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Abstract: This paper presents an internet of things (IoTs) enabled smart meter with energy-efficient
simultaneous wireless information and power transfer (SWIPT) for the wireless powered smart grid
communication network. The SWIPT technique with energy harvesting (EH) is an attractive solution
for prolonging the battery life of ultra-low power devices. The motivation for energy efficiency (EE)
maximization is to increase the efficient use of energy and improve the battery life of the IoT devices
embedded in smart meter. In the system model, the smart meter is equipped with an IoT device,
which implements the SWIPT technique in power splitting (PS) mode. This paper aims at the EE
maximization and considers the orthogonal frequency division multiplexing distributed antenna
system (OFDM-DAS) for the smart meters in the downlink with IoT enabled PS-SWIPT system.
The EE maximization is a nonlinear and non-convex optimization problem. We propose an optimal
power allocation algorithm for the non-convex EE maximization problem by the Lagrange method
and proportional fairness to optimal power allocation among smart meters. The proposed algorithm
shows a clear advantage, where total power consumption is considered in the EE maximization with
energy constraints. Furthermore, EE vs. spectral efficiency (SE) tradeoff is investigated. The results
of our algorithm reveal that EE improves with EH requirements.

Keywords: distributed antenna system; energy efficiency; energy harvesting; internet of things;
smart grid; wireless power transfer

1. Introduction

In recent years, there has been growing interest in smart grid technology to build a
green and energy-efficient smart city. The smart grid is transforming the way of conven-
tional power generation and renewable resources to distributed energy between utilities
and consumers. Various solutions have been proposed for the efficient use of energy and
for the reduced operational cost of a smart city [1–5]. Within the next few years, the smart
energy meter is likely to become an important component in smart grid technology. In
general terms, smart meters can be described as a way to obtain power consumption in
more detail than conventional power meters. Smart meters allow two-way communica-
tions between the meter and the grid network, which reduce cost and increase reliability.
The smart meters also coordinate bidirectional electricity trading in the smart grid. This
bidirectional communication provides a smart meter to collect information and energy
at the same time. Multiple approaches have been suggested for smart meters to be more
intelligent and reliable [6–10]. Much work on the potential of smart grid communication
has been investigated, among them also power-line communication (PLC) [5,11–13]. PLC
carries data on a conductor simultaneously, which is used in power distribution to the con-
sumers. A major draw back of using PLC is the current attenuation due to the high voltage
lines. Another disadvantage is the noise generated by the power line which is far more
than telephone lines. On the other hand, advanced metering infrastructure (AMI) system
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collects and analyzes energy consumption on-demand [14]. It forwards the collected data
back to the utility for serval purposes such as load forecasting, monitoring, and billing.

The internet of things (IoT) is an open network to transport data over the internet
without demanding human to computer interaction. Many studies have been published
on IoT, which provides a platform to control smart appliance and sensor devices [15–21].
Bedi et al. [15] highlight the evolution of IoT in transforming electric power and energy
systems (EPESs) into secure, reliable, and intelligent EPESs. The real-time co-simulation of
demand response (DR) policies in the smart grids network is investigated in [18]. The report
in [18] exhibits the internet-connected intelligent devices located at customer premises and
the smart grid to collect energy information and send commands. Lee et al. [20] propose
a new method to secure data transport in a cellular network from a cellular-connected
IoT device to a host. It has been suggested that the use of IoT is reliable for the future
smart grid communication [21]. This approach of [21] seems to be reliable due to the
remote monitoring and efficient control of the power flow among connected devices in an
electric grid. In general, the IoT infrastructure requires smart devices, which can harvest
energy from the different sources to wireless nodes. The wireless energy transfer (WET)
is one of the possible solutions, which can transfer energy to prolong the battery life of
the IoT device. Many attempts [22–24] have been made with the purpose of wireless
power transfer (WPT), which comprises inductive coupling and electromagnetic (EM)
radiations. Furthermore, radio frequency (RF) signals carry energy, which can be used
in wireless powered communication networks (WPCNs) [25], where wireless nodes can
utilize the RF energy into the power. Therefore, wireless energy harvesting (EH) can be
a promising solution, which converts the received RF into energy. As a result, EH can
be useful to increase the battery life for the IoT device. In recent years [26–29], there
has been considerable interest in simultaneous wireless information and power transfer
(SWIPT), where the user equipment (UE) can harvest energy and transfer information at
the same time.

