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Abstract: The surface Electromyography (sEMG) signal contains information about movement
intention generated by the human brain, and it is the most intuitive and common solution to control
robots, orthotics, prosthetics and rehabilitation equipment. In recent years, gesture decoding based
on sEMG signals has received a lot of research attention. In this paper, the effects of muscle fatigue,
forearm angle and acquisition time on the accuracy of gesture decoding were researched. Taking
11 static gestures as samples, four specific muscles (i.e., superficial flexor digitorum (SFD), flexor
carpi ulnaris (FCU), extensor carpi radialis longus (ECRL) and finger extensor (FE)) were selected to
sample sEMG signals. Root Mean Square (RMS), Waveform Length (WL), Zero Crossing (ZC) and
Slope Sign Change (SSC) were chosen as signal eigenvalues; Linear Discriminant Analysis (LDA) and
Probabilistic Neural Network (PNN) were used to construct classification models, and finally, the
decoding accuracies of the classification models were obtained under different influencing elements.
The experimental results showed that the decoding accuracy of the classification model decreased
by an average of 7%, 10%, and 13% considering muscle fatigue, forearm angle and acquisition time,
respectively. Furthermore, the acquisition time had the biggest impact on decoding accuracy, with a
maximum reduction of nearly 20%.

Keywords: surface electromyography; machine learning; gesture decoding; muscle fatigue; forearm
angle; acquisition time

1. Introduction

Over the past few decades, the field of Human Machine Interfaces (HMI) has attracted
increasing interest due to its intuitive applications in the medical field. Researchers have
explored signals on humans, including electroencephalography (EEG), electrocorticogra-
phy (ECoG), mechanomyography (MMG) and surface electromyography (sEMG). The EEG
signal has considerable practical value due to its non-invasiveness, but its signal-to-noise
ratio (SNR) is low and susceptible to external interference [1]. The ECoG signal is an
invasive signal, for which electrodes need to be implanted into the cerebral cortex. It has
limited access to nerve information and can even cause consistent harm to the human
body [2]. Compared to the previous two types of signals, MMG has the benefit of being
unaffected by skin surface impedance or electrode displacement. However, its limitations
include poor SNR and sensitivity to external noise [3]. Therefore, sEMG was chosen as the
acquisition signal in this study.

The sEMG signal reflects the nerve activity state and is related to limb movement. Dur-
ing limb movement, the corresponding neural information can be obtained by back pushing
sEMG signal, which has the advantages of non-invasive acquisition and bionics [4,5]. There-
fore, in the past few decades, the sEMG signal has become the most popular choice for
developing intuitive human-machine interfaces [6] and has been widely used in medical
applications, virtual reality interfaces, nerve rehabilitation, prosthetic control, etc. [7–9].

The form of human muscle contraction can be divided into two categories: static
and dynamic contraction. During static contraction, the length of muscle fibers does not
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change, and the joints do not move, but muscle fibers remain at the state of contraction [5].
Conversely, during dynamic contraction, the length of muscle fibers changes, and the joints
continue to move. Therefore, the research field of motion decoding based on the sEMG
signal can also be roughly divided into two categories. The first is to research the discrete
motion which corresponds to static contraction of muscles through sEMG signal, such as
keeping hands still or making the peace sign [10,11]. The second is to use the sEMG signal
to predict the continuous motion changes of the joint which corresponds to the dynamic
contraction of muscles, such as changes of joint torque and joint angle [12–14].

With the exploration of continuous movement still in its infancy, there is a lot of
potential of advance in the future [15]. Therefore, classification accuracy improvement and
prediction time reduction in gesture decoding remain the most researched issues in the
sEMG signal field [16,17]. This paper explored only the decoding of discrete movements of
limbs through sEMG signal. Discrete motion classification is currently the most mature
and fruitful method in the field of human action decoding, based on sEMG.

