
sensors

Article

Research of Distorted Vehicle Magnetic Signatures
Recognitions, for Length Estimation in Real Traffic Conditions

Donatas Miklusis 1, Vytautas Markevicius 1, Dangirutis Navikas 1, Mindaugas Cepenas 1, Juozas Balamutas 1,
Algimantas Valinevicius 1, Mindaugas Zilys 1, Inigo Cuinas 2 , Dardan Klimenta 3 and Darius Andriukaitis 1,*

����������
�������

Citation: Miklusis, D.; Markevicius,

V.; Navikas, D.; Cepenas, M.;

Balamutas, J.; Valinevicius, A.; Zilys,

M.; Cuinas, I.; Klimenta, D.;

Andriukaitis, D. Research of

Distorted Vehicle Magnetic

Signatures Recognitions, for Length

Estimation in Real Traffic Conditions.

Sensors 2021, 21, 7872. https://

doi.org/10.3390/s21237872

Academic Editor: Francisco

J. Martinez

Received: 28 October 2021

Accepted: 25 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics Engineering, Kaunas University of Technology, Studentu St. 50-438,
LT-51368 Kaunas, Lithuania; donatas.miklusis@ktu.edu (D.M.); vytautas.markevicius@ktu.lt (V.M.);
dangirutis.navikas@ktu.lt (D.N.); mindaugas.cepenas@ktu.lt (M.C.); juozas.balamutas@ktu.lt (J.B.);
algimantas.valinevicius@ktu.lt (A.V.); mindaugas.zilys@ktu.lt (M.Z.)

2 Department of Signal Theory and Communications-atlanTTic Research Center, University of Vigo,
36310 Vigo, Spain; inhigo@uvigo.es

3 Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica, Kneza Milosa St. 7,
RS-38220 Kosovska Mitrovica, Serbia; dardan.klimenta@pr.ac.rs

* Correspondence: darius.andriukaitis@ktu.lt; Tel.: +370-37-300-519

Abstract: Reliable cost-effective traffic monitoring stations are a key component of intelligent trans-
portation systems (ITS). While modern surveillance camera systems provide a high amount of data,
due to high installation price or invasion of drivers’ personal privacy, they are not the right technol-
ogy. Therefore, in this paper we introduce a traffic flow parameterization system, using a built-in
pavement sensing hub of a pair of AMR (anisotropic magneto resistance) magnetic field and MEMS
(micro-electromechanical system) accelerometer sensors. In comparison with inductive loops, AMR
magnetic sensors are significantly cheaper, have lower installation price and cause less intrusion to
the road. The developed system uses magnetic signature to estimate vehicle speed and length. While
speed is obtained from the cross-correlation method, a novel vehicle length estimation algorithm
based on characterization of the derivative of magnetic signature is presented. The influence of
signature filtering, derivative step and threshold parameter on estimated length is investigated.
Further, accelerometer sensors are employed to detect when the wheel of vehicle passes directly over
the sensor, which cause distorted magnetic signatures. Results show that even distorted signatures
can be used for speed estimation, but it must be treated with a more robust method. The database
during the real-word traffic and hazard environmental condition was collected over a 0.5-year period
and used for method validation.

Keywords: road traffic monitoring; vehicle speed estimation; vehicle length estimation; AMR type
magnetic field sensor; triple-axis accelerometer; cross-correlation; threshold based method

1. Introduction

With the ongoing rise of vehicle number in the streets, the road traffic sector requires
intelligent systems to mitigate congestions by monitoring and controlling the traffic. Adap-
tive traffic light systems, for streets with volatile traffic direction, are already a must-have
thing in modern city life. The first step for this kind of system is to collect useful road traffic
information: vehicle volume, speed, length, type and direction [1–3]. There are a number
of vehicles sensing technologies from simple inductive loops to complex microwave radars
and high-speed cameras [4–12], and all of them have unique advantages and drawbacks.

This research aims to explore practical traffic classification possibilities, based on data
collected during real-life traffic conditions, using a single magnetic AMR sensor hub. The
key parameter for vehicle classification is length, whose estimation is dependent on speed
measurement. In previous works, it was noticed that using the cross-correlation method to
estimate speed produces a high error due to uneven magnetic signals. In this research, the
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authors identify the main error source and also propose a correction technique. In addition,
a novel approach to estimate vehicle length is presented. A great deal of effort has been
paid to collect a unique dataset over the past half year and to test proposed methods.