This approach is well suited for energy constraint relay systems to improve energy
efficiency (EE) and information transfer simultaneously. In the last few years, much
more information on SWIPT has become available, where power splitting (PS) and time
switching (TS) modes are investigated. In the PS mode, the SWIPT technique performs
two functions: one for EH and the other for information decoding (ID). Chae et al. [30]
report a new scheme for PS-SWIPT based IoT sensor networks, which reduces the transmit
power under EH constraints. Additionally, PS-SWIPT operation has been widely studied
with various multiple-input multiple-output (MIMO) channels and distributed antenna
system (DAS) [31–33]. In [34], optimal energy cooperation policy has been investigated,
which focuses on the advantage of using DAS in a smart grid system. The DAS spatially
divides antenna nodes connected to a centralized processor via a physical medium and
delivers wireless connectivity to a fixed area. It can be applied to indoors or outdoors in
any communication network, where antenna elevations at or below the clutter level, and
port connections compact. In [35], the downlink orthogonal frequency division multiple
(OFDM) SWIPT system with multiple IoT devices is investigated. Specifically, the resource
allocation problem to maximize the secrecy rate for OFDM access (OFDMA), and time
division multiple access (TDMA) systems are investigated, in a full-duplex network. More
recent evidence [36] reports the EE maximization in the DAS-based IoT network with
SWIPT technology adopting an optimal power allocation scheme. Ariffin et al. [37]
investigate real-time energy trading strategy, where beamforming technique in a downlink
green cloud radio access network (C-RAN) with SWIPT is adopted. Furthermore, the
authors of [38] perform multiuser resource allocation for OFDMA system with SWIPT in
the PS mode.

Most studies have only focused on EE with SWIPT in conventional cellular commu-
nication networks. Various papers have been presented to solve this issue. In previous
work [39], we consider the DAS with PS-SWIPT system, which maximizes EE by optimal
power allocation for an IoT device, the solution based on the Lagrange method and KKT
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conditions. In contrast to the previous work, in this paper we consider multiple IoT-enabled
smart meters and propose an optimal power allocation algorithm for a OFDM-DAS system
with PS-SWIPT. This paper aims EE maximization in the OFDM-DAS system for smart
grid, where the smart meters can harvest energy and transfer information with an IoT
enabled SWIPT technology. Thus, this approach provides the energy-efficient power allo-
cation scheme in a smart grid and improves the performance of each smart meter, which
is equipped with SWIPT function. This method is chosen because it is one of the feasible
ways to implement SWIPT in wireless powered smart grid communication networks. The
main contributions of this paper are summarized as follows:

1. This research deals with multiple IoT-enabled smart meters, where the non-convex
EE maximization problem is transformed into a subtractive form and the solution is
based on proportional fairness.

2. This paper takes a new look at the EE objective function and considers three con-
straints, i.e., EH constraint, PS ratio at the energy harvester, and DAS transmit power.

3. An optimal power allocation algorithm is proposed for the non-convex EE maximization
problem by adopting nonlinear fractional programming and the Lagrangian method.

We believe that our work presented in this paper will promote EH technologies in
wireless powered smart grid communication networks.

This paper is organized as follows: Section 2 gives a brief overview of IoT-based smart
grid system model. In Section 3, we analyze a non-convex EE maximization problem. A
new methodology is outlined in Section 3 and a power allocation algorithm is proposed.
Simulation results are presented in Section 4, followed by conclusion in Section 5.

