9624 0.9124
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Table 3. MSE, MAE, MAPE, RMSE, and IA values for the evaluated models. The number of neurons used by each neural
network is shown in the NN column. The performance corresponds to the whole test set of the energy consumption series.
The best value for each metric is highlighted in bold.

Model NN MSE (×10−3 kWh) MAE (kWh) MAPE (%) RMSE (kWh) IA

Si
ng

le

SARIMA - 2.5675 0.0303 15.4004 0.0506 0.9129
AR - 2.1195 0.0290 15.7090 0.0460 0.9318

MLP 200 1.9574 0.0275 14.5376 0.0442 0.9391
ELM 120 1.9110 0.0271 14.5393 0.0437 0.9405
ESN 40 1.9579 0.0274 14.7819 0.0442 0.9402
RBF 60 2.4292 0.0310 17.1017 0.0493 0.9226

En
se

m
bl

e Ensemble Mean - 1.9247 0.0273 14.5826 0.0439 0.9373
Ensemble Median - 1.9363 0.0274 14.7307 0.0440 0.9375

Ensemble MLP 40 2.1671 0.0284 14.2228 0.0466 0.9358
Ensemble ELM 60 1.8817 0.0257 13.5424 0.0434 0.9410

Table 4. p-values of the Wilcoxon statistical test comparing the Ensemble ELM and ELM with the
other forecasting models.

Models p-Value (Ensemble ELM) p-Value (ELM)

Ensemble ELM — 0.0013
ELM 0.0013 —

SARIMA 1.21 × 10−12 1.21 × 10−12

AR 7.47 × 10−10 0.0045
MLP 0.0241 0.0323
ESN 1.72 × 10−6 0.0478
RBF 3.01 × 10−11 3.01 × 10−11

Ensemble Mean 1.91 × 10−7 3.35 × 10−11

Ensemble Median 2.05 × 10−5 3.35 × 10−11

Ensemble MLP 8.48 × 10−9 1.35 × 10−7

Table 5. Ranking of the models for each performance metric in the energy consumption forecasting.

Model MSE (kWh) MAE (kWh) MAPE (%) RMSE (kWh) IA Mean Rank

Si
ng

le

SARIMA 10 9 8 10 10 9.4 9
AR 7 8 9 7 8 7.6 8

MLP 5 6 3 5 4 4.6 5
ELM 2 2 4 2 2 2.4 2
ESN 6 4 7 6 3 5.2 6
RBF 9 10 10 9 9 9.4 9

En
se

m
bl

e Ensemble Mean 3 3 5 3 6 4 3
Ensemble Median 4 5 6 4 5 4.8 4

Ensemble MLP 8 7 2 8 7 6.4 7
Ensemble ELM 1 1 1 1 1 1 1

The autoregressive (AR) model attained the best result regarding the five performance
metrics between the linear approaches. The AR also obtained a superior performance to
the RBF model in all metrics and the MLP model in terms of MSE and RMSE. The results
show that nonlinear ML models or ML-based ensembles are more appropriate for this kind
of problem. The energy consumption time series can have nonlinear patterns [7] that are
not properly modeled by linear techniques, such as AR or SARIMA. However, ML models’
adoption can also lead to underperforming results due to problems regarding overfitting,
underfitting, or misspecification [59]. These issues can be related to the poor performance
of the RBF model or the result of the combination using the MLP model that was not able
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to overcome the nontrainable ensembles (ensemble mean and ensemble median). It is also
important to mention that the computational cost to adjust the ELM and ESN is smaller
than the fully trained models, such as MLP and RBF.

Figure 3 presents the boxplot of 30 simulations of each predictor. As expected, the
SARIMA, AR, ensemble mean, and ensemble median do not present dispersion, since
they present closed form solutions. It is interesting to note that the MLP showed a small
dispersion, followed by the ESN. Regarding the median of the values, it is important to
mention that the 3 best ensembles presented the best results, followed by the MLP.

Finally, Figure 4 depicts the real energy consumption time series, and the forecast-
ing provided by the ensemble ELM (the best overall predictor) and the ELM, the best
single model.

Figure 3. Boxplot graphic.

Figure 4. Energy consumption forecasting obtained by the ELM and ensemble ELM.
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5. Conclusions

Energy consumption time series may present present linear and non-linear patterns,
which hinders models to achieve accurate predictions. In this sense, the use of ensembles
stood out in the current literature due to their high capability to increase the prediction
power of stand-alone forecasting models. Based on that, we propose in this work neural-
based ensembles for energy consumption forecasting.