The representative papers in recent years are as follows: Min et al. [18] proposed a
cross individual gesture decoding method based on Long Short-Term Memory network
(LSTM)—Cross individual dual network structure (CI-LSTM) in 2021. Compared with
other algorithm models, the decoding accuracy of the model was improved by 9.15% on
average. Wang et al. [19] used a genetic algorithm to optimize the number of signal channels
and concluded that using 11 of the 16 channels can achieve 97% of the best performance
of gesture decoding. Additionally, placing the electrodes in the middle of the forearm,
rather than in the proximal forearm, can result in better performance. Ulysse et al. [20]
applied deep learning approach to the field of gesture decoding and proposed a new
migration learning scheme using convolutional neural networks, which achieved 98.31%
offline decoding accuracy for 7 gestures of more than 17 participants and 68.98% offline
decoding accuracy for 18 gestures of more than 10 participants. Anany et al. [12] researched
the continuous decoding of forearm motion in 2019 and discovered that subject specific,
hand specific and object specific decoding models offer better decoding accuracy than
generic models. Additionally, Adewuyi et al. [21] analyzed the contribution of internal and
external hand muscles to finger motion classification. The research showed that combining
internal muscles’ sEMG data and wrist motions can significantly improve the robustness
of gesture decoding.

Although the above research works have achieved promising results, most of those
training and testing data were mixed in one or several days. Moreover, most of them
focused on the design of appropriate channel number, feature set and classification model.
However, human limb movement is a joint movement of muscles and bones controlled
by the nervous system. Studies [22] have shown that different individuals have different
habitual exercise patterns, and even the same person has different models of motions
under different external, physical and psychological conditions. In addition, the time and
frequency features of the sEMG change with the thickness and temperature of the skin,
thickness of the fat between the muscle and the skin, velocity of the blood flow and location
of the sEMG sensors [23]. However, the majority of the literature presented in this paper
did not investigate the impact of the change of these elements on gesture decoding.

Based on this, three influencing elements were designed in this paper, namely, muscle
fatigue, forearm angle and acquisition time. These elements are the most common negative
factors influencing gesture decoding, based on sEMG. When the arms are held at the same
position maintaining one gesture, these active tightened muscles fatigue quickly [24], and
the position of the forearm is accidentally modified to induce forearm angle changes [25].
Moreover, exploring the impact of varied sEMG signal acquisition times on gesture decod-
ing accuracy is critical for sEMG signal robustness [26].

In order to train the classification model considering these three elements, individuals
were instructed to make the same gesture in different periods, different forearm angles and
different muscle fatigue levels. The control variable method was then used to validate the
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classification accuracy of the model to compare the negative impact of these elements on
gesture decoding.

The rest of this paper is organized as follows: the experimental apparatus, muscle
selection, forearm angle, gesture selection and experimental settings are described in
Section 2. The feature extraction and classification methods used in this experiment are
reported in Section 3. The results of impact of three influencing elements for classification
accuracy are discussed in Section 4. Finally, Section 5 concludes the paper and presents
further research directions.

2. Apparatus and Experiments

The experiments were performed by five able-bodied subjects, namely, three males
and two females, age = 23 ± 2, with their dominant hand. All five subjects were right
hand dominant. Before the experiment, all subjects were informed about the experiment
and provided the informed consent. The testing procedure was in accordance with the
declaration of Helsinki.

2.1. Apparatus

The sEMG signal of the forearm was collected by a Myon Aktos-mini EMG amplifier
(Cometa company, Milan, Italy) (Figure 1). The apparatus used disposable gel electrodes
(H124SG) to attach to the target muscles. The gel electrodes can provide lower skin contact
impedance, reduce the influence of external interference source and improve the signal-to-
noise ratio, compared to dry electrodes [4]. The sampling rate of the sEMG amplifier was
2000 Hz, and the Butterworth filter (20–500 Hz) was used for bandpass filtering.
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Figure 1. Myon Aktos-mini EMG amplifier: (A) signal receiving module; (B) signal acquisition
module; (C) the disposable gel electrodes.

