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Abstract: Mammals rely on vision and self-motion information in nature to distinguish directions
and navigate accurately and stably. Inspired by the mammalian brain neurons to represent the spatial
environment, the brain-inspired positioning method based on multi-sensors’ input is proposed to
solve the problem of accurate navigation in the absence of satellite signals. In the research related to
the application of brain-inspired engineering, it is not common to fuse various sensor information to
improve positioning accuracy and decode navigation parameters from the encoded information of the
brain-inspired model. Therefore, this paper establishes the head-direction cell model and the place
cell model with application potential based on continuous attractor neural networks (CANNs) to
encode visual and inertial input information, and then decodes the direction and position according
to the population neuron firing response. The experimental results confirm that the brain-inspired
navigation model integrates a variety of information, outputs more accurate and stable navigation
parameters, and generates motion paths. The proposed model promotes the effective development
of brain-inspired navigation research.

Keywords: brain-inspired navigation; place cells; head-direction cells; continuous attractor neural
networks (CANNs); population neuron decoding

1. Introduction

Unmanned mobile platforms (such as robots, unmanned vehicles, and unmanned
aerial vehicles) have a wide range of applications in many industries. For mobile platforms,
autonomous navigation is a key technology of automatic operation. At present, the navi-
gation system can be equipped with inertial measurement units (IMU), global navigation
satellite systems (GNSS), vision sensors, and radar sensors, etc. However, satellite signals
have interfered in satellite-jamming environments (e.g., indoor facilities, tall buildings,
forests), which reduces the accuracy of navigation and positioning. Compared with radar
sensors and vision sensors, vision sensors have more perceptual information, so the visual
autonomous navigation method has been rapidly developed.

In engineering applications, the vision sensor can accurately track environmental
features when the mobile platform is moving at a low speed. The use of vision to locate
and build maps has achieved good results, but the positioning and navigation effects
are not good in the case of weak light and rapid movement of the mobile platform. IMU
follows the change of movement speed and accurately measures angular velocity and linear
acceleration without the restriction of the scene, but it produces estimated cumulative drift
after a long-time operation. In order to take advantage of the respective advantages of
vision sensors and IMUs, the fusion of vision and inertial sensor data can provide more
accurate position information [1,2]. Location information estimation methods are usually
based on probability models, such as extended Kalman filter (EKF) [3], unscented Kalman
filter (UKF) [4], and particle filter (PF) [5]. The above methods rely on establishing an
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accurate navigation system model, which has weak robustness in complex environments.
Therefore, a more intelligent way of constructing a reliable navigation model is needed,
and here we obtain inspiration from biology in nature.

As we know, mammals such as rats are born with the ability to navigate, and they
rely on their conditions to forage, for homing, etc. Animals can locate their position and
generate the trajectory of the target position by using self-motion cues, such as vestibule,
proprioception, and visual flow [6,7]. It can be seen that the development of brain neu-
roscience provides a reference and ideas for the development of intelligent autonomous
navigation. The neurobiological basis of spatial representation is considered to involve
spatially selective neurons in the mammalian nervous system. Some neural basis of navi-
gation has been discovered in the brain, including place cells [8,9], head-direction cells [10],
grid cells [11], stripe cells [12], and border cells [13], etc.

With the gradual in-depth study of the brain, the application of brain-inspired naviga-
tion technology has attracted more and more attention. Michael et al. proposed a biologi-
cally inspired approach to vision-only simultaneous localization and mapping (SLAM),
which was called RatSLAM. The system uses the CANN model and visual features to create
useful maps of real-world environments [14]. Ball et al. reported an open-source version
of RatSLAM, which was bound to the Robot Operating System framework [15]. Steckel
et al. suggested changing RatSLAM into BatSLAM by replacing the vision sensor with a
biomimetic sonar sensor [16]. Recently, Yu et al. proposed a brain-inspired 4DoF (degrees
of freedom) SLAM system named NeuroSLAM based upon computational models of 3D
head-direction cells and 3D grid cells, with visual odometry that provides self-motion
cues [17]. Zou et al. presented a robotic cognitive map-building approach based on the
biological cognitive mechanism of place cells, grid cells, etc. The system is equipped with
Kinect vision and a Hokuyo laser sensor, and the input of the neural cell model is speed
and direction information [18]. Yuan et al. [19] presented a computational model to build
cognitive maps of real environments using both place cells and grid cells, and the RGB-D
sensor is used to capture visual images of the environment.

At present, most of the perceptual information input of brain-inspired navigation and
positioning methods comes from a single sensor, such as the visual sensor, and lacks the
research on decoding navigation parameters from the perceptual information of multiple
sensors. Therefore, the positioning accuracy and robustness need to be improved. In this
paper, we propose an effective and robust positioning method that combines inertial and
visual sensor data for brain-inspired navigation. The creativity of this work is threefold.
First, we develop a brain-inspired inertial/visual navigation model for positioning in
satellite-jamming environments. Second, we propose a head-direction cell model and place
cell encoding model based on continuous attractor neural networks to fuse inertial and
visual information. Third, we design a population neuron decoding method to calculate
location and direction.