More specifically, we use in this investigation as predictors the linear AR, and neural
networks architectures: MLP, ELM, ESN, and RBF. As a combiner, we employ the non-
trainable ensembles based on mean and median, and the MLP and ELM. As a baseline we
address the SARIMA model.

The experimental evaluation was conduced by using a series from a residential build-
ing containing a installed smart grid network. Before the simulations, we applied a
deseasonalization procedure in order to make the series stationary. The computational
results showed that the ELM-based ensemble outperformed the other proposals in terms of
five distinct error metrics. In addition, the single ELM stood out in comparison to the other
single approaches. This is an important observation, since the ELM is a neural network
with a simple training process, which confers a fast adjustment of the free parameters of
the architecture.

As possible future directions, variable selection techniques can be applied to define
the best lags as inputs of the forecasting models, and error correction hybrid models can be
used to produce more accurate models. Finally, the propositions of this work should be
tested in other databases related to energy consumption.
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27. Gajowniczek, K.; Ząbkowski, T. Short term electricity forecasting using individual smart meter data. Procedia Comput. Sci. 2014,
35, 589–597. [CrossRef]

28. Zhukov, A.V.; Sidorov, D.N.; Foley, A.M. Random forest based approach for concept drift handling. In International Conference on
Analysis of Images, Social Networks and Texts; Springer: Berlin/Heidelberg, Germany, 2016; pp. 69–77.

29. Heydari, A.; Nezhad, M.M.; Pirshayan, E.; Garcia, D.A.; Keynia, F.; De Santoli, L. Short-term electricity price and load forecasting
in isolated power grids based on composite neural network and gravitational search optimization algorithm. Appl. Energy 2020,
277, 115503. [CrossRef]

30. Heydari, A.; Garcia, D.A.; Keynia, F.; Bisegna, F.; Santoli, L.D. Hybrid intelligent strategy for multifactor influenced electrical
energy consumption forecasting. Energy Sources Part B Econ. Plan. Policy 2019, 14, 341–358. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2014.11.066
http://dx.doi.org/10.3390/en11040949
http://dx.doi.org/10.1016/j.enbuild.2015.12.033
http://dx.doi.org/10.3390/en14185831
http://dx.doi.org/10.1016/j.apenergy.2017.07.114
http://dx.doi.org/10.1007/s40595-018-0119-7
http://dx.doi.org/10.1016/j.seta.2021.101474
http://dx.doi.org/10.1016/j.neunet.2005.06.003
http://dx.doi.org/10.1016/j.ijpe.2018.05.019
http://dx.doi.org/10.1016/j.ins.2021.08.085
http://dx.doi.org/10.1016/j.eswa.2013.12.011
http://dx.doi.org/10.1109/TSMCB.2011.2168604
http://dx.doi.org/10.1016/j.scs.2019.102010
http://dx.doi.org/10.1016/j.rser.2017.02.085
http://dx.doi.org/10.1109/MSP.2012.2186531
http://dx.doi.org/10.1002/er.5523
http://dx.doi.org/10.1016/j.enbuild.2020.110156
http://dx.doi.org/10.1016/j.neucom.2020.02.124
http://dx.doi.org/10.3390/en14040968
http://dx.doi.org/10.1016/j.neucom.2015.12.004
http://dx.doi.org/10.1016/j.renene.2021.02.017
http://dx.doi.org/10.1016/j.epsr.2020.106265
http://dx.doi.org/10.1016/j.procs.2014.08.140
http://dx.doi.org/10.1016/j.apenergy.2020.115503
http://dx.doi.org/10.1080/15567249.2020.1717678


Sensors 2021, 21, 8096 17 of 18

31. Yu, C.N.; Mirowski, P.; Ho, T.K. A sparse coding approach to household electricity demand forecasting in smart grids. IEEE
Trans. Smart Grid 2016, 8, 738–748. [CrossRef]

32. Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive
Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [CrossRef]

33. Li, L.; Meinrenken, C.J.; Modi, V.; Culligan, P.J. Short-term apartment-level load forecasting using a modified neural network
with selected auto-regressive features. Appl. Energy 2021, 287, 116509. [CrossRef]

34. Komatsu, H.; Kimura, O. Peak demand alert system based on electricity demand forecasting for smart meter data. Energy Build.
2020, 225, 110307. [CrossRef]

35. Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A novel CNN-GRU-based hybrid approach for
short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [CrossRef]