2. System Model

As shown in Figure 1, wireless smart grid communication model can be classified
in two layers: the smart grid layer and the communication layer. The renewable energy
resources such as solar and wind are the self-generated power sources for the grid to satisfy
the commercial, industrial and residential consumer load demands. In the smart grid
layer, electric power flows from the distributed energy resources (DER) to the consumers.
The DER generates electric power via conventional power plants or renewable sources,
which are utilized to transport electricity to the electric load at the customer. On the other
hand, in the communication layer, the consumer load is monitored by the smart meter. The
essential part of the system in communication layer is a smart meter, which measures the
power consumption of the home appliances and other devices. Here, it should be noted
that in DAS all distributed antenna (DA) ports are connected via physical link to a central
processor (CP), which performs DA port selection, DA power allocation, and subcarrier
assignments. The useful data from the consumer devices are transferred transfer to the
smart meter which enables IoT to exchange information via the Internet. Let us consider K
smart meters and received signal at the kth smart meter is given by:

Yk = hXk + z, (1)

where h is the complex channel vector between DA port and smart meter, Xk is the transmit
signal from the DA port, and z indicates the additive Gaussian noise CN (0, σ2) at the
destination. In the system model, it is assumed that each smart meter is equipped with an
IoT device, which implements SWIPT functions in the PS mode. Throughout this paper,
we will use the term PS-SWIPT to refer to SWIPT operation in PS mode at the smart meter.
For the PS-SWIPT function, ρk denotes the splitting ratio. The information decodes with a
part at the receiver is ρk, where the rest part 1− ρk for the EH part. Consequently, the two
split signals at the destination for EH and ID, respectively.
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Figure 1. Structure of OFDM-DAS based IoT enabled PS-SWIPT in smart grid communication network.

Figure 2 shows the building area network (BAN), where a local user intercommuni-
cates own smart appliances, electric vehicle (EV) control, battery storage, and solar panel.
Moreover, building energy management systems (BEMS) allow the user to monitor and
automatically control the use of energy [40]. The BAN uses wireless technology based on
Zigbee standards or home wiring over PLC. It can be used to remotely monitor or control
the connected devices mentioned above. Furthermore, this management system connects a
customer’s building network to the internet via WiFi connection. The smart meter interacts
with the utility energy management system (UEMS) over the wireless communication
network. We consider a downlink, OFDM-DAS system, where each DA port transmits
data to the smart meter on multiple carrier frequencies. The bandwidth spectrum of this
network is uniformly distributed into M subcarriers.

Figure 2. BEMS with IoT enabled PS-SWIPT, where smart meter in smart grid communication
network exchange information between utility and BAN.

For information transmission among utility and smart grid, subcarriers can be allo-
cated to each IoT device within smart meter. Moreover, each subcarrier allows only one
user in the selected transmission time from the CP unit. Therefore, transmit power pmnk
from DA port n, on subcarrier m, to the smart meter k is written as (2), where Pmax

tot denotes
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the total maximum transmit power. It is worth noting that each subcarrier is allocated to
only a single IoT device in (3).

K

∑
k=1

N

∑
n=1

M

∑
m=1

pmnk ≤ Pmax
tot , (2)

pmnk · pmnk′ = 0, ∀m, n, k, k′ = {1, 2, . . . , K}, k′ 6= k, (3)

K

∑
k=1

M

∑
m=1

pmnk ≤ Pmax
n , (4)

where m = 1, 2, . . . , M and n = 1, 2, . . . , N, which represents the m-th subcarrier and
n-th DA port, respectively, and k = 1, 2, . . . , K is the smart meters equipped IoT enabled
PS-SWIPT function. The maximum transmit power at the n-th DA port is Pmax

n in (4).
The acquisition of perfect CSI is available between DA port and IoT device, although

it is practically challenging, however, there are techniques to obtain CSI for IoT devices [41].
It is assumed that the channel state information (CSI) is available between the DA port
and IoT devices [42,43]. hmnk represents channel power gain between the IoT device and
DA port. In the smart grid network, we consider only the downlink case for the coded
information rate at the IoT device. The OFDM transfers the coded information on multiple
subcarrier frequencies, which results in resilient to interference, and multipath effects.
Additionally, it satisfies the spectral efficiency (SE) over the communication channel. It
is well known that the information transmission rate Rk of the received RF signal for ID
receiver is given as

Rk(ρk, pmnk) =
1
M

N

∑
n=1

M

∑
m=1

log2

(
1+

ρkhmnk pmnk
σ2

)
, (5)

where σ2 is the Gaussian noise variance for the channel between IoT device and DA port,
and M represents the total number of OFDM subcarriers.