The paper is organized as follows. The second section introduces the brain-inspired
navigation model structure and visual information processing. The third section shows the
characteristics of the attractor neural network, the encoding method of head-direction cells,
and place cells. The decoding method of navigation parameters based on the population
of head-direction cells and place cells is explained in the fourth section. The fifth section
shows the performance of the proposed model with simulated data and real-world data,
experimentally. Finally, the discussion and conclusions are presented separately in the
sixth and seventh sections.

2. Brain-Inspired Navigation Model
2.1. Brain-Inspired Navigation Model Composition

The brain-inspired navigation model comprises three main parts: the sensory input
module, the brain-inspired information fusion module, and the navigation information
output module. Among these modules, the sensory input module consists of an inertial
measurement unit (IMU) and a camera, and the inertial measurement unit is composed of
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a gyroscope and an accelerometer. The brain-inspired information fusion module includes
a head-direction cell model and a place cell model. The head-direction cell model fuses the
angular velocity provided by the IMU and the yaw angle provided by the visual odometry
to obtain the heading, and the place cell model fuses the horizontal velocity of the body
coordinate frame from IMU and position provided by visual odometry relative to the initial
point. Figure 1 is the structure of the brain-inspired positioning model.
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2.2. Vision-Based Motion Estimation

The motion estimation is divided into two parts. Firstly, the rotation is estimated,
and secondly, the resulting rotation is used to estimate the translation. The visual cues
are the grayscale images obtained from the grayscale video camera and the motion state
information is obtained through image processing. Image processing includes feature
points’ extraction, feature matching, feature selection, and motion estimation. The rotation
is estimated by the calibrated monocular camera (left camera), location information is
estimated from binocular camera image information, the epipolar constraint between the
two images is given as q′TEq = 0, where q′ and q represent the homogeneous coordinates
corresponding to the two images respectively, and E = [t]× R is the 3× 3 essential matrix.

The five-point method is used in conjunction with random sample consensus (RANSAC).
Several five-point subsets are randomly selected from the total point set, the essential matrix
is calculated for each subset, and the essential matrix with the largest interior-point set of all
points is selected as the final solution. Equations (1) and (2) impose additional constraints on
the five equations [20]:

det(E) = 0 (1)

EETE− 1
2

trace(EET)E = 0 (2)

The position information is calculated by binocular vision. After determining all
the correspondence between the features, two three-dimensional point clouds can be
reconstructed, which are the previous image and the current images respectively, then the
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position information is calculated by minimizing the image reprojection error. Position
information is calculated by iteratively minimizing according to Equation (3):

n
∑

i=1
‖xl

i − πl(X; R, t)‖2
+ ‖xr

i − πr(X; R, t)‖2

 u
v
1

 = π(X; R, t) =

 f 0 cu
0 f cv
0 0 0

[R|t ]


X
Y
Z
1


R|t =

 R11 R12 R13 X
R21 R22 R23 Y
R31 R32 R33 Z


(3)

where
[

u v 1
]T are homogeneous image coordinates, π is reprojection function, t is

the position of the world expressed in the camera coordinate system, and R is the rotation
matrix which denotes the conversion of the world coordinate system to the camera coordi-
nate system. f is the focal length,

[
X Y Z 1

]T are homogeneous world coordinates,
which represent the position information calculated by the visual odometry, r represents
the right camera and l represents the left camera, and the current rotation is calculated as:

ψV = arctan(R31, R33) (4)

3. Spatial Representation Cells’ Encoding
3.1. Continuous Attractor Neural Networks (CANNs)

The model of continuous attractor neural networks (CANNs) as a type dynamics of
the neural circuit has been successfully applied to describe the encoding of simple neural
systems, such as head-direction, movement direction, and position [21]. The attractor
neural network dynamic model has an excitatory recurrent connection and an inhibitory
effect between local neurons, so it maintains a stable state by the excitatory recurrent
connection and an inhibitory effect without external input. The stable state has the shape of
the Gaussian function, which is called ‘bump’. In the steady state, the energy in the CANNs
is balanced. The external input breaks the system equilibrium and drives the bump to move.
The vertex position of the wave packet is the orientation/position; when the unmanned
system moves, the bump in the network follows the movement. For input stimulation close
to the preferred direction/position neuron, the overall response of multiple inputs is higher
than the single input response, while for input stimulation far away from the preferred
orientation/position neuron, the overall response of multiple inputs is lower than the
single input response. Based on the characteristics of CANNs and the fusion mechanism,
the result of the information calculation is the result of multi-sensors’ interaction [22].

The properties of CANNs in imitating brain neurons’ activities suggested that CANNs
serve as a canonical model for information representation [23]. Noise immunity is the
important feature of CANNs, and Figure 2 shows the effect of adding noise to the system
in CANNs, and the activity is stable. Under the influence of noise, the network model still
outputs stable bumps, as shown in Figure 2b. For multiple input sources in the system,
another property of the CANNs is the fusion. When the system inputs with two equal-
weight signals, the bump center of the CANNs will stabilize between them, otherwise it
will tend to the input with larger amplitude, as shown in Figure 2c,d, respectively.
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3.2. Head-Direction Cells’ Encoding

When mammals face one direction, head-direction cells sensitive to the specific di-
rection (preferred firing direction) will produce the highest firing rate, and the firing
morphology is a Gaussian activity package. The cell with the strongest firing rates rep-
resents the estimated direction [24]. Therefore, head-direction cells play the role of a
“compass” in the brain-inspired system to provide direction.