36. Wang, Y.; Gan, D.; Sun, M.; Zhang, N.; Lu, Z.; Kang, C. Probabilistic individual load forecasting using pinball loss guided LSTM.
Appl. Energy 2019, 235, 10–20. [CrossRef]

37. Zhang, L.; Wen, J.; Li, Y.; Chen, J.; Ye, Y.; Fu, Y.; Livingood, W. A review of machine learning in building load prediction. Appl.
Energy 2021, 285, 116452. [CrossRef]

38. Somu, N.; Raman M R, G.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew.
Sustain. Energy Rev. 2021, 137, 110591. [CrossRef]

39. Chou, J.S.; Truong, D.N. Multistep energy consumption forecasting by metaheuristic optimization of time-series analysis and
machine learning. Int. J. Energy Res. 2021, 45, 4581–4612. [CrossRef]

40. Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021,
389, 125535. [CrossRef]

41. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load
forecasting. Energies 2020, 13, 391. [CrossRef]

42. Wichard, J.D.; Ogorzalek, M. Time series prediction with ensemble models. In Proceedings of the 2004 IEEE International Joint
Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 1625–1630.

43. de Mattos Neto, P.S.; Madeiro, F.; Ferreira, T.A.; Cavalcanti, G.D. Hybrid intelligent system for air quality forecasting using phase
adjustment. Eng. Appl. Artif. Intell. 2014, 32, 185–191. [CrossRef]

44. Firmino, P.R.A.; de Mattos Neto, P.S.; Ferreira, T.A. Correcting and combining time series forecasters. Neural Netw. 2014, 50, 1–11.
[CrossRef]

45. Belotti, J.; Siqueira, H.; Araujo, L.; Stevan, S.L.; de Mattos Neto, P.S.; Marinho, M.H.; de Oliveira, J.F.L.; Usberti, F.; Leone Filho,
M.d.A.; Converti, A.; et al. Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric
Plants. Energies 2020, 13, 4769. [CrossRef]

46. de Mattos Neto, P.S.; de Oliveira, J.F.L.; Júnior, D.S.d.O.S.; Siqueira, H.V.; Marinho, M.H.D.N.; Madeiro, F. A Hybrid Nonlinear
Combination System for Monthly Wind Speed Forecasting. IEEE Access 2020, 8, 191365–191377. [CrossRef]

47. Siqueira, H.; Boccato, L.; Attux, R.; Lyra, C. Unorganized machines for seasonal streamflow series forecasting. Int. J. Neural Syst.
2014, 24, 1430009. [CrossRef] [PubMed]

48. Domingos, S.d.O.; de Oliveira, J.F.; de Mattos Neto, P.S. An intelligent hybridization of ARIMA with machine learning models for
time series forecasting. Knowl.-Based Syst. 2019, 175, 72–86.

49. Siqueira, H.; Luna, I.; Alves, T.A.; de Souza Tadano, Y. The direct connection between box & Jenkins methodology and adaptive
filtering theory. Math. Eng. Sci. Aerosp. (MESA) 2019, 10, 27–40.

50. Yu, L.; Wang, S.; Lai, K.K. A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange
rates. Comput. Oper. Res. 2005, 32, 2523–2541. [CrossRef]

51. Yang, D. Spatial prediction using kriging ensemble. Sol. Energy 2018, 171, 977–982. [CrossRef]
52. Kim, D.; Hur, J. Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method. Energy 2018,

157, 211–226. [CrossRef]
53. Berardi, V.; Zhang, G. An empirical investigation of bias and variance in time series forecasting: Modeling considerations and

error evaluation. IEEE Trans. Neural Netw. 2003, 14, 668–679. [CrossRef]
54. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,

USA, 2015.
55. Zhang, G.P.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [CrossRef]
56. Rendon-Sanchez, J.F.; de Menezes, L.M. Structural combination of seasonal exponential smoothing forecasts applied to load

forecasting. Eur. J. Oper. Res. 2019, 275, 916–924. [CrossRef]
57. Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard

University, Cambridge, UK, 1974.
58. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Cogn. Model. 1986, 5, 1.

[CrossRef]
59. Haykin, S.S. Neural Networks and Learning Machines/Simon Haykin; Prentice Hall: New York, NY, USA, 2009.
60. Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Ger. Natl. Res.

