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Abstract: It is difficult to establish an accurate mechanism model for prediction incinerator tem-
peratures due to the comprehensive complexity of the municipal solid waste (MSW) incineration
process. In this paper, feature variables of incineration temperature are selected by combining with
mutual information (MI), genetic algorithms (GAs) and stochastic configuration networks (SCNs),
and the SCN-based incinerator temperature model is obtained simultaneously. Firstly, filter feature
selection is realized by calculating the MI value between each feature variable and the incinerator
temperature from historical data. Secondly, the fitness function of GAs is defined by the root mean
square error of the incinerator temperature obtained by training SCNs, and features obtained by MI
methods are searched iteratively to complete the wrapper feature selection, where the SCN-based
incinerator temperature prediction model is obtained. Finally, the proposed model is verified by
MSW incinerator temperature historical data. The results show that the SCN-based prediction model
using the hybrid selection method can better predict the change trend of incinerator temperature,
which proves that the SCNs has great development potential in the field of prediction modeling.

Keywords: municipal solid waste; incinerator temperature prediction; feature selection; stochastic
configuration networks

1. Introduction

The main goal of municipal solid waste (MSW) incineration is to realize the resource,
reduction and harmlessness of MSW [1]. During the MSW incineration process, if the
incinerator temperature (generally the temperature of the primary combustion chamber) is
less than 850 ◦C, the dioxin with strong carcinogenicity cannot be effectively decomposed,
which will endanger human health [2]. Therefore, it is whether the incinerator temperature
is controlled well or not that becomes a key indicator to measure whether operation of
MSW incineration is normal. In order to stably control the incinerator temperature, the
operation index of relevant equipment needs to be adjusted in real time according to
the change trend of the incinerator temperature. However, due to the volatility of waste
components and the strong lag in the incineration process [3], it is difficult for on-site
operators to judge the change trend of furnace temperatures in time, which may cause
the furnace temperature to be out of control. Therefore, it is of significance to establish a
prediction model of furnace temperature that can accurately predict the change of furnace
temperature in the incineration process.

At present, methods of modeling for the MSW incineration process are widely focused
on the mechanism analysis modeling methods [4,5], and the computational fluid dynam-
ics (CFD) technology is used to simulate and model the MSW incineration process [6,7].
Although the mechanism analysis has the advantages of high reliability and good extrap-
olation, the accuracy of the mechanism model is difficult to satisfy due to the complex
characteristics of the MSW incineration process, such as the strong nonlinearity, the large
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fluctuations in waste composition, and the severe coupling between variables. However,
a large amount of process industry data can be obtained with the development of sensor
technology, which provides a powerful guarantee for data-driven method modeling [8].
Nowadays, data-driven modeling methods mainly include back propagation (BP) neural
network, support vector machine (SVM) and stochastic configuration networks (SCNs).
Nevertheless, due to well-known reasons, such as the BP neural network easily falling into
local optimum and the convergence speed being slow, SVM has low training efficiency
for large-scale data samples which makes the application of these typical methods have
certain limitations. Due to the universal approximation property, random assignation
of hidden nodes parameter and fast training speed, SCNs as an emerging data-driven
modeling method [9] have attracted the attention of researchers. It has been widely ap-
plied to the field of pattern classification [10], function approximation [11] and parameter
prediction [12,13].

In this paper, SCNs are employed to establish the MSW incinerator temperature
prediction model, which is completed in two steps. Firstly, some unrelated variables are
removed from several feature variables by the mutual information (MI) method. Then,
SCNs and genetic algorithms (GAs) are combined to form a GA-SCN feature selection
method where redundant variables are further eliminated. When the error of the SCN-
based temperature model of the MSW incinerator reaches the specified value, not only
is the hybrid selection of feature variables completed, but the SCN-based incinerator
temperature prediction model is also obtained. Finally, effects of feature selection and the
performance of the incinerator temperature prediction model are evaluated by historical
data on incinerator temperature.

The rest of this paper is organized as follows: Section 2 introduces the MSW in-
cineration process. Section 3 reviews the feature selection method and SCNs. Section 4
describes the establishment process of the incinerator temperature model. Section 5 con-
ducts the experimental evaluation. In the final section, the conclusions and future research
are presented.