In terms of head-direction cell model research, the attractor neural network is often
used to construct head-direction cell models [25]. Stringer et al. proposed a model of self-
organizing continuous attractor networks for head-direction cells by encoding idiothetic
(self-motion) inputs. The model associates the firing with the current orientation change
in the representation of the head direction [26]. Xie et al. devised a head-direction system
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with two populations of neurons which is organized into a ring network structure to mimic
head-direction cells, and the system was proven to integrate a large range of the vestibular
input [27]. We built a visual and inertial information integration architecture based on
the head-direction cell model, as shown in Figure 3. In the figure, each head-direction
cell is preset with a preferred firing direction, and these preferred firing directions are
evenly distributed to 0◦~360◦. Head-direction cells integrate the angle calculated by the
visual cues and the angular velocity calculated by the IMU. In the process of integrating
yaw angle information, the real-time update of the system is achieved through changes in
cell activity.
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Figure 3. The network architecture of the head-direction cell model. By integrating angular velocity
and angle information, the head-direction cell that represents the current direction is activated to
generate the maximum discharge (red shades).

The input data frequency of the head-direction cell model is the same: for visual
input, the Gaussian function determines the similarity between the yaw angle calculated
by the visual odometry and the preferred direction of the head-direction cell, so the visual
odometry data is encoded as a one-dimensional Gaussian distribution to participate in
the calculation of the continuous attractor neural network model. The angular velocity
calculated by IMU is pre-integrated to obtain the yaw angle. The deviation between the
yaw angle and the preferred direction of the head direction cell is encoded as a Gaussian
function to obtain the learning firing rates and form an input that participates in data fusion.

The activation level, hHD
i , of head-direction cell i is given by:

τHD dhHD
i (t)
dt

= −hHD
i (t) +

φ0,HD

CHD ∑
j
(wHD

ij (t)− wINH,HD)rHD
j (t) + IV,ψ(t) + I IMU,ψ(t) (5)

where hHD
i (t) is the activation level of head-direction cell i at time t, and τHD is the

time constant. Head-direction cells are connected by weights, wHD
ij (t), which is a function

(e.g., Gaussian), wINH,HD = 0.5×max(wHD
ij (t)) is a value describing the effect of inhibitory

neuron weight, rHD
j (t) is the firing rate of head-direction cell j, φ0,HD is a constant which

controls the strength of the weights of head-direction cells, CHD is the number of the cells,
and the term IV,ψ(t) represents visual cues’ input.

The firing rate, rHD
i , of head-direction cell i is calculated as the sigmoid function of the

activation level:
rHD

i (t) =
1

1 + e−2βHD(hHD
i (t)−αHD)

(6)

where αHD and βHD are the sigmoid threshold and slope, respectively.
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The weight update according to the Hebbian-like associative learning rule for connec-
tions between neurons is as follows:

dwHD
ij

dt
= k · rHD

ij (t)rij
HD(t− ∆t) (7)

where dwHD
ij /dt is the change of the weight, the learning firing rate, rHD, of each head-

direction cell is set as the Gaussian function, k is the learning rate constant, which deter-

mines the speed of weight change, and
√

∑
j
(wHD

ij (t))2
= 1 denotes that all synaptic weight

vectors are normalized after updating at each timestep.

rHD
ij (t) = e−(s

HD
ij (t))2/2(σHD)

2

(8)

sHD
ij (t) = MIN(

∣∣∣ψHD
i − ψj

ROT(t)
∣∣∣, 360−

∣∣∣ψHD
i − ψj

ROT(t)
∣∣∣) (9)

In order to integrate IMU information robustly, the preferred angle, ψj
ROT(t), mod-

ulated by angular velocity is set. Equations (10) to (12) show the modulation process of
angular velocity. ψHD

i indicates the preferred direction of the head-direction cell, sHD
ij is the

difference between the preferred angle modulated by angular velocity and the preferred
head direction of the head-direction cell, and σHD is the standard deviation.

[ψj
ROT(t)] = max(rROT(t)) (10)

sROT
j (t) = MIN(

∣∣∣ψROT
j − (ψIMU(t− 1) + ω IMU · ∆t)

∣∣∣
, 360−

∣∣∣ψROT
j − (ψIMU(t− 1) + ω IMU · ∆t)

∣∣∣) (11)

rROT(t) = e−(s
ROT
j (t))2

/2(σROT)
2

(12)

where sROT
j is the difference between the preferred angle modulated by angular velocity

and the yaw angle calculated from angular velocity provided by IMU, rROT represents
the learning firing rate of the preferred angle modulated by angular velocity, σROT is the
standard deviation, ω IMU is the angular velocity, and ◦/s is the unit of measurement.