Cent. Inf. Technol. 2001, 148, 13.

http://dx.doi.org/10.1109/TSG.2015.2513900
http://dx.doi.org/10.1016/j.apenergy.2020.116177
http://dx.doi.org/10.1016/j.apenergy.2021.116509
http://dx.doi.org/10.1016/j.enbuild.2020.110307
http://dx.doi.org/10.1109/ACCESS.2020.3009537
http://dx.doi.org/10.1016/j.apenergy.2018.10.078
http://dx.doi.org/10.1016/j.apenergy.2021.116452
http://dx.doi.org/10.1016/j.rser.2020.110591
http://dx.doi.org/10.1002/er.6125
http://dx.doi.org/10.1016/j.amc.2020.125535
http://dx.doi.org/10.3390/en13020391
http://dx.doi.org/10.1016/j.engappai.2014.03.010
http://dx.doi.org/10.1016/j.neunet.2013.10.008
http://dx.doi.org/10.3390/en13184769
http://dx.doi.org/10.1109/ACCESS.2020.3032070
http://dx.doi.org/10.1142/S0129065714300095
http://www.ncbi.nlm.nih.gov/pubmed/24552508
http://dx.doi.org/10.1016/j.cor.2004.06.024
http://dx.doi.org/10.1016/j.solener.2018.06.105
http://dx.doi.org/10.1016/j.energy.2018.05.157
http://dx.doi.org/10.1109/TNN.2003.810601
http://dx.doi.org/10.1016/j.ejor.2003.08.037
http://dx.doi.org/10.1016/j.ejor.2018.12.013
http://dx.doi.org/10.1038/323533a0


Sensors 2021, 21, 8096 18 of 18

61. Siqueira, H.; Boccato, L.; Attux, R.; Lyra Filho, C. Echo state networks for seasonal streamflow series forecasting. In International
Conference on Intelligent Data Engineering and Automated Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 226–236.

62. Siqueira, H.; Boccato, L.; Luna, I.; Attux, R.; Lyra, C. Performance analysis of unorganized machines in streamflow forecasting of
brazilian plants. Appl. Soft Comput. 2018, 68, 494–506. [CrossRef]

63. Siqueira, H.; Luna, I. Performance comparison of feedforward neural networks applied to stream flow series forecasting. Math.
Eng. Sci. Aerosp. 2019, 10, 41–53.

64. Chou, J.S.; Ngo, N.T. Time series analytics using sliding window metaheuristic optimization-based machine learning system for
identifying building energy consumption patterns. Appl. Energy 2016, 177, 751–770. [CrossRef]

65. de Mattos Neto, P.S.; Firmino, P.R.A.; Siqueira, H.; Tadano, Y.D.S.; Alves, T.A.; De Oliveira, J.F.L.; Marinho, M.H.D.N.; Madeiro, F.
Neural-Based Ensembles for Particulate Matter Forecasting. IEEE Access 2021, 9, 14470–14490. [CrossRef]

66. Hyndman, R.; Khandakar, Y. Automatic Time Series Forecasting: The forecast package for R. J. Stat. Software 2008, 27, 1–22.
[CrossRef]

67. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
68. Siqueira, H.; Macedo, M.; Tadano, Y.d.S.; Alves, T.A.; Stevan, S.L.; Oliveira, D.S.; Marinho, M.H.; Neto, P.S.; de Oliveira, J.F.; Luna,

I.; et al. Selection of temporal lags for predicting riverflow series from hydroelectric plants using variable selection methods.
Energies 2020, 13, 4236. [CrossRef]

69. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]
70. Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291.

[CrossRef]
71. Brownlee, J. Statistical Methods for Machine Learning: Discover How to Transform Data into Knowledge with Python; Machine Learning

Mastery: San Francisco, CA, USA, 2018.
72. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.

http://dx.doi.org/10.1016/j.asoc.2018.04.007
http://dx.doi.org/10.1016/j.apenergy.2016.05.074
http://dx.doi.org/10.1109/ACCESS.2021.3050437
http://dx.doi.org/10.18637/jss.v027.i03
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.3390/en13164236
http://dx.doi.org/10.1198/073500102753410444
http://dx.doi.org/10.1016/S0169-2070(96)00719-4

	Introduction
	Related Work
	Proposed Ensemble Method
	Single Model: Autoregressive Model
	Single Model: Multilayer Perceptron (MLP)
	Single Model: Echo State Networks (ESN)
	Single Model: Radial Basis Function Network (RBF)
	Single Model: Extreme Learning Machine (ELM)

	Experimental Evaluation
	Data Description
	Preprocessing and Postprocessing Stages
	Experimental Setup
	Error Metrics
	Results
	Discussion

	Conclusions
	References