It is important to note that, although the non-linear EH model is more practical [44],
there are two reasons that we add the linear model, particularly into the PS-SWIPT system.
The first reason is that the IoT-enabled smart meter has a low power regime for the SWIPT.
Thus, it can be closely approximated by the linear EH model [45,46]. The second reason is
that non-linear model is piecewise linear, where EH is easily trackable. Thus, for the EH
part of the energy harvester, the harvested energy at the each IoT device can be written as:

Ek(ρk, pmnk) = ξ(1−ρk)
N

∑
n=1

M

∑
m=1

hmnk

K

∑
k′=1

pmnk′ . (6)

Therefore, the received power at the k-th device is ∑N
n=1 ∑M

m=1hmnk∑K
k′=1

pmnk′ , where
smart meter are equipped with IoT enabled PS-SWIPT function. In the relationship of EH,
ξ is the energy conversion efficiency.

The RF-EH is considered as the dominant source in wireless green communication
technology, as the demand for IoT and mobile base stations is increasing. Furthermore,
from (6), it can be determined that an IoT device is able to decode information for its
channel, and harvests energy from remaining channels. The efficiency of conversion
adopting RF-EH is normally low, but energy is collected enough to recharge micropower
devices such as IoT or remote sensors.

3. Problem Formulation

In the classical approach, the total power consumption is defined as (7), where µ is
the reciprocal of the power amplifier drain efficiency, Pc is the power conversion which



Sensors 2021, 21, 7857 6 of 16

represents power consumption into the circuit at the receiver. Thus, received power at the
harvester can be written as:

Pcon = µ
K

∑
k=1

N

∑
n=1

M

∑
m=1

pmnk+Pc. (7)

Let us take advantage of utility function to model the modulation schemes in a power
allocation problem. In our system model, IoT device with pre-specified application utility
function can ensure optimal performance for a DAS system which outperforms regular
schedulers. Unlike the conventional model, the power consumption in the SWIPT system
can be compensated by the harvested power. This method is chosen because it is one of the
most possible ways to include harvested energy into the system [47].

Ptotal(ρk,pmnk)=µ
K

∑
k=1

N

∑
n=1

M

∑
m=1

pmnk+Pc−Ek(ρk,pmnk). (8)

Generally, EE can be defined as the ratio of total achievable transmission rate and the
total power consumption. Therefore, EE of IoT enabled PS-SWIPT system can be written as:

ηEE=

1
M∑K

k=1∑N
n=1∑M

m=1log2

(
1+ ρkhmnk pmnk

σ2

)
µ

K
∑

k=1

N
∑

n=1

M
∑

m=1
pmnk+Pc−ξ(1−ρk)

K
∑

k=1

N
∑

n=1

M
∑

m=1
hmnk.

K
∑

k′=1
pmnk′

, (9)

(P1) : max
pmnk ,ρk

ηEE (10)

subject to Ek ≥ Emin, (11)

K

∑
k=1

M

∑
m=1

pmnk ≤ Pmax
n , ∀m,n, (12)

pmnk ≥ 0, ∀m, n, (13)

pmnk · pmnk′ =0, ∀m,n,k 6= k′, (14)

0 < ρk ≤ 1. (15)

In the problem formulation, we consider the transmit power at the DA port, Emin, and
PS ratio constraints (11)–(15). The constraint in (11) is the EH constraint, which limits the
harvested power at the harvester with minimum EH requirements. The constraint in (12)
is the transmit power constraint, which limits the transmit power at the DA port. This
limits the pmnk to the peak transmit power Pmax

n at the DA port. The constraints (14) and
(15) express the subcarrier allocation in the OFDM-DAS system, and limit the PS-SWIPT
ratio for EH and ID function, respectively.