For visual input, IV,ψ(t), and inertial input, I IMU,ψ(t), the angle obtained by sensor
data enters the brain-inspired system for direction information integration, and the angle
information is encoded by the Gaussian function, as shown in Equation (13):

IV,ψ(t) = λVe−(s
V,ψ
i (t))

2
/2(σV,ψ)

2

I IMU,ψ(t) = λIMUe−(s
IMU,ψ
i (t))

2
/2(σIMU,ψ)

2 (13)

sV,ψ
i (t) = MIN(

∣∣ψHD
i − ψV(t)

∣∣, 360−
∣∣ψHD

i − ψV(t)
∣∣)

sIMU,ψ
i (t) = MIN(

∣∣ψHD
i − ψIMU(t)

∣∣, 360−
∣∣ψHD

i − ψIMU(t)
∣∣) (14)

where ψV(t) represents the yaw angle obtained by visual information processing, sV,ψ
i (t) is

the difference between the preferred direction of the head-direction cell and the yaw angle
obtained by visual information processing, and λV is the adjustment constant for visual
cues. For IMU data input, I IMU,ψ, ψIMU(t) represents the yaw angle calculated by IMU,
sIMU,ψ

i (t) is the difference between the preferred direction of the head-direction cell and
the yaw angle obtained by IMU, and λIMU indicates the adjustment constant of IMU input.

3.3. Place Cells’ Encoding

Place cells with spatial selective activity in the hippocampus encode spatial informa-
tion during navigation and have been proposed to form the neural basis of spatial cognitive
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maps [28]. When a mammal is in a specific area, the place cells in the brain will produce
discharge [29].

The model of place cells draws from the head-direction cell model and can be consid-
ered an extension of the one-dimensional CANNs [30]. We present a place cell encoding
model for the fusion of visual information and inertial information in Figure 4. The position
calculated by the IMU and the position calculated by the visual odometry are both regarded
as a two-dimensional normal distribution. Through the interaction, the data from different
sensors are exchanged in the continuous attractor neural network model, and the input
intensity controls the data intensity involved in the fusion.
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Figure 4. The network architecture of the place cell model. For each neuron, it is activated by the
integration of input by IMU and the camera.

The activation level of place cell i is given by:

τPC dhPC
i (t)
dt

= −hPC
i (t) +

φ0,PC

CPC ∑
j
(wPC(t)− wINH,PC)rPC

j (t) + IV,XY(t) + I IMU,XY(t) (15)

where hPC
i (t) is the activation level of head-direction cell i at time t, τPC is the time

constant for the place cell model, wPC(t) is the excitatory weight, and wINH,HD denotes
the inhibitory weight constant. rPC

j (t) is the firing rate of the place cell j, φ0,PC is a constant

which controls the strength of the weights of place cells, CPC is the scale of the model,
the term IV,XY(t) represents visual cues for positioning, and I IMU,XY(t) denotes the IMU
speed input.

The firing rate, rPC
i (t), of the place cell i at time t is calculated as the hyperbolic tangent

function of the activation level, and the firing rates of real neurons are greater than zero,
thus the firing rate equation is:

rPC
i (t) =

{
tanh(hPC

i (t)) i f tanh(hPC
i (t)) ≥ 0

0 otherwise
(16)

The excitatory weight is created using a two-dimensional Gaussian distribution, as
shown in Equation (17):

wPC(t) = 1
(σPC,X

√
2π)
· 1
(σPC,Y

√
2π)

· exp(−u(t)2/(2σPC,X)
2
) · exp(−v(t)2/(2σPC,Y)

2
)

(17)

dwPC

dt
= kPC · wPC(t)wPC(t− ∆t) (18)
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wPC(t) =
wPC(t)√

∑
i

∑
j

wPC(t)
(19)

where σPC,X and σPC,Y are the standard deviation for weight calculation and kPC is the
learning rate constant of place cells. Equation (19) denotes that weight vectors are normal-
ized after updating. u(t) and v(t) are the distance indexes between calculated location and
the preferred position of the place cells, and the details are as follows:

u(t) = rem(x(t− 1) + vx∆t− xPC
i , nx)

v(t) = rem(y(t− 1) + vy∆t− yPC
i , ny)

(20)

where nx and ny are the half-scale of the place cell model. Adjusting the half-scale parame-
ters of the place cell model is more suitable for engineering applications and corresponding
to the navigation coordinate system. It can distinguish and judge the position direction by
the positive and negative navigation parameters. u(t) and v(t) are the distance indexes,
xPC

i and yPC
i are the preferred location, and vx and vy are the velocity in the navigation

coordinate system, which are calculated by:

vx = v f · sin(ψ)− vl cos(ψ)
vy = v f · cos(ψ)− vl sin(ψ)

(21)

In the above formula, v f and vl are the velocity in the body coordinate system and ψ
is the yaw angle.

IMU and visual information are transformed into two-dimensional Gaussian functions,
which are expressed as follows, where I IMU,XY(t) indicates IMU information and IV,XY(t)
stands for visual information:

IV,XY(t) = λV,XY exp(−(xV − xPC
i )

2
/(2σV,X)

2−(yV − yPC
i )

2
/(2σV,Y)

2
) (22)

I IMU,XY(t) = λIMU,XY exp(−(xIMU − xPC
i )

2
/(2σIMU,X)

2−(yIMU − yPC
i )

2
/(2σIMU,Y)

2
) (23)

where λV,XY and λIMU,XY are the adjustment constant, xV and yV represent the two-
dimensional position calculated by the visual odometry, xIMU and yIMU represent the
two-dimensional position calculated by IMU, and σV,X , σV,Y, σIMU,X , and σIMU,Y are the
standard deviation.