2. Relate Works

A variety of sensing techniques are used for increasing road traffic safety. One ap-
proach is based on equipping vehicles [13–15] with new sensors and another by upgrading
road infrastructure with traffic monitoring systems, from inductive loops to microwave
radars and optical fibers [4–9]. Although many methods can be used for intelligent traffic
systems, there are few key technologies widely accepted as reliable: surveillance camera
systems, inductive loops and magnetic field sensors. Lately, extensive works have been
put on developing intelligent traffic monitoring stations based on magnetic sensors [7,9].
Well-known and mature inductive loop technology were compared with magnetic field
sensors in [2]. As a main drawback, the authors identified the installation process and
maintenance. Although both technologies require temporary closure of the road, magnetic
sensors are much smaller and cause significantly less protrusion to the road pavement.
Furthermore, magnetic sensors provide signals with a rich amount of feature points and
could be used for classification.

The authors of [16] investigated a vehicle classification approach with signals from a
magnetic sensor, placed on roadside 60 cm from passing vehicles. Four types of vehicles
were analyzed: sedan, van, truck and bus. The authors proposed to use Mel Frequency
Cepstral Coefficients (MFCC) as a feature to characterize magnetic signatures. Furthermore,
Dynamic Time Wrapping (DTW) algorithm was employed to select efficient training
samples and filter out distorted ones. The proposed classifier algorithm categorized
vehicles in five groups, but neither length nor speed estimation results were presented.

Similar approaches are discussed in the papers [17,18]. Firstly, a dataset of magnetic
signatures was collected and organized into four main groups: sedan, van, bus and trucks.
Secondly, after digital signal processing and feature extraction, the classifier was trained
based on these signals. As a result, the presented methods did not provide absolute value
of vehicle length/height estimation, but rather just assigned vehicles to a particular group.
As compared in the paper [17], their overall accuracy of classification into seven types was
90.3%. For speed estimation, the authors proposed a different method. Since only one
magnetic field sensor is employed in the paper [18], speed was estimated by assigning
unknown signature to one of the four vehicle types and applying coefficients of particular
model. The authors claim that only 8% of the estimated speed errors exceeds 10 km/h,
and 80% of errors are lower than 4 km/h. In comparison, Kafeng Wang [17] chose to place
two laterally displaced sensors along the road and estimated the speed of vehicle through
maximizing the correlation between the signals. Consecutively, this information was used
for length estimation and assignment into the group. As it is explained in both papers,
filtering plays an important role for signal processing. In the first paper, a 5 Hz low pass
filter was applied, whereas in the second, Butterworth low (>40 Hz) and high pass filters
(<10 Hz) were employed as a bandpass.

In the recent years, wireless sensors have received significant attention in automated
systems [19–21]. The authors of [19] proposed a sensing node consisting of two magnetic
field sensors on the roadside and one on the road. Magnetic readings of the z-axis from the
multiple sensors were used for vehicle type estimation and classification. In [20], vehicle
classification is accomplished only from one node sensor. The authors shared future plans
to collect a large dataset and arrange data into four main groups. Once a new signature
is detected, a classification algorithm based on Euclidean distance calculation will assign
each vehicle to the closest distance sample category.

Networks of sensing systems are necessary for designing traffic jam avoidance, road
safety and traffic surveillance systems. A very attractive self-powered unit idea is explored
in papers [22,23].
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3. Problems

During the previous research [9], it was noted that at certain conditions speed esti-
mation method from the pair of magnetic signatures gave highly faulty results. After the
analysis, it was deducted that most of the time, incorrect results appeared once the wheel of
the vehicle passed very close or directly above the sensor. This kind of distorted magnetic
signatures must be identified and treated in a different manner; therefore, a system of
magnetic field sensor with accelerometer is presented in the following section.

3.1. Distorted Signatures Identification by Accelerometer Signal

In Figure 1, we can see an example of the same vehicle passing a magnetic field sensor
by the correct and distorted manner. As it is visible in the Figure 1a plot, distorted magnetic
signatures of both sensors have significant peaks at the leading and trailing edges, while in
the Figure 1b plot we can see how signals should look like for a particular vehicle if it drives
at the center of sensor. Furthermore, in the Figure 1a plot, two peaks of accelerometer
signal are clearly visible, which are caused by front and rear tires.
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Figure 1. An example of same vehicle passing traffic monitoring station in two ways: (a) right side
wheels are directly passing over the sensor, (b) vehicle driving at the center of sensor hub. In the plots
next to the images, temporal data of magnetic signature of two magnetic sensors and accelerometer
signal are shown.