2.2. Muscle Selection

Since the experimental apparatus has four double electrode channels, based on pre-
vious experience and reference [27], four specific muscles were chosen for placing gel
electrodes in all subjects: superficial flexor digitorum (SFD), which plays a role in finger
bending except for the thumb and works in internal flexion of the wrist joint; flexor carpi
ulnaris (FCU), which contracts in internal rotation of the wrist, downward wrist deviation,
and elbow joint flexion; extensor carpi radialis longus (ECRL), which acts in wrist external
rotation, wrist upward deviation and elbow extension; and finger extensor (FE), which
works in finger extension and wrist extension except for the thumb (Figure 2).
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2.3. Forearm Angle

The elbows of all subjects were placed on the table when they performed gesture
movements, so the forearm angle referred to the angle between the forearm and the tabletop.
In order to comprehensively analyze the negative impact of the angle on the sEMG signal
from small angle difference and large angle difference, the forearm angle range and the
quality of sEMG signal typically utilized in actual gesture decoding were also considered.
In this paper, three forearm angles were selected, namely, 30◦, 45◦ and 75◦ (Figure 3).
During the experiment, the upper and lower angle deviation did not exceed ± 5◦.
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2.4. Gesture Selection

In practice, hand movements can be roughly divided into three categories according
to the strength and type of muscle contraction [27,28]: (1) basic hand movements: hand
closing (HC) and hand opening (HO); (2) wrist movements: wrist flexion (WF), wrist
extension (WE), ulnar deviation (UD) and radial deviation (RD); (3) finger movements:
thumb touches index finger (TI), middle finger (TM), ring finger (TR), little finger (TL),
and the five fingertips touch (FL) (Figure 4). These hand movements basically cover the
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common gestures in daily life. In addition, there was a relax gesture (RE) as a reference,
which was not analyzed.
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Figure 4. Hand movements. Three types of gestures were selected. Basic hand movements: HC and
HO; wrist movements: WF, WE, UD and RD; finger movements: TI, TM, TR, TL and FL. In addition,
a reference gesture RE.

2.5. Experimental Setting

Each subject was provided with a motion instruction regarding how the experimental
task was to be performed. For all experiments, subjects sat up straight, put their elbow
on the table, exerted slight force on their arms, and tried to retain the force of each hand
movement as consistent as possible.

The sEMG signal was sampled for five consecutive days, with an interval of one day
for each sampling. Therefore, the signal data were measured three times totally, and were
divided into categories A, B and C. Forearm angles were also divided into 30◦, 45◦, and
75◦ respectively. Starting from the relaxation gesture, each gesture lasted for 5 s, and the
interval between each gesture was 10 s. A group of 11 gestures was made up the normal
muscle group and recorded as Class a; then, restarting in a short time from the relaxation
gesture, each gesture lasted for 15 s, and there was no interval between each gesture. A
group of 11 gestures was made up the fatigue muscle group, regarded as Class b.

Regarding muscle fatigue, it has been demonstrated that as muscle fatigue continues,
the frequency domain power spectrum shifts to the low frequency direction [24]. At the
same time, the time domain feature RMS will increase, and Mean Power Frequency (MPF)
feature of the frequency domain will decrease [29,30]. As a result, these two eigenvalues
have been frequently used as sensitive muscle tiredness indicators.

In this paper, all subjects were performed the muscle fatigue verification experiment
at a 45◦ forearm angle according to the experimental description above; then, the power
spectrum of the sEMG signal was analyzed, as shown in Figure 5. Due to paper space
limitations, one of each type of gestures of one subject was chosen as the representation,
namely, HO, UD and TM. Additionally, the RMS and MPF features of each gesture of same
subject were analyzed (Table 1). The results show that the spectrum of fatigued muscle
group (Class b) goes to the left when compared to the spectrum of normal muscle group
(Class a), indicating that the power spectrum shifts to the low frequency during muscular
exhaustion. Moreover, the RMS and FPM values in Table 1 increased and decreased,
respectively, indicating the presence of muscular exhaustion.
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Table 1. Comparison between muscle normal and fatigue of each gesture using RMS and FPM.