2. MSW Incineration Process

Taking the incinerator used by a waste incineration company in Beijing as an example,
the MSW incineration process is shown in Figure 1. The process can be divided into four
main sub-processes: grate speed, grate temperature, air flow and combustion chamber.
The specific process is as follows:
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First, the MSW is sent to the incinerator through the feeder; under the effect of high
temperature radiation from the chamber and convection heat transfer of primary air, the
water drying process is carried out along the direction of the drying grate. Then the dried
waste, placed on the burning grate (a total of two stages, burning grate 1 and burning
grate 2), is used for the precipitation of volatiles. Finally, the fixed carbon in the waste is
burned to form carbon oxides in the burnout grate. At the same time, the separated volatiles
are burned in a combustion chamber with oxygen from primary air, and incomplete
combustion volatiles are further burned under the influence of the secondary air.

In order to avoid the MSW incineration process that produces dioxin gas with strong
carcinogenicity, it is necessary to control the incinerator temperature above 850 ◦C, which
can promote the decomposition of dioxins [14]. Therefore, the incinerator temperature
should be controlled stably and precisely, which has become a key index for judging
whether operation of the MSW incineration process is normal.

For the incineration process shown in Figure 1, incinerator temperature is affected
by the operating conditions of grate speed, grate temperature and air flow sub-process.
The feature variables that may affect the incinerator temperature are n = 65 in total. The
grate speed sub-process includes grate speed of the drying grate, the burning grate 1,
the burning grate 2 and the burnout grate, which has n1 = 18 feature variables; grate
temperature sub-process includes grate temperature of the drying grate, the burning
grate 1, the burning grate 2 and the burnout grate, which has n2 = 24 feature variables; the
air flow sub-process includes various variables of fan, air heater, the air flow under the
drying grate, the burning grate 1, the burning grate 2 and the burnout grate (mainly air
volume, pressure and temperature), which is n3 = 23. The detailed variable information is
shown in Table 1. Unfortunately, the large number of process variables probably include
irrelevant or redundant feature variables. If the model is directly built by all variables, this
may lead to high complexity, large fitting error and even over-fitting. Therefore, before the
incinerator temperature prediction model is established by the data-driven method, it is
necessary to select features based on the sample data.

Table 1. Details of Feature Variables.

Sub-Process
Name

Number of
Variables Details

Grate Speed 18

Feeder velocity (L1,L2,R1,R2); drying grate velocity
(L1,L2*,R1*,R2); burning grate 1 velocity

(L1,L2,R1,R2); burning grate 2 velocity (L1,L2,R1,R2);
burnout grate velocity (L,R).

Grate
Temperature 24

Drying grate temperature (L1*,L2*,R1,R2); burning
grate 1 inlet temperature (L1*,L2,R1,R2); burning

grate 1 outlet temperature (L1*,L2*,R1*,R2); burning
grate 2 inlet temperature (L1,L2,R1,R2); burning

grate 2 outlet temperature (L1,L2,R1*,R2*);
temperature between drying grate and burning

grate (L1
*,L2,R1,R2).

Air Flow 23

Drying grate air flow (L1,L2*,R1,R2); burning grate 1
air flow (L1*,L2,R1*,R2*); burning grate 2 air flow
(L1*,L2,R1,R2); burnout grate air flow (L*,R); fan

pressure of primary* and secondary air; air
temperature of primary and secondary air heater;

secondary air flow; furnace wall cool air temperature
(L,R); furnace grate cool air temperature (L*,R).

Remark: In the above table, L and R represent left and right and the subscripts 1 and 2 represent inside and
outside, respectively. In addition, “*” represents the feature variable finally selected by the proposed method.
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3. Related Work

In this section, some related work of feature selection methods and the SCNs modelling
method proposed will be introduced.