4. Population Spatial Representation Cells’ Decoding
4.1. Population Neuron Decoding

In the previous section, we introduced the spatial representation cell model based
on CANNs for motion information encoding, which simulates the discharge response
process of a group of neurons receiving external information. Spatial representation cells
carry information to support perceptual decisions. In order to use discharge signals for
navigation tasks, the brain needs to accurately decode the responses of neurons encoding
the perceived information [31].

Population neuron decoding is a method to represent neuronal stimulation and obtain
accurate information, which can best be used to inform decision-making. A group of
neurons form weight distribution according to the different response degree stimulated
by perceptual information, so as to estimate the neural response results [32]. Each cell in
the population has a preferred direction, and the estimation result is the weighted sum of
the preferred directions according to the distribution of the discharge response [33]. As
described in Figure 5, visual cues and self-motion information are integrated by the spatial
representation cell model to generate discharges for environmental cognition. The center
position of the firing activity packet is estimated by the preferred position/direction vector
and the firing rates.
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Figure 5. Schematic diagram of population neuron decoding. The red mark indicates the estimated
value of the population neuron decoding, and the black mark indicates the true value.

4.2. Decoding Direction

To decode yaw angle, ψp(t), from the activity packet formed by the model of head-
direction cells’ dynamics, the center of head-direction cells’ firing rates is computed using
an established population vector scheme [34]:

ψp(t) = arctan

(
∑
i

rHD
i (t) sin(ψHD

i )

∑
i

rHD
i (t) cos(ψHD

i )

)
= arctan

(
apop
bpop

) (24)

where ψHD
i is the preferred direction with firing rate rHD

i .
To make the calculation result meet the range [0, 360◦], the above formula is changed to:

ψp(t) =


arctan

(
apop
bpop

)
i f apop > 0, bpop > 0

arctan
(

apop
bpop

)
+ 180◦ i f bpop < 0

arctan
(

apop
bpop

)
+ 360◦ i f apop < 0, bpop > 0

(25)

4.3. Decoding Position

The spatial information carried by the firing activity of place cells occupies an im-
portant position in animal navigation behavior. Therefore, the place cells’ decoding prob-
lem aims to extract information about the location through the firing activity of the cell
model [35]. Location information, xp and yp, are given as:

xp = qPC · nx + ∑
i

rPC
i (t)xpc

i

yp = qPC · ny + ∑
i

rPC
i (t)ypc

i
(26)

where qPC represents the cycle of the real-world location in the framework of the place cell
model. nx and ny are the half-scale of the place cell model, rPC

i is the firing rate of place
cell i, and xpc

i and ypc
i denote the coordinates of the x-axis and y-axis respectively, in the

framework of the position cell model.

5. Experiment and Results
5.1. Simulation Description

In order to verify the performance of the brain-inspired navigation model, we have
carried out a series of experiments. Here, we introduce the experimental content and the
experimental environment. We conducted the evaluation on the AMD Ryzen 7 3700X
8-Core CPU 3.60 GHz PC with 8 GB memory windows system. The operating system
was Windows 10. Experiments were implemented in MATLAB, which is a powerful and
convenient numerical computing platform. The experiments were mainly divided into
two parts, namely the simulation data experiment and the real-world data experiment.
The simulation data experiment used the trajectory generator to simulate visual data and
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inertial data, and the KITTI dataset was used in the real-world data experiment. The visual
information was obtained by two grayscale cameras, and the parameters were: PointGray
Flea2 grayscale cameras (FL2-14S3MC), 1.4 Megapixels, 1/2” Sony ICX267 CCD, global
shutter. The inertial information comes from the OXTS RT3003 system, and the sampling
rate was 100 Hz.

For our brain-inspired navigation model, Table 1 shows the numerical settings of
constant parameters in the head-direction cell model and the place cell model.

Table 1. Parameters’ configuration.

Parameter Value Parameter Value

CHD 360 φ0,HD 1440
CPC 1001 φ0,PC 4004

λV ,λV,XY , λIMU,XY 1, 1, 1 nx, ny 500, 500

5.2. Simulation Data Experiment

In the simulation data experiment, we designed a plane motion trajectory by simulat-
ing the speed and direction of the motion obtained from the IMU, and the position and
direction obtained from the visual cues. The true value of the position trajectory is shown
in Figure 6, where the navigation coordinate system x and y correspond to east and north,
respectively. The whole moving process lasted for 86.1 s, and the data sampling rate was
100 Hz.
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Figures 7 and 8 show the experimental results at the beginning and end of the simula-
tion data experiment, respectively. In Figures 7a and 8a, the maximum discharge rate of
place cells represents the current position state, and the spatial position was obtained by
decoding the discharge rate of the population place cells. The position calculation result
is shown in Figures 7b and 8b. In the head-direction cell model, 360 neurons are set to
represent 0◦~360◦, and the model encodes the input data and presents a Gaussian-like
distribution, where the largest discharge rate value represents the current direction angle,
as shown in Figures 7c and 8c. Figures 7d and 8d show the results of calculating the
yaw angle by combining all the head-direction cells and the firing rate. Comparing the
results of the current position in the place cell model coordinate system and the navigation
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coordinate system, it can be verified that our model has the function of simulating the
encoding and decoding of spatial representation cells.
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Figure 7. Image display of the simulation data encoding and decoding of the brain-inspired navigation model at the
beginning stage. (a) Place cell model encodes movement information to generate discharge. (b) The location information is
decoded and displayed in real-time. (c) Head-direction cell model encodes sensor data to simulate discharge. (d) The result
of yaw angle decoding.