Gesture
RMS FPM

Normal Fatigue Normal Fatigue

HC 182.23 252.05 90.35 65.45
HO 168.33 227.97 95.36 82.63
WF 71.61 118.07 132.28 65.70
WE 87.10 118.75 137.46 105.80
UD 116.77 141.20 94.69 76.93
RD 200.10 229.87 119.02 103.70
TI 80.76 109.14 124.95 75.34

TM 138.16 172.96 84.46 59.37
TR 111.89 104.92 76.07 51.34
TL 154.70 132.99 99.48 94.76
FL 138.62 108.16 86.60 98.89

It must also be noted that due to factors such as gesture delay and error, when
extracting valid gesture data, the first second and last second of each sampling were
discarded, and only the middle three seconds were retained as valid data in Class a, and
only 12–14 s were retained as valid data in Class b.

In order to avoid muscle accumulated fatigue, the relaxation time after each Class a
and Class b was ten minutes. Taking into account three different issues, 18 types of
datasets could be obtained, and each type of dataset had five groups. The detailed dataset
classification is shown in Table 2.

Table 2. sEMG signal datasets classification.

FA (30◦) FA (45◦) FA (75◦)

Day1 Normal A_a_30 A_a_45 A_a_75
Fatigue A_b_30 A_b_45 A_b_75

Day2 Normal B_a_30 B_a_45 B_a_75
Fatigue B_b_30 B_b_45 B_b_75

Day3 Normal C_a_30 C_a_45 C_a_75
Fatigue C_b_30 C_b_45 C_b_75

3. Methodology

The raw signal was collected to obtain the dataset, and then, segmentation was needed.
A shorter window size increases the time resolution and captures more complex gestures.
However, a window size that is too small might lead to classification error. On the contrary,
longer window length can be used to avoid high deviation and variance but will cause
user perception delay [17,31]. In this paper, a 400 ms window size with 50 ms increments
was used to split the raw sEMG signal.

3.1. Feature Extraction

Generally, the most important factor for reliable classification results for any signal is
the extraction of discriminating features [32]. The extracted features for sEMG signal analy-
sis can be divided into three categories, namely, Time Domain (TD), Frequency Domain
(FD) and Time-Frequency Domain (TFD) features [33]. TD features contain the information
about the sEMG signal that is extracted from signal amplitude, while FD features contain
information regarding the power spectral density of the signal. TFD features can charac-
terize varying frequency information at different time locations, providing non-stationary
information of the analyzed signal. Compared with the other two types of features, because
of their low computational difficulty, small amount of computation and good classification
performance, time-domain features are widely used [34,35].

In this paper, four TD features were used to extract the sEMG signal, namely Root
Mean Square (RMS), Waveform Length (WL), Zero Crossing (ZC) and Slope Sign Change
(SSC) [36,37]. Each channel had four features, and each apparatus had four channels.
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Therefore, the input dimensions of classification were sixteen, and because there were
fewer input dimensions, no dimensionality reduction but normalization was required.

(1) Root Mean Square: RMS is the square root of the average power of the signal at a
given time. This feature quantifies the effort of the muscle. RMS is defined as follows:

RMS =

√√√√ 1
N

N

∑
i=1

(xi)
2 , (1)

where N is the length of the window size and i is the ith sample point.
(2) Waveform Length: WL is the measurement of the waveform amplitude, frequency

and duration of the signal, which is an index to measure the complexity of the signal.
WL is defined as follows:

WL =
N

∑
i=2
|xi − xi−1|, (2)

where N is the length of the window size and i is the ith sample point.
(3) Zero Crossing: ZC is the number of zero crossing at a given time period. ZC pro-

vides important information regarding the FD characteristics of the signal and is an
important indicator of muscle fatigue. ZC is defined as follows:

ZC =
N

∑
i=2

(−xixi−1 > 0 && |xi − xi−1| > ε), (3)

where N is the length of window size, i is the ith sample point and ε is the voltage
threshold, which was selected referring to the signal noise of the skin surface. In this
paper, the threshold was set at 20 mV.