3.1. Feature Selection

The feature selection method can be divided into filter methods [15] and wrapper
methods [16] depending on whether the classifier or the predictor directly participates in
feature selection. Filter methods rank the features of the sample data by some ranking
criteria, and then set the threshold to eliminate features that cannot satisfy the condition [17],
such as the correlation criterion [18] and mutual information (MI) [19]. Correlation criteria
calculates simply and can effectively eliminate less relevant variables. However, it can
only detect linear dependencies between variable and target. Unfortunately, there are a
large number of nonlinear relationships in actual sample data, so it has certain limitations.
The MI-based feature selection method is based on information entropy to quantify the
dependency between two variables, and features are selected by MI-based ranking. The
MI definition is as shown in (1):

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

pX(x)pY(y)
(1)

where x and y represent the attribute values of the feature variables X and Y, respectively,
pX(x) and pY(y) represent the edge probability distribution, p(x, y) represents the joint
probability distribution. If X and Y are independent, then I(X; Y) = 0; the greater I(X;
Y) represents the higher the dependence between X and Y. MI values are obtained by
(1) between feature variable and target variable. Then, required feature variables are
selected by setting a MI threshold; in other words, irrelevant variables are eliminated.
However, filter methods are independent of the model training process, and redundant
variables may exist in the selected feature subset [20]. As a result, it may lead to the poor
modeling accuracy.

Wrapper methods use the classifier or the predictor as a black box, and use the classi-
fier or the predictor performance as the basis for evaluating whether the feature selection
is effective, and the classifier or predictor can be obtained while feature selection is com-
pleted. Typical wrapper methods include sequential feature selection (SFS) algorithms [21],
GAs [22] and particle swarm optimization (PSO) algorithms [23]. Although wrapper meth-
ods can effectively eliminate irrelevant variables and redundant variables, there are some
limitations such as high complexity and low efficiency. The combination of filtering and
wrapper methods can properly compensate for their deficiencies and improve the effect of
feature selection [24–26], however these limitations still exist. Thus, it is necessary to select
the modeling method.

3.2. Stochastic Configuration Networks

The stochastic configuration network, proposed by Wang et al. is a randomized
method with universal approximation property [9]. Compared with traditional artificial
neural networks, SCNs randomly assign the parameters of the hidden layer nodes in
the light of a supervisory mechanism and evaluate the connection weight between the
hidden layer nodes and the output layer nodes, which greatly avoids the influence of
neural network learning ability from artificial experience, and its training efficiency also
has obvious advantages. There are three learning algorithms provided by [9]. The proposed
SC-III algorithm is used in this paper, whose supervisory mechanism and training process
are described below.
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When the input weights and biases between the input layer and the hidden layer,
generated by the SC-III algorithm randomly, satisfies the constraint condition (2), the
method has universal approximation property.〈

eL−1,q, gL
〉2 ≥ b2

gδL,q, q = 1, 2, . . . , m (2)

where eL−1 represents the residual error with L − 1 hidden nodes; gL is an activation
function, where the Sigmoid function is used, and 0 < ‖g‖ < bg for some bg ∈ R+; δL,q
represents the qth node of the output layer with L hidden layer nodes; m represents the
number of nodes in the output layer.

The training process of the SC-III algorithm mainly includes two phases: hidden layer
node parameters configuration and output weight evaluation. In hidden node parameters
configuration phase, the connection weight ωL and bias bL of the Lth hidden node are
randomly assigned from [−λ, λ]d and [−λ, λ] and the new random basis function gL(ωL
and bL) is generated to satisfy (2); the Lth hidden node output hL and ζL,q are evaluated by
(3) and (4), and find the connection weight ωL

* and bL
* that maximizes ζL = ∑m

q=1 ζL,q.

hL(XS) = [gL(ω
T
L xS1 + bL), gL(ω

T
L xS2 + bL), . . . , gL(ω

T
L xSN + bL)]

T
(3)

ζL,q =


(

eL−1,q(XS)
T · hL(XS)

)2

hL(XS)
T · hL(XS)

− (1− r− µL)eL−1,q(XS)
TeL−1,q(XS)

 (4)

where XS = {xS1, xS2, . . . , xSN} is the input matrix of the network, N represents the number
of training samples, µL is a non-negative real number sequence with limL→+∞µL = 0,
0 < r< 1, and µL ≤ (1 − r).

In the weight evaluation phase, the output weights and residual error of SCNs are
calculated by (5) and (6).