Since OFDM divides a channel into multiple subcarriers, let θmnk denote subcarrier
assignment indicator for each IoT device. Thus, only one user is allowed on the same
subcarrier for the proposed optimal power allocation. θmnk can have a value of 0 or 1.
In other words, θmnk = 1 implies that subcarrier is allocated to the k-th user, otherwise
θmnk = 0. Therefore, (P1) is modified with indicator constraint (19) and (20) as:

(P2) : max
pmnk ,ρk

ηEE (16)

subject to Ek ≥ Emin, (17)
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K

∑
k=1

M

∑
m=1

pmnk ≤ Pmax
n , ∀m, n, (18)

K

∑
k=1

N

∑
n=1

θmnk = 1, ∀m, (19)

θmnk ∈ {0, 1}, ∀m, n, k. (20)

Next, we calculate the second order condition (SOC) of the information transmission
rate of (5) and total power of (8) with respect to pmnk. According to (21) and (22), Rk is
concave and Ptotal is convex with respect to pmnk. Therefore EE objective function with
respect to pmnk is quasiconcave function.

∂2Rk(ρk, pmnk)

∂p2
mnk

=− 1
Mln2

.
ρ2

kh2
mnk

(σ2+ρkhmnk pmnk)
2 <0, (21)

∂2Ptotal(ρk, pmnk)

∂p2
mnk

= 0. (22)

In the case of (P2), the EE maximization problem is a quasi-concave for the power
allocation variable Pmax

n [47]. Therefore, EE maximization problem (P2) with respect to
constraints is a non-convex optimization problem. Next, we will propose an optimal power
allocation scheme for the smart grid enabled PS-SWIPT in OFDMA-DAS system. We adopt
proportional fairness to solve the EE maximization problem. The key benefit of this method
is to achieve optimal power allocation while satisfying the minimum EH requirements. In
addition to (P2), another constraint is expressed in (25), where θmni and θmnj are the set of
predetermined values for proportional rate constraint between the number of smart meters
on DA port. Therefore, (P2) is transformed to a new optimization problem in its equivalent
subtractive form, which is formulated as (P3). Similar to [48], we adopt subcarrier allocation
for the DAS-OFDM system, where Ωn is the set of a subcarrier for a transmission rate of
the i-th smart meter on DA port. It is important to note that EE objective function (P2) and
(P3) are equivalent if and only if F(ω∗) = 0 and f (ω∗) = p∗ [49].

(P3) : max
pmnk ,ρk

K

∑
k=1

∑
m∈Ωn

1
M

log2

(
1+

ρkhmnk pmnk
σ2

)

−ω.

[
µ

K

∑
k=1

∑
m∈Ωn

pmnk + Pc −ξ(1−ρk)
K

∑
k=1

N

∑
n=1

M

∑
m=1

hmnk

K

∑
k′=1

pmnk′

] (23)

subject to Equations (17) to (20), (24)

Ri
Rj

=
∑M

m=1θmni

∑M
m=1θmnj

,∀i,j={1,2, . . . ,K},i 6=j. (25)

The function EE is a multivariable function and subject to constraints (17)–(20). La-
grangian function for EE maximization problem (P3) is given in (26), where λ1,k, λ2 and
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λ3,k are the Lagrange multipliers for the constraints, respectively, ∀ k. The Lagrangian
function for the EE objective function can be written as:

Λ(pmnk, ρk, λ1,k, λ2, λ3,k) =
K

∑
k=1

∑
m∈Ωn

1
M

log2

(
1+

ρkhmnk pmnk
σ2

)
−ω.

[
µ

K

∑
k=1

∑
m∈Ωn

pmnk + Pc

−ξ(1−ρk)
K

∑
k=1

N

∑
n=1

M

∑
m=1

hmnk

K

∑
k′=1

pmnk′

]
+

K

∑
k=1

λ1,k(Ek−Emin)+

λ2

(
Pmax

m,n−
K

∑
k=1

∑
m∈Ωn

pmnk

)
+

K

∑
k=2

λ3,k

[
1
M ∑

m∈Ωn

log2

(
1+

ρ1hmn1 pmn1

σ2

)
−

∑M
m=1θmni

∑M
m=1θmnj

1
M ∑

m∈Ωn

log2

(
1+

ρkhmnk pmnk
σ2

)]
.