The result analysis of the position data decoded by the brain-inspired navigation
model is presented in Figures 9–11. Figure 9 is a collection of IMU positioning results,
visual odometry positioning results, EKF positioning results, positioning results of our
proposed model, and ground truth. In order to distinguish their positioning accuracy
more clearly, Figures 10 and 11 show the x-axis and y-axis errors, respectively. It is not
difficult to see from the curve results that both EKF and our proposed model could be
more effective in integrating IMU and visual odometry data to achieve the purpose of
improving positioning accuracy. However, in the simulation data experiment, the algorithm
we proposed performed better in positioning accuracy and information fusion than the
algorithm represented by EKF, which requires accurate modeling.
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Figure 8. Image display of the simulation data encoding and decoding results of the brain-inspired navigation model at
the end of the movement. (a) Place cell model encodes movement information to generate discharge. (b) The location
information is decoded, and the path is displayed. (c) The head-direction cell model encodes sensor data to simulate
discharge. (d) Head orientation at the end of the movement.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 25 
 

 

information is decoded, and the path is displayed. (c) The head-direction cell model encodes sensor data to simulate dis-
charge. (d) Head orientation at the end of the movement. 

The result analysis of the position data decoded by the brain-inspired navigation 
model is presented in Figures 9–11. Figure 9 is a collection of IMU positioning results, 
visual odometry positioning results, EKF positioning results, positioning results of our 
proposed model, and ground truth. In order to distinguish their positioning accuracy 
more clearly, Figures 10 and 11 show the x-axis and y-axis errors, respectively. It is not 
difficult to see from the curve results that both EKF and our proposed model could be 
more effective in integrating IMU and visual odometry data to achieve the purpose of 
improving positioning accuracy. However, in the simulation data experiment, the algo-
rithm we proposed performed better in positioning accuracy and information fusion than 
the algorithm represented by EKF, which requires accurate modeling. 

 
Figure 9. Multiple methods of positioning results and ground truth, including IMU, visual odome-
try, EKF, and our proposed model. 

 
Figure 10. X-axis error comparison of simulation data. The yellow loosely dashed line indicates the 
difference between the x-axis position calculated by IMU and the true value, and the blue dash-
dotted line represents the difference between the x-axis position calculated by the visual odometry 

y(
m

)
er

ro
r(m

)

Figure 9. Multiple methods of positioning results and ground truth, including IMU, visual odometry,
EKF, and our proposed model.
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Figure 10. X-axis error comparison of simulation data. The yellow loosely dashed line indicates the
difference between the x-axis position calculated by IMU and the true value, and the blue dash-dotted
line represents the difference between the x-axis position calculated by the visual odometry and the
true value. The green dotted line indicates the x-axis position error obtained by the Kalman algorithm
fusion of visual and inertial information, and the red solid line represents the x-axis position error
obtained by our proposed method fusing the visual and inertial information.
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Figure 11. Y-axis error comparison of simulation data. The yellow loosely dashed line indicates the
difference between the y-axis position calculated by IMU and the true value, and the blue dash-dotted
line represents the difference between the y-axis position calculated by the visual odometry and the
true value. The green dotted line indicates the y-axis position error obtained by the Kalman algorithm
fusion of visual and inertial information, and the red solid line represents the y-axis position error
obtained by our proposed method fusing the visual and inertial information.

To obtain the positioning evaluation result in numerical form, the root mean square
error (RMSE) is used to express the relationship between the estimated position and the
true position. Table 2 shows the errors calculated on the x-axes and y-axes by IMU, visual
odometry, and our proposed model. The RMSE calculation results show that both EKF and
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our proposed model can improve the positioning accuracy by fusing the data of IMU and
visual odometry. Among them, the data fusion effect of our model is better, and the error
between the estimated position and the real data is smaller.

RMSE =

√
1
m

m

∑
i=1

(∆ei)
2 (27)

Table 2. Simulation data experiment, RMSE.

IMU Visual Odometry Kalman
(Inertial-Visual)

Proposed
(Inertial-Visual)

x(m) 5.8858 11.2778 2.9994 1.2889
y(m) 5.0015 9.6306 2.5736 1.3516

5.3. Real-World Data Experiment

The real-world data come from the KITTI dataset 05 sequence, where pictures collected
by the grayscale camera and the raw data of the IMU are used as the system input [36].
The 05 sequence contains 2762 sets of data, the range of motion covers approximately
600 × 500 m, and the path length is about 2117.3 m.