β∗ = [β∗1, β∗2, . . . , β∗L]
T := H+

L T (5)

eL = eL−1 − β∗Lh∗L (6)

where H+
L is the Moore–Penrose generalized inverse of HL, HL = {h1

*, h2
*, . . . , hL

*} is the
output matrix of the hidden layer, T = {t1, t2, . . . , tN} is the output matrix of the network.

The above two phases are repeated until ‖eL‖F (‖•‖F is the Frobenius norm.) is less
than the preset error and the training ends.

4. Incinerator Temperature Prediction Model Based on SCNs

From the above analysis, mutual information, genetic algorithms and SCNs are used
to select the feature variables of the MSW incinerator temperature, and the SCN-based
incinerator temperature prediction model was established. Thereby, the training efficiency
and generalization ability of the prediction model can be guaranteed. In the following
section, modeling strategy, hybrid selection method of feature variables and algorithm
steps are discussed in detail.

4.1. Modeling Strategy

The modeling strategy of predicting the MSW incinerator temperature is that the
prediction model is obtained through two-step feature selections. First, MI values between
the feature variables of three sub-processes (including grate speed, grate temperature and
air flow) and incinerator temperature are calculated, respectively, and feature variables
are ranked by MI values size. Next, MI threshold is calculated according to the influence
factor of each sub-process, whereby primary feature selection is finished, and feature
variables of each sub-process are combined. Then, the secondary feature selection based
on the GA-SCN method is conducted, the root means square error (RMSE) of incinerator
temperature, obtained by training the SCN model, is defined as the fitness function of GAs,
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and wrapper selection of feature variables is achieved by iterative search from the merged
feature variables. In order to avoid the GAs search falling into the local optimum, the
search process is repeated J times, and the optimal feature subset and the SCN incinerator
temperature model with the smallest RMSE are obtained through statistical analysis.

4.2. Hybrid Selection Method of Feature Variables

The following introduces the implementation method of the primary feature selection
based on MI and secondary feature selection based on GA-SCN.

4.2.1. Primary Feature Selection Based on MI

From the analysis of the incineration process in Figure 1, the total number of feature
variables that may affect the incinerator temperature from three sub-processes (including
grate speed, grate temperature and air flow) are n. Take the grate speed sub-process as an
example, where there are n1 initial feature variables. According to the MI formula provided
by the literature [27], MI value between the ith feature variable xi

1 and the incinerator
temperature y is expressed as I1sti

1 (xi
1; y), which is calculated as follows:

I1sti
1 (xi

1; y) =
∫ ∫

p(xi
1y) log

p(xi
1, y)

p(xi
1) · p(y)

dxi
1dy = H(xi

1)− H(xi
1

∣∣∣∣∣y) (7)

where p(xi
1) is the edge probability density with xi

1, p(y) is the edge probability density
with y, p(xi

1, y) is the joint probability density, H(xi
1) is the information entropy of xi

1, and
H(xi

1

∣∣y) is the conditional entropy.
After the MI value of all the feature variables and y in the sub-process is calculated,

respectively, it is arranged in descending order according to the MI value and the threshold
θ1 is set by (8), and the feature variable with MI value greater than or equal θ1 is retained,
otherwise deleted; thereby the feature subset of the grate speed sub-process X1st

1 is obtained.

θ1 =

n1
∑

i=1
I1sti
1 (xi

1; y)

n1 · α1
(8)

where n1 represents the quantity of initial feature variable in grate speed sub-process; α1
represents the influence factor of the grate speed sub-process on incinerator temperature,
which is set according to the MI value average of each feature variable to incinerator
temperature in the three sub-processes. If the MI value average of the sub-process is the
smallest, then 0 < α1 < 1; if it is the largest, let α1 > 1. If it is centered, let α1 = 1. As
can be seen, the larger the influence factor α1, the smaller the number of features that
are eliminated.

For grate temperature and the air flow sub-processes, MI values between feature
variable and y are calculated and primary feature selection process is the same as above,
and the feature subset X1st

2 and X1st
3 can be obtained, respectively. Finally, the selected

features are combined by (9) to obtain the feature subset X1st = {x1, . . . , xz, . . . , xn’} after
the primary feature selection, and the total number of feature variables is changed from n
to n’.