In our application, an STMicroelectronics LIS3DH triple-axis accelerometer is used,
and sampling frequency 1 kHz. Since the sensor node is installed at 6 cm depth into the
pavement, it is important to guarantee good mechanical interface. The inner sensor housing
was filled with epoxy, and during the installation on the road, the sensor was poured over
with specialized tar. As a result, accelerometer detects vehicles only if their wheels drive
directly above the sensor.

Due to outside temperature changes, the mechanical properties of road surface
changes and likewise the noise level for accelerometer signal. Therefore, it is desirable
to use an adaptive algorithm for vehicle driving over the sensor detection. For signal
processing, first, low pass filtering is applied, and as a criterion, it is proposed to use the
ratio of accelerometer signal maximum and mean values (Figure 1). In Figure 2, one can
see the ratio values for the test group of 1000 randomly selected vehicles, and on the right
side the cumulative distribution function for the same criterion. For this test group, 95% of
cases ratio is below value acc_ratio = 2, which we use as the threshold value to identify the
vehicle which drove directly over the sensor.
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Although the accelerometer helps to detect distorted signatures, it is not always a
sufficient approach, as shown in Figure 3. In the Figure 3a plot, one can see a case that a
heavy vehicle produces high level of vibration (acc_ratio = 2.2), which indicates a distorted
magnetic signature. Although from the image and magnetic signals, it is clear that it is not
a distorted case. An opposite case is shown in the Figure 3b plot, where the accelerometer
signal does not indicate anything, although magnetic signatures are highly distorted.
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Figure 3. An example of two cases, when accelerometer criterion gives faulty result: (a) plot: acc
ratio of 2.2 indicates distorted signature, but bus was driving perfectly at the center of sensor and
magnetic signatures are not distorted; (b) plot: vehicle is clearly driving over the sensor therefore
magnetic signatures are distorted, but from the accerometer signal it is not visible (acc_ratio = 1.43).
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3.2. Distorted Signature Detection Based on Feature of Magnetic Signals

As it was explained in the section above, the accelerometer is not sufficient for detect-
ing distorted signatures and an additional method should be employed. It was proposed
to explore signals from magnetic sensors.

Normally, if the vehicle passes at the center of magnetic sensors, a pair of magnetic
signals are identical and just shifted in time (shape and area of curvature should match). In
order to detect distorted signatures, one could compare the mismatch area of curvature
(Figure 4). Needless to say, signals must be aligned in time, and cross-correlation is the
preferable method. It is done by finding a lag of two signals and then subtracting it from
the leading signal. In the example below, one can see two aligned magnetic signatures with
mismatch area above 10% of the total figure area of the first signal.
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By applying only the accelerometer criterion, up to 41 distorted signature pairs were
detected; by using second mismatch criterion, up to 58 signatures (Figure 5). Twenty-
one cases were detected by both methods simultaneously, whereas the rest of cases were
detected only by one of the methods. By using two methods, a total of 78 cases were
detected, representing 7.8% of distorted signatures in the dataset.
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4. Method and Materials

In this paper, we use data collected from a traffic monitoring station, as explained
in paper [9]. Additionally, this station was upgraded with accelerometer sensors, which
were installed on the same PCB (printed circuit board) with magnetometers (Figure 6).
In this system, two STMicroelectronics LIS3MDL AMR type magnetic field sensors are
used with sampling frequency of 2 kHz. Two sensors were placed at one space point and
their scanning was performed alternately every 0.5 ms; thus, the magnetic field data at a
given space point are read at a frequency of 2 kHz. Originally, the sensors record incident
magnetic field B in three geometrical axes providing the three corresponding components
(Bx, By, Bz). However, for further calculation, we will be using only magnetic signature
term, which refers to the magnitude of magnetic field (1).

B =
√

Bx + By + Bz, (1)

where: B—magnitude of magnetic field, Bx By Bz—three orthogonal magnetic field components.
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Figure 6. The schematic drawing of the traffic monitoring station. The sensor hub consist of two
magnetic field sensors spaced by 30 cm and one accelerometer.

4.1. Speed Estimation Technique for Distorted Signatures

An accurate speed estimation from magnetic signals is the first step to calculate
vehicle length and type. In the previous works [3,9,24], it was shown that speed estimation
technique based on cross-correlation produces the most accurate results. Therefore, speed
is estimated from the pair of magnetic signatures magnitude in this research. Prior to
cross-correlation calculation signals are filtered with low pass filter of 100 Hz.