(26)

Next, the optimal power allocation for the EE objective function can be obtained by
partial derivatives of the Lagrange function with respect to pmnk. The first order partial
derivative condition for pmnk with Lagrange function can be written as:

∂(pmnk, ρk, λ1,k, λ2, λ3,k)

∂pmn1
=−ωµ+ξ(1−ρ1) hmn1

(
K

∑
k′=1

λ1,k+ω

)
−λ2

+
ρ1hmn1

(σ2+ρ1hmn1 pmn1)

(
1

Mln2
+

1
Mln2

K

∑
k=2

λ3,k

)
,

(27)

∂(pmnk, ρk, λ1,k, λ2, λ3,k)

∂pmnk
=−ωµ+ξ (1−ρk)hmnk

(
K

∑
k=1

λ1,k+ω

)
−λ2+

ρkhmnk
(σ2+ρkhmnkpmnk)

.

(
1

Mln2
− ∑M

m=1θmniλ3,k

∑M
m=1θmnjMln2

)
.

(28)

Thus, from (27) and (28), we set the partial derivative equal to 0 and obtain optimal
power as:

τ∗1=
1[

ωµ−ξ(1−ρ1)hmn1(ω+∑K
k=1λ1,k)+λ2

] .
(

1
Mln2

+
1

Mln2∑K
k=2λ3,k

)
− σ2

ρ1hmn1
(29)

τ∗2=
1[

ωµ−ξ(1−ρk)hmnk(1+ ∑K
k=1λ1,k)+λ2

] .

(
1

Mln2
− ∑M

m=1θmniλ3,k

∑M
m=1θmnj Mln2

)
− σ2

ρkhmnk
(30)

where λ
(i+1)
1,k , λ

(i+1)
2 and λ

(i+1)
3,k update the Lagrange multipliers. In order to obtain the opti-

mal solution, we use the gradient method to update the Lagrange multipliers. Therefore,
α
(i)
1 , α

(i)
2 and α

(i)
3 are the step size of the multipliers. Thus, multipliers can be written as:

λ
(i+1)
1,k =

[
λ
(i)
1,k+α

(i)
1 (Emin − Ek)

]+
, (31)

λ
(i+1)
2 =

[
λ
(i+1)
2 +α

(i)
2

(
Pmax

m,n−
K

∑
k=1

∑
m∈Ωn

pmnk

)]+
, (32)

λ
(i+1)
3,k =λ

(i+1)
3,k +α

(i)
3

[
1
M ∑

m∈Ωn

log2

(
1+

ρ1hmn1 pmn1
σ2

)
− ∑M

m=1θmni

∑M
m=1θmnj

1
M ∑

m∈Ωn

log2

(
1+

ρkhmnk pmnk
σ2

)]+
. (33)



Sensors 2021, 21, 7857 9 of 16

Finally, optimal power allocation for the EE maximization problem can be written as:

p∗mn1 = min{τ∗1 , Pmax
n }, (34)

p∗mnk = min{τ∗2 , Pmax
n }. (35)

In order to obtain the optimal solution for PS splitting ratio, similarly, we solve the
partial derivatives for PS ratio, which can be written as:

∂Λ(pmnk, ρk, λ1,k, λ2,1, λ3,k)

∂ρ1
=−ξ

(
ω+

K

∑
k=1

λ1,k

)
hmn1Pmn1′+(

1
Mln2

+
1

Mln2

K

∑
k=2

λ3,k

)(
hmn1 pmn1

σ2+ρkhmn1 pmn1

)
,

(36)

∂Λ(pmnk, ρk, λ1,k, λ2,1, λ3,k)

∂ρk
=−ξ

(
ω+

K

∑
k=1

λ1,k

)
∑

m∈Ωn

hmnkPmnk′+(
1

Mln2
+

θk
θk′

1
Mln2

K

∑
k=2

λ3,k

)(
hmnk pmnk

σ2+ρkhmnk pmnk

)
,

(37)

ρ∗1 =

(
1

Mln2+
1

Mln2

K
∑

k=2
λ3,k

)
σ2+hmn1 pmn1

· hmn1 pmn1

ξ
(
ω+∑K

k=1λ1,k

)
hmn1Pmn1′

, (38)

ρ∗k =

(
1

Mln2+
θmni
θmnj

∑K
k=2λ3,k
Mln2

)
σ2+hmnk pmnk

· hmnk pmnk

ξ

(
ω+

K
∑

k=1
λ1,k

)
∑

m∈Ωn

hmnkPmnk′

. (39)