X1st = X1st
1 ∪ X1st

2 ∪ X1st
3 (9)

4.2.2. Secondary Feature Selection Based on GA-SCN

The primary feature selection based on MI only considers the correlation between
each feature variable and y, however, it ignores the relationship between the variables.
Therefore, based on the feature selection of MI, this section combines the GAs [28] proposed
by Holland with the SCNs [9] provided by Wang to form a wrapper method for GA-SCN.
The procedure is shown in Figure 2. First, feature variables in the feature subset X1st

after the primary selection are coded, and initial population constitutes chromosomes.
Then chromosomes in the population are decoded to obtain the feature subset, and RMSE
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is obtained by training the SCN model for assessment fitness, and a new generation of
population is formed through the selection, crossover and mutation of chromosomes. The
above process is repeated until the SCN model that meets the accuracy requirements is
finally obtained.
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(1) Coding and decoding
In order to facilitate the implementation of the subsequent evolution steps, the feature

subset X1st needs to be coded, and the coded feature subset is represented in the form of a
chromosome vector. The coding rule is as follows:

Ct
s = [c1, . . . , cz, . . . , cn′] (10)

where Ct
s is the tth chromosome in the s-th generation population, n’ is the number of

features after the primary feature selection, cz∈{0,1} is the z-th bit of the chromosome
(whether the z-th feature variable in X1st is selected for encoding), “0” indicates that the
feature variable corresponding to the bit is not selected, and “1” indicates that the feature
variable corresponding to the bit is selected.

Based on the above rules, the first-generation population is randomly generated.
Among them, Popsize is the number of chromosomes, and each bit of the chromosome is
randomly generated from 0 or 1.

Decoding ensures that the values are mapped corresponding to each chromosome to
feature subsets, and the corresponding relationship is presented as follows:

Xt
s = [c1x1, . . . , czxz, . . . , cn′xn′ ] (11)

where Xt
s is the feature subset corresponding to the t-th chromosome of the s-th generation

population, if cz = 0, let czxz = ∅.
(2) Fitness assessment
GAs is a random search strategy based on the theory of “survival of the fittest”.

Therefore, the choice of fitness function is a key step of GAs. In this paper, the fitness
function is defined by RMSE of the incinerator temperature, which is obtained from the
SCN model trained by the SC-III algorithm in [9], as shown in Equation (12):

f itnesst
s =

1
RMSE

(12)
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where RMSE is the root mean square error (RMSE) of the SCN model output and the actual
value of incinerator temperature, which is shown as follows:

RMSEt
s =

√√√√√ N
∑

i=1
(yi − ŷi)

2

N
(13)

where yi is the actual value of the incinerator temperature, ŷi is the output of the SCN
temperature model in Figure 3.
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(3) Selection, crossover and mutation
Selection, crossover and mutation are the main methods of population evolution. The

main method of chromosome selection is to select the chromosome with higher fitness as
the next generation from the population so as to improve the search efficiency. The selection
of chromosomes follows the roulette method so that the more adaptive chromosomes are
selected to enter the next generation population with a higher probability. The probability
that the t-th chromosome in the s-th generation population enters the next generation is
as follows:

pt
s =

f itnesst
s

Popsize
∑

t=1
f itnesst

s

(14)

The main role of chromosome crossover and mutation is to ensure the diversity of can-
didate feature subsets and avoid premature convergence. The one-point crossover method
is adopted for crossover, i.e., the intersection point is randomly set in the chromosome.
When the chromosome crossover is performed, the anterior and posterior segments of
the intersection on two chromosomes are exchanged with the probability Pc. Moreover,
mutation occurs when one or more gene positions on a chromosome are selected by the
mutant factor randomly and perform a reverse operation with a probability Pm. After the
number of iterations k reaches the set value, the SCN incinerator temperature model with
the smallest RMSE and the corresponding feature subset are obtained.