In the visual information processing stage:

(1) Feature extraction: each image is extracted with corner and blob features, as shown in
Figure 12a.

(2) Feature matching: Starting from all the feature points in the left image at time t,
the best matching point is found in the left image at time t-1, and then the feature
points are still found in the right image at time t-1 and the right image at time t. The
best match is found in four images acquired at consecutive moments, as shown in
Figure 12b.

(3) Feature selection: in order to ensure that the features are evenly distributed in the
entire image, the entire image is divided into buckets with a size of 50 × 50 pixels,
and feature selection is performed to select only the strongest features present in each
bucket, as shown in Figure 12c.

(4) Motion estimation: the position information as shown in Figure 12d is estimated by
using the perspective three-point (P3P) algorithm and RANSAC [37].

In order to facilitate calculation, the left grayscale camera was selected as the body
coordinate system: x corresponds to right, y corresponds to down, and z corresponds to
forward. The first frame was used as a reference point to calculate the subsequent relative
position coordinates. The sampling frequency of IMU and image data was consistent,
which was 100 Hz.

The encoding results of image and IMU data by place cells and head-direction cells
are shown in Figure 13a,c. Position parameters and yaw angle are shown in Figure 13b,d.
From the start to the end, the trajectory lasted for 276 s and covered an area of 500 × 500 m.
The maximum discharge position of the place cell changes with the movement position,
and the maximum discharge position of the head-direction cell changes with the yaw angle
in the range of 0 to 360 degrees.

In order to analyze the fusion ability and positioning results of the proposed algorithm
for real-world environment data, we gathered the trajectory routes of IMU, visual odometry,
ground truth, EKF, and the brain-inspired navigation model, as shown in Figure 14. From
the perspective of the positioning route, the algorithm we proposed is close to the real value.
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Figure 14. IMU, visual odometry, ground truth, EKF, and brain-inspired model positioning (KITTI
dataset 05 sequence). The yellow loosely dashed line represents the trajectory calculated by the
IMU, the blue dash-dotted line represents the visual odometry calculation result, the gray line
segment represents the ground truth, the green dotted line represents the calculation result of Kalman
algorithm fusion of visual and inertial information, and the red solid line represents the positioning
result of our proposed algorithm.

Respectively, we further analyzed the difference between ground truth and the posi-
tioning estimation results of IMU, the positioning estimation results of visual odometry,
the positioning estimation results of EKF, and the positioning estimation results of our
proposed model. The difference between the positioning estimation result and the true
value is drawn into a curve, where the error curves in the x-axis and z-axis are shown in
Figures 15 and 16. It can be seen from the results that the positioning effect of using IMU
and visual odometry alone does not work effectively. Using EKF and the model proposed
in this paper to fuse data can improve the positioning accuracy. The calculation results of
the RMSE in Table 3 illustrate that the brain-inspired navigation model is more effective
in terms of data fusion and positioning effects. The x-axis direction RMSE was 3.8551 m
and the z-axis direction RMSE was 3.9532 m, which are less than the calculation results of
other methods.

Table 3. Real-world data experiment, RMSE.

IMU Visual Odometry Kalman
(Inertial-Visual)

Proposed
(Inertial-Visual)

x(m) 5.2123 7.1180 5.5708 3.8551
z(m) 6.3941 5.6666 4.3949 3.9532
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dashed line indicates the difference between the z-axis position calculated by IMU and the true value,
the blue dash-dotted line represents the difference between the z-axis position calculated by the
visual odometry and the true value, the green dotted line indicates the z-axis position error obtained
by the Kalman algorithm fusion of visual and inertial information, and the red solid line represents
the z-axis position error obtained by our proposed method fusing the visual and inertial information.

6. Discussion

In this paper, we expressed the idea of building a spatial representation model based
on attractor neural networks, which provides a new idea for multi-source data fusion. For
model input, the direction and position of visual estimation and the angular velocity and
velocity collected by IMU were used to participate in the model calculation. However, the
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essence of the fusion data of the head-direction cell model and the place cell model are
angle and position, respectively. It is necessary to unify the frequency of IMU and visual
odometry calculation data in advance.

6.1. Model Parameter Adjustment

Through experimental verification, the head-direction cell model and place cell model
that we proposed integrate visual and IMU data to simulate the discharge morphology of
head-direction cells and place cells to encode information. In order to obtain more accurate
and reliable orientation and position, we proposed a method to decode information based
on the population spatial representation cells. Compared with the EKF algorithm that relies
on the probability model, we do not need to spend too much time adjusting the parameters
of the brain-inspired model to make data fusion.

As for the parameter adjustment methods in the head-direction cell model and the
place cell model, there are two types of parameters that need to be set according to the
environment and sensors, respectively: the range of data and the intensity of data fusion.
To make the model structure simple and more suitable for engineering applications, the
number of head-direction cells, CHD, was set to 360, which corresponds to the maximum
yaw angle of 360 degrees. The place cell model 1 unit corresponds to 1 m in the real
environment. nx and nx are the half-scale of the place cell model. Since the scale of the
place cell model is 1 m to the real scale, the half-scale of the place cell model is not less
than the maximum absolute value of the position coordinate solved in the navigation
coordinate system. φ0,HD

CHD and φ0,PC
CPC respectively represent a certain ratio to the scale of the

head-direction cell model and the place cell model. In the head-direction cell model and
the place model, we set them to 4, so we obtained φ0,HD= 4× CHD and φ0,PC= 4× CPC. λ
represents the intensity of sensor data input. When the information solution accuracy of
IMU and visual odometry is consistent, it is set to 1, otherwise, the weight of the sensor
with high-performance navigation parameter solution ability can be increased.