First, subcarrier is assigned to each DA port, and later remaining subcarriers are
assigned in such a way that it maximizes the overall SE of the OFDM-DAS. Similar to [50],
we adopt the subcarrier allocation to find the optimal ratio for θmni and θmnj constraints
in (25), with rate constraint φk in Table 1. The optimal power allocation and PS-SWIPT ratio
for EE maximization are summarized as Algorithm 1. The convergence of the proposed
algorithm can be observed from the number of iterations in the inner and outer loops. Each
iteration step in the inner loop finds an optimal transmit power for the given parameters in
Table 2. Since (26) is a non-convex function, the closed-form solution is computationally
challenging. Therefore, after λ1,k, λ2 and λ3,k is set to fixed in the inner loop, optimal
solution for p∗mnk can be obtained. Next, we adopt the gradient method to compute the

Lagrange multipliers, which are small step sizes α
(i)
1 , α

(i)
2 and α

(i)
3 for updating [48].

Table 1. Fairness Rate Constraint.

Fairness index k 0 1 2 3 4

φ1 = φ2 = φ3 = φ4 = φ5 20 21 23 24 25

φ6 = φ7 = . . . = φk 1 1 1 1 1
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Table 2. Simulation Paramters.

Parameter Value

Number of DA ports (N) 5
Number of IoT enabled smart meter devices (K) 15

Number of subcarriers (M) 64
Noise power (σ2

z ) −104 dBm
Path loss exponent (α) 3.7

Circuit power consumption (Pc) 5 W
Shadow fading standard deviation 8 dB

Radius of the cell (R) 1000 m
Maximum transmit power (Pn

max) 30 dBm
Number of channel realization 104

Algorithm 1: Optimal transmit power for EE.
1: Initialization: ηEE = 0, ω = 0.01, ζ = 0.0005, i = 0
2: Set channel gain hmnk, ∀m, n, k
3: for n = 1 : N do
4:

while
(

F(ω) ≥ ζ and
∣∣∣λ(i+1)

1,k − λ
(i)
1,k

∣∣∣ < ζ and
∣∣∣λ(i+2)

2 − λ
(i)
2

∣∣∣ < ζ and
∣∣∣λ(i+3)

3,k − λ
(i)
3,k

∣∣∣ < ζ
)

5: for k = 1 : K do
6: for m = 1 : M do
7: if k = 1 then,
8: Solve τ∗1 , obtain solution p∗mn1 (29),
9: else
10: Solve τ∗2 , obtain solution p∗mnk (30).
11: end for
12: end for
13: Update λ

(i+1)
1,k , λ

(i+1)
2 and λ

(i+1)
3,k for i = i + 1 by using (31), (32) and (33),

respectively.
14: end while
15: Compute PS ratio ρ∗1 and ρ∗k
16: By using p∗mn1, p∗mnk, ρ∗1 and ρ∗k , calculate optimal value of objective function

η∗EE
17: end for

4. Numerical Results

In this section, simulation results are provided to validate the performance of the
proposed algorithm for EE maximization. The results demonstrate the effectiveness and
convergence of the proposed power allocation algorithm. In the simulations, we set the
total number of DA ports and smart meter enabled IoT devices N = 5 and K = 15,
respectively. The number of subcarriers that confirms our finding set to M = 64.

Commonly, DAS is implemented as a cell, therefore in the simulation, it is considered
that the DAS has a single cell structure in the smart grid network. Thus, main CP is fixed
at the center and the number of DA ports is uniformly distributed in a cell. We assume
that the DA ports are uniformly distributed in the smart grid communication network

and located with polar coordinates (
√

3
7 R, 2π(n−1)

N ), where R = 1000 m is the radius of the
cell. For the numerical analysis, simulation parameters are considered according to Table 2.
Therefore, for the N = 5 DA ports, the location of n-th DA port can be determined in the
OFDM-DAS based IoT-enabled smart grid network. The drain efficiency of the power
amplifier µ is set to 0.38, whereas the energy conversion efficiency ξ at the IoT device is
0.6. The log-distance path loss model is adopted, and the path loss exponent is 3.7 dB. For
PS-SWIPT operation, the splitting ratio ρk at each IoT device ranges between 0 and 1. The
shadow fading adopted as 8 dB, and noise power is set to −104 dBm.
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For results comparisons, existing work shows EE maximization for DAS-SWIPT and
OFDM-SWIPT, which have been published in [38,51–53]. A comparative table of these
existing articles is listed in Table 3. First, we investigate the performance of EE and
SE versus the number of iteration for the proposed power allocation algorithm. The
relationship can be observed against the proportional fairness index φk.