This method works well with similar shape signals. However, it is not the case with
distorted magnetic signatures. As depicted below, some distortions could lead to high-
speed estimation errors. In these cases, it is more reliable to use a simple threshold-based
method to estimate speed. Using this approach, vehicle arrival and departure points in
time are detected depending on the amplitude of magnetic signature. As shown in Figure 7,
the cross-correlation method with distorted signatures might produce very high errors. On
the contrary, a simple threshold-based method is more robust for it. For the distorted test
group, standard deviation of relative speed error is 30% for the cross-correlation and only
12% by using the threshold-based method.
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4.2. Vehicle Lenght Estitmation

One of the most important parameters used for vehicle classification is length. By
using magnetic sensors data, it could be estimated by different methods. Hereafter, a
comparison of two methods is analyzed:

• Threshold-based method from signature magnitude [24];
• Peak detection method from derivative of magnitude.

The first method is based on the hypothesis that, at the magnetic sensor position, in
the presence of vehicle, magnetic magnitude level rises above a certain threshold. In order
to minimize the resulting length error, low pass filtering was applied to data and multiple
threshold levels were tested. This method works well in laboratory conditions, but not in
real life conditions. As it was noted from real traffic data, magnetic signatures amplitude is
not a sufficient criterion for vehicle length estimation.

Therefore, a new method based on signal amplitude and shape was proposed. It
employs very first/last significant peak detection of 1st derivative of magnetic signature.
After studying a huge variety of vehicle magnetic signatures, a few parameters for this
method were adopted to detect feature points.

Peak detection method is based on the following steps (Figure 8):

1. Convert the time-based signature to distance-based. Time array is converted by 2 cm
discrete samples, using speed value from cross-correlation method.

2. Calculate the 1st order derivative of the distance-based signature. The derivative
calculation step is 0.8 m.

3. Locate the first and the last significant peaks, which represents front and rear of
the vehicle.

4. Estimate the gap between the first/last peaks vehicle length.

Peaks detection algorithm works by locating the very first and the last significant
peaks, which need to fulfill two conditions: peak must be above amplitude threshold level
and must be a local peak in 0.3 m range.
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Figure 8. An example of vehicle magnetic magnitude and its 1st derivative signals. According to
the above explained algorithm, the time-based signature is converted to a distance-based signal.
Peak detection algorithm is employed to locate the very first and the last significant peaks above the
threshold level.

5. Result and Accuracy

The methods were tested with two different datasets. The first dataset consisted of
300 unique pairs of signatures of different type of vehicle, from standard length passenger
cars to long trucks (>18 m). The model and make of each vehicle were identified from
pictures and reference length was extracted from public database.

The second dataset consisted of 14 unique vehicles with multiple passes. Each vehicle
was detected more than 14 times, which sums up to a total of 243 pairs of signatures. It
was done by applying license plate recognition to the images and filtering according to it.

It is worth noting that the data was collected from monitoring station under real traffic
conditions. Data collection was performed in approximately a half-year period. Since
the sensor hub is located in the middle of a one-way lane of a two-lane road without
any physical traffic confinement, vehicles could pass over the sensor not necessarily at
the center.

5.1. Vehicle Length Estimation Results with the First Dataset

Different parameters were compared to analyze the performance of the methods:
mean absolute error (2), number of outlier and range of interquartile. It is desirable to
minimize MAE (Mean Absolute Error), but at the same time it is important to avoid a high
number of outliers.

MAE =
1
M

M

∑
m=1
|L− Lr|, (2)

where: M—number of vehicles in dataset (300 samples), L—estimated length, Lr—reference
length from public database, m—vehicle number in the dataset.

In order to tune methods for general purpose, values of parameters were estimated in
the trial method. First, the threshold-based method was tested with different low pass filter
cut-off frequencies (fc) and threshold values (Figures 9 and 10). As it is visible in charts
below, an initial filtering is necessary to remove noise, but fc lower than 500 Hz does not
help to reduce error. Furthermore, it is visible that minimum MAE (1.3 m) is reached at
threshold level 500 mT.

The proposed peak detection method was also tested with the dataset and the results
are shown in Figures 11 and 12. As presented, low pass filtering has a significant influence
on the error, but filtering below 50 Hz also filters out signature features, which causes
increased error. Since this method is based on peak detection over a threshold, it produces
the same result with threshold level in certain range. The minimum MAE is obtained with
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50 Hz filtering in threshold range of 100–2500 mT. It is visible that, at threshold level of
around 150 mT, the interquartile range and the number of outliers stay the same.
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5.2. Vehicle Length Estimation Errors with the Second Dataset

The second dataset contains multiple signatures of the same vehicle. In an ideal case,
the same vehicle should produce identical signatures and shall result in the same estimated
length. However, in real traffic conditions, the magnetic signature varies in shape. In
Figure 13, the multiple signatures of the same truck with a tank are presented. Signals are
rescaled according to speed and aligned by the first significant peak.