6.2. Other Dataset Experiments

The KITTI dataset 02 sequence was used to verify the model performance in a large-
scale environment (the range here was about 600 × 1200 m, and the path length was about
4880 m), and 4661 sets of data were used in the 02 sequence. Due to the expansion of
the motion trajectory range, the half-scale of the place cell model was set to 1000, and
the other parameters do not follow the environmental adjustment. Figure 17 shows the
results of multiple positioning methods, and Table 4 shows the calculation results of the
RMSE. According to the pictures and table data, the brain-inspired model we proposed
has the ability to fuse the position information of the IMU and the visual odometry, and
the location information solution is closer to the real location.

Table 4. KITTI dataset 02 sequence experiment, RMSE.

IMU Visual Odometry Kalman
(Inertial-Visual)

Proposed
(Inertial-Visual)

x(m) 8.7314 26.7076 22.0495 13.8206
z(m) 24.0802 22.7763 20.4295 19.6386
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line represents the trajectory calculated by the IMU, the blue dash-dotted line represents the visual
odometry calculation result, the gray line segment represents the ground truth, the green dotted line
represents the calculation result of Kalman algorithm fusion of visual and inertial information, and
the red solid line represents the positioning result of our proposed algorithm.

In particular, the positioning effect of the IMU in the x-axis direction was better. The
RMSE was 8.7314 m, and the visual odometry had a larger error in the x-axis direction of
26.7076 m. The fusion algorithm was affected by the large error of the visual odometry.
The RMSE of the Kalman algorithm on the x-axis was 22.0495 m, and the RMSE of our
proposed algorithm was 13.8207 m. The calculation results of the two fusion algorithms
in the y-axis direction are better than the calculation results using a single sensor. From
the comprehensive analysis, experimental data show that our proposed method is slightly
better in terms of fusion.

The KITTI dataset 07 sequence is a visual closed loop of the movement of the mobile
platform. The range is about 600 × 1200 m. Figure 18 shows the motion trajectory
estimation results of the 07 sequence. The yellow loosely dashed line and blue dash-
dotted line are the trajectories calculated by a single sensor, the yellow loosely dashed
line represents the motion trajectory calculated by the IMU, and the blue dash-dotted line
is the motion trajectory calculated by the visual odometry. The ground truth shows the
actual motion trajectory as a closed loop, however the trajectory of the visual odometry
does not form a closed loop. Using the algorithm to fuse the positioning data of the
IMU and the visual odometry can reduce the error of only using the visual odometer to
form a closed motion loop and make the calculation result closer to the true value. Both
the Kalman algorithm and our method have data fusion effects. As can be seen from
Table 5, our proposed method integrates IMU and visual odometer data to obtain better
positioning results.

Table 5. KITTI dataset 07 sequence experiment, RMSE.

IMU Visual Odometry Kalman
(Inertial-Visual)

Proposed
(Inertial-Visual)

x(m) 4.8461 1.8431 3.0742 2.8290
z(m) 2.8955 6.3704 4.5074 3.1663
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In theory, it is especially proposed that the information of brain-inspired model
fusion is not limited to vision and IMU, and the position data provided by any sensor
can participate in the calculation. The advantage of the brain-inspired positioning model
is that the model is constructed inspired by brain neurons and provides some ideas for
brain-inspired engineering applications. Our proposed brain-inspired model has a good
performance in data fusion, and there is no need to change or rebuild the model according
to the different sensors used, so it is suitable for engineering applications. However, this
model has some shortcomings when used in a wide range of environments, because the
place cell model scale is set in relation to the range of motion. The current experiment
was based on the collected dataset and is limited by the computer used for the simulation
experiment. The experiment has not been carried out for the calculation delay caused
by a large amount of data, so this research can be realized in the future. In general, the
number of head-direction cells and place cells is related to the region, and the relationship
between the number of cells and the positioning performance needs to be further studied
in the future.

7. Conclusions

In this paper, we proposed a positioning method based on spatial representation cells
for satellite-jamming environments. This method uses attractor neural networks to build
the head-direction cell model and the place cell model to encode vision and IMU data, and
the navigation parameters are decoded based on the population neurons. Experimental
results showed that the proposed model effectively integrates vision and IMU data and
provides more accurate position and direction information. In conclusion, our proposed
method has the following contributions:

(1) A brain-inspired research framework based on visual and inertial information was
provided for the intelligent autonomous navigation system in complex environments.

(2) A brain-inspired visual-inertial information encoding method and navigation parame-
ter methods were proposed to explore brain-inspired research ideas from neuroscience
to application.
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(3) The brain-inspired navigation model promotes the development of more intelligent
navigation systems and provides the possibility for the wide application of brain-
inspired intelligent robots and aircraft in the future.
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