Table 3. Recent Power Allocation Schemes.

Related work OFDM DAS SWIPT

Xu et al. [38] X - X

Xu et al. [51] X X -

Zhou et al. [52] X - X

Yu et al. [53] X X -

Our paper X X X

In Figures 3 and 4, we plot SE and EE versus the number of iterations, with fairness
index φk, according to rate constraint in Table 1. The fairness index controls the subcarrier
allocation to meet constraints requirements. The minimum EH requirement Emin is set to
2 mW. The static circuit power Pc is assumed to be 5 W, for a fixed circuit power and we can
conclude that EE is nonincreasing for the number of smart meters. For the convergence, the
step sizes (α1, α2, and α3) are set to 0.005, which update Lagrange multipliers. For each DA
port, the maximum transmit power is set to 30 dBm. It can be observed that EE converges
with a few number of iterations. After four iterations, the optimal power maximizes EE and
achieves a steady value. This method gives a fairness strategy to control power allocation
among PS-SWIPT based smart meters.
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Figure 3. SE vs. number of iterations.
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In the next simulations, we compare the EE and SE performance for different power
constraints with fairness index φk. In Figure 5, we plot SE with respect to the maximum
transmit power constraint. The SE is obtained by the optimal power allocation, which rises
dramatically in the maximum allowed transmit power constraint. Initially, no significant
difference is found in the case of the small transmit power, whereas after 15 dBm it increases
distinctly to achieve the convergence. The result shows that SE of the proposed algorithm
converges with an increase in transmit power to meet EH requirements. In Figure 6, the
proposed EE maximization algorithm under different maximum transmit power constraint
is evaluated. Similar behavior is also reported in [51], where the EE maximization problem
approached without SWIPT. It can be seen from Figure 6 that the EE increases sharply for
small transmit power constraints and steadily increases for high. Thus, a balance between
EE and maximum transmit power constraint can be achieved for the higher transmit
power constraint.
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Figure 5. SE vs. transmit power.
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Figure 6. EE vs. transmit power.

Figure 7 illustrates the SE and EE tradeoff for PS-SWIPT with different rate constraints
in Table 1. It shows that the EE increases and approaches a certain peak for a fixed Pc and
Emin acquires no better energy-efficient transmission that is closed to this asymptote.
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Figure 7. SE vs. EE.

To further understand the benefits of the proposed algorithm, in Figures 8 and 9, we
compare the SE and EE performance of the proposed power allocation with the number of
IoT-enabled smart meters. Figures 8 and 9 represent the SE and EE for the PS-SWIPT, as the
number of IoT-enabled devices increases with different rate constraint index. These results
confirm that sufficient transmit power is available at the DA port if there is an increase in
IoT-enabled smart meters.
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Figure 9. EE vs. number of smart meters.

5. Conclusions

This paper addressed the EE maximization problem for IoT-enabled smart meters
in DAS-OFDM system. We formulated the EE maximization problem and proposed an
algorithm for the optimal transmit power and PS-SWIPT ratio. The algorithm found an
optimal solution, which maximizes the EE in the DAS-OFDM system with proportional
fairness among IoT-enabled smart meters. The performance of the proposed algorithm
demonstrated that the EE converges towards an optimal solution with minimum EH
requirements. Furthermore, the numerical results showed that our proposed algorithm
achieved the optimal solution with a few iterations. It also confirmed that as the number of
IoT-enabled smart meters increases, the EE increases under minimum EH requirements.
Therefore, our research will be constructive in solving the difficulty of EE maximization
with IoT-enabled PS-SWIPT in the wireless powered smart grid communication networks.
Hence, further studies on the current topic are required towards energy-efficient solutions
in the uplink case to establish green communication technology for smart grid networks.
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