In Table 1, length estimation results of the proposed method are summarized. In this
table, vehicles of different length are presented, from short passenger cars to buses and
a truck. With all these different types of vehicles, RMSE does not exceed 1 m and mean
standard error is 0.42 m. It is also visible that for the vehicle shown in Figure 13, mean
estimated length is 15.6 m with mean error of 0.47 m.

Table 1. Length estimation method result with the second dataset.

Nr, # Vehicle Number of
Signatures, # Real Length, m Mean Estimated Length, m RMSE, m STD, m

1 Truck with a tank 16 15.3 15.6 0.7 0.5
2 MB Sprinter1 17 7.3 7.7 0.7 0.6
3 Isuzu bus 14 9.1 9.2 0.6 0.6
4 Audi A6 16 4.1 5.0 1.0 0.3
5 Audi A4_1 16 4.5 4.3 0.3 0.3
6 VW Passat 18 4.6 4.8 0.6 0.6
7 Nissan Primera 17 4.7 4.2 0.5 0.4
8 MB Sprinter2 20 7.3 8.0 0.9 0.3
9 Audi A4_2 20 4.5 4.2 0.2 0.1

10 MB GLE 15 4.8 4.5 0.5 0.5
11 VW Sharan 17 4.9 4.5 0.6 0.6
12 VW Touran 16 4.4 4.3 0.4 0.4
13 VW Transporter 14 5.3 5.2 0.3 0.3
14 BMW serie 5 27 4.8 3.8 1.0 0.5

Total: 243 0.6 0.42
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6. Discussion

Vehicle classification systems are continuously improving. A number of papers are
published every year, aiming to propose new, better and cost-effective methods. Although
authors claim significant classification results, proposed methods are tuned for specific test
groups and simple performance metrics are missing, which makes it difficult to compare
with other algorithms.

In order to classify vehicles, length is the first parameter to consider. Therefore, we
aim to analyze possibilities and limitations of vehicle length estimation based on magnetic
field sensors. Since this study is based on data collected within real life traffic conditions,
the distorted signal problem was tackled first. Furthermore, as was shown in the Related
Works section, current state-of-the-art methods jump over intermediate results (e.g., vehicle
length) and analyze only final classifier results. Although, for most of applications vehicle
type is more important than its length, here we wanted to analyze accuracy and limitation
of length estimation method from magnetic signatures. Furthermore, speed estimation is
a necessary part for obtaining the length. Needless to say, speed has to be obtained from
same magnetic signals. Therefore, estimated vehicle length error depends on two factors:
error of speed and error of length estimation method itself.

A novel vehicle length estimation method was tested with two different datasets. As
shown in the Results section, the simple threshold based method minimum MAE score is
1.3 m, while the number of outliers is above 15% and it highly depends on the threshold
level. Our proposed method gives a minimum MAE score of 0.6 m and the number of
outliers is below 10% using the same dataset. Furthermore, as visible in Figure 12, the
value of interquartile range Q31 and number of outliers are much less dependent on the
threshold level. It is an important feature of the proposed method, since it shows that this
method is more robust and could be easily adapted to any new dataset. Furthermore, in
Table 1 one can see the length estimation error for multiple signatures of the same vehicle.
We can see that STD (Standard Deviation Error) for the same vehicle varies from 0.1 m to
0.6 m, while the RMSE (Root Mean Squared Error) is 0.6 m.

As shown above, distorted magnetic signatures are not an uncommon problem and
it requires a clear processing algorithm. We identified that most distortions appear when
one of the vehicle wheels passes directly above the AMR sensor. This problem is not
well described in the literature, probably due to fact that other authors have filtered out
particular distortions or problem did not appear due to a physical barrier in the test
set-up [11,17]. We proposed two criteria to identify distorted signatures: the ratio of
accelerometer signal maximum and mean values, and the relative mismatch area of a pair
of magnetic signatures. It is shown in Figures 2 and 5 that the proposed methods detect
different type of distortions and shall be used together. By applying particular criteria,
7.8% of distorted signatures were detected in the randomly collected test dataset.

Reliable traffic flow parametrization using AMR type sensors is not a trivial task.
As was shown, real traffic conditions require additional sensing channels to distinguish
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distorted signatures and apply different estimation methods. Furthermore, the magnetic
signature of a vehicle highly depends on driving trajectory—the same vehicle might
produce very different signals. Therefore, an array of sensor nodes might be used in
future works.
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