4.3. Algorithm Steps

From the above, the specific algorithm steps are described as follows:

Step 1. Parameter initialization, including setting the number of chromosomes Popsize,
population iteration times k, crossover probability pc, mutant probability pm, maxi-
mum number of hidden nodes Lmax of SCN, and GA-SCN program execution times
J, and then standardize the data;

Step 2. Calculate MI value between each feature variable and incinerator temperature y by
(7), respectively, and set the influence factors α1–α3 of the three sub-processes;

Step 3. Calculate the threshold θ of each sub-process by (8). Feature variable is retained if
its MI value is greater than or equal to θ, otherwise delete it. The selected feature
variables in each sub-process are merged into X1st by (9);
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Step 4. If J is equal to 0, go to Step 10, otherwise go to Step 5;
Step 5. Encode the feature variables in X1st by (10) and randomly generate the first genera-

tion population;
Step 6. Decode each chromosome by (11), train the SCN model according to the SC-III

algorithm provided in [9], calculate the fitness of each chromosome by (12), and
rank them according to fitness;

Step 7. If error of SCN is less than the expected error, save the optimal feature subset and
the corresponding SCN incinerator temperature model, and let J = J − 1, return to
Step 4; otherwise go to Step 8;

Step 8. Calculate the probability that the chromosome is selected to enter the next genera-
tion by (14);

Step 9. Perform crossover and mutation of chromosomes based on crossover probability
Pc and mutant probability Pm to construct a new generation population and return
to Step 5;

Step 10. Compare the feature subsets of the J times GA-SCN outputs and use the highest
frequency of the same feature subset as the final feature subset, and randomly select
the SCN model corresponding to one of the feature subsets as the final incinerator
temperature model.

5. Experimental Study
5.1. Experimental Design

For convenience, the following abbreviations are used: MI is a filter method; GA-SCN
is a wrapper method; MI-GA-SCN is the hybrid selection method of feature variables
proposed in this paper; BP is the back propagation network algorithm; RBF is radial basis
function neural network algorithm.

In order to test the performance of the feature selection method and the incinerator
temperature model in this paper, experiments were carried out using historical data of
a waste incineration power plant in Beijing in July 2019. The data were standardized by
the Z-SCORE standardization method, and the training set and test set were constructed
by stratified sampling to ensure the comprehensiveness of the data set. The experimental
scheme is as follows:

Experiment 1: In order to verify the performance of the hybrid feature selection
method MI-GA-SCN proposed in this paper, the running time, number of features and
RSME of incinerators temperature model were compared for MI, GA-SCN and MI-GA-SCN
experimentally.

Experiment 2: In order to verify the advantages of SCN applied to modeling for
predicting MSW incinerator temperature, the feature subset, obtained by the MI-GA-SCN
method, was regarded as the input variable of BP and RBF, and then the incinerator
temperature model was obtained by training, respectively. The incinerator temperature
model was compared for the SCN, BP and RBF model, and analyzed for RSME.

The experimental parameters were as follows: the number of population iterations k
was set to 10, the number of chromosomes in the population Popsize was 20, the mutant
probability Pm was 0.05, the crossover probability Pc was 0.4, and the maximum number of
hidden nodes Lmax of SCN was 500. The GA-SCN program execution times J was set to 10.

5.2. Analysis of Experimental Results

According to Experiment 1, the feature variables of MSW incinerator temperature were
selected by MI, GA-SCN and MI-GA-SCN, respectively, and the running time, the number
of selected features and the RMSE of the corresponding SCN incinerator temperature
model were compared. The comparison results are shown in Table 2. In terms of running
time, the filtering method based on MI has the shortest running time, the wrapper method
based on GA-SCN has the longest running time, and the hybrid selection method based
on MI-GA-SCN is in the middle. Obviously, this proves that the filter method has an
advantage in terms of computational efficiency. Moreover, in terms of RMSE, the SCN



Sensors 2021, 21, 7878 10 of 14

incinerator temperature model based on MI-GA-SCN has the highest accuracy, the SCN
model with MI is the least accurate, and the SCN model obtained by GA-SCN is centered.

Table 2. Performance comparison of MI, GA-SCN and MI-GA-SCN.

Feature Selection Methods MI GA-SCN MI-GA-SCN

Running time/s 9.7 264.5 225.1
Number of selected features 50 34 19

RMSE/◦C 85.5129 46.2922 32.2995

In addition, in terms of the number of features, the MI-GA-SCN method selected the
least number of features, followed by GA-SCN, and MI selected the largest number of
features, which indicates that the combination of filtering and wrapper feature selection
methods could be appropriate for making up for their respective shortcomings. The
irrelevant variables and redundant variables were eliminated, and the efficiency of feature
selection was improved. Simultaneously, the model accuracy significantly improved.
Besides, in order to compare the fitting effects of the above three models on the incinerator
temperature intuitively, the fitting conditions of the MI-SCN, GA-SCN and MI-GA-SCN
incinerator temperature models were compared. The results are shown in Figure 4. It can
be seen that the incinerator temperature model obtained by the MI-GA-SCN method can
better simulate the change trend of the actual incinerator temperature.
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The modeling methods are also a key factor affecting the quality of prediction model-
ing results except for the appropriate feature selection methods. In this paper, the feature
subsets, obtained by the MI-GA-SCN method, are used as input variables of the BP and
RBF. The BP and RBF incinerator temperature prediction models were obtained by train-
ing, respectively, and the SCN incinerator temperature prediction model was obtained
by the MI-GA-SCN method. The performance of the above three incinerator temperature
models was compared, which is shown in Figure 5. It can be seen that the SCN model
is better than the BP model and the RBF model for fitting the incinerator temperature.
In addition, Table 3 is the RMSE comparison results of the above three models. From
the RMSE perspective, the prediction accuracy of the SCN model is higher than the BP
model and the RBF model. The main reason for the above results is that SCNs have the
universal approximation properties for nonlinear functions and the network structure and
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parameters are configured adaptively, which avoids the influence of artificial experience
on neural network learning ability. Moreover, the training situation of the SCN model
can also be intuitively seen from Figure 6. This shows that the training RMSE of the SCN
model reduces to 0 approximately with the hidden layer nodes increasing, which proves
that SCNs have advantages in the approximation ability of nonlinear functions again.
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Table 3. Comparison among RMSE (◦C) of SCN, BP and RBF.

Number of
Experiments SCN BP RBF

1 24.758 43.2929 48.6292
2 37.7678 48.3751 63.5188
3 37.4844 43.0013 59.5881
4 28.8737 41.6697 51.4547
5 34.6255 46.4093 54.4388
6 44.4658 43.1152 64.5210
7 40.4379 46.8904 65.8555
8 40.9450 46.9623 56.0849

Average 36.1678 44.9645 58.0114

In summary, the hybrid selection method of feature variables proposed in this paper
could improve the training efficiency and prediction accuracy while reducing the com-
plexity of modeling. In addition, the SCN-based model can predict the trend of MSW
incinerator temperature accurately, which indicates that SCNs have certain application
advantages in the field of modeling.
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 Figure 6. Training situation of SCN model.

6. Conclusions

In order to better predict the trend of MSW incinerator temperature, a hybrid selection
method for incinerator temperature feature variables and SCN-based prediction incinerator
temperature model are proposed in this paper, and the effectiveness of the methods are
verified by the historical data of waste incineration process. The main contributions of this
method are summarized as follows:

First, in view of the large number of features affecting incinerator temperature in the
MSW incineration process, a hybrid feature selection method was proposed. This method
combines the MI-based filtering method with GAs-based wrapper method to ensure the
efficiency and accuracy of feature selection.

Second, SCN with universal approximation property was used to ensure the accuracy
and generalization ability of the incinerator temperature prediction model in the MSW
incineration process.

The experimental results indicate that the prediction model proposed in this paper
has advantages in training efficiency, prediction accuracy and generalization ability. The
reason is that the hybrid selection method effectively eliminates irrelevant variables and
redundant variables, and reduces the computational complexity while improving the
accuracy of the model. In addition, the advantages of SCNs are the universal approximation
property and configuring the network structure and parameters adaptively, which greatly
avoids the influence of artificial experience on the learning ability of the neural network
prediction model.

Although the experimental results show the rationality of the incinerator temperature
model, the model has limitations, such as the inability to process abnormal samples and
poor interpretability. Therefore, the directions for future research mainly focus on the
modeling strategy combining the mechanism and data to improve the reliability and
accuracy of the model, thereby achieving a more reasonable and accurate simulation of the
incinerator temperature.
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