(4) Slope Sign Change: SSC is the number of times the slope of the measured waveform
changes signs. It provides important information about the FD characteristics and is
defined as follows:

SSC =
N−1

∑
i=2

(∆xi+1∆xi−1 > 0 &&(|xi+1|> ε or |xi−1| > ε)), (4)

where N is the length of the window size, i is the ith sample point, and ε is the voltage
threshold, which was selected referring to the signal noise of the skin surface. In this
paper, the threshold was set at 20 mV.

3.2. Classification Model

As the last step of gesture decoding, selecting an appropriate classification model will
help improve the recognition accuracy and generalization ability. At present, commonly
used classification models include Linear Discriminant Analysis (LDA), K-Nearest Neigh-
bor (KNN), Bayes, Support Vector Machine (SVM), Neural Network, etc. In this paper,
LDA and Probabilistic Neural Network (PNN) were selected as the classification models.

3.2.1. LDA Classification Model

LDA classification learning is a classic linear learning algorithm. Its principle is simple:
Given a training dataset, try to project the dataset into a low-dimensional space, making
the projection points of the same data as close as possible while the projection points of
different data as far as possible (Figure 6). The data from the testing datasets are projected
into the same low dimensional space, and then classified according to the position of the
projection points.
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On one hand, to make the projection points of same data lie close to one another, their
covariance should be minimized. On the other hand, the distances between centers of
different kinds of classes need to be far away causing the projection spacing of them to be
larger. Here, two concepts are introduced. The within-class scatter matrix is defined as

Sω =
N

∑
i=1

∑
xεXi

(x− µi)(x− µi)
T , (5)

where N is the number of classes; Xi and µi are the set and mean vector of the ith class,
respectively. The inter-class scatter matrix is defined as

Sb =
N

∑
i=1

mi(µi − µ)(µi − µ)T , (6)

where mi is the number of ith class, and µ is the mean vector for all classes. Considering
both intra-class and inter-class scatter matrices, we can achieve classification through
Formula (7):

max
W

tr
(
WTSbW

)
tr(WTSωW)

, (7)

where the closed-form solution of matrix W ∈ Rd×(N−1) is composed of d′ largest non-
zero generalized eigenvalues corresponding to the eigenvectors of S−1

ω Sb; d and d′ are the
dimensions of features before and after projection; tr(·) is the trace of the matrix.

3.2.2. PNN Classification Model

Probabilistic Neural Network (PNN) was first proposed by Dr. D.F. Specht in 1989.
Currently, it is commonly used for pattern classification. Its schematic diagram is shown in
Figure 7:



Sensors 2021, 21, 7713 10 of 20

Sensors 2021, 21, x 10 of 21 
 

 

 

Figure 6. LDA classification model diagram. 

3.2.2. PNN Classification Model 

Probabilistic Neural Network (PNN) was first proposed by Dr. D.F. Specht in 1989. 

Currently, it is commonly used for pattern classification. Its schematic diagram is shown 

in Figure 7: 

 

Figure 7. PNN classification model diagram. 

The weight of radial layer 𝜔1 is directly taken from input dataset 𝑋, and dimension 

Q of 𝑋 corresponds to the number of neurons in the radial layer. When 𝑋 is input into 

the network, the distance between 𝑋 and 𝜔1 is obtained using the Euclidean distance 

and stored in dist. The value in dist is then multiplied by the polarization factor 𝑏 point 

by point. The results are applied to the radial basis function provided as output 𝑎1. 

It is worth noting that when polarization factor 𝑏 is too small, the input of activation 

function 𝑛1 will become smaller; therefore, output 𝑎1 will increase following radial basis 

function conversion, which will improve the contribution of the training dataset to the 

current dataset, leading data overfitting. On the contrary, if polarization factor 𝑏 is too 

large, the contribution of the training dataset to the current dataset will decrease, leading 

to data underfitting. 

The weight of the competition layer was set as the expected value vector matrix 𝑇, 

in which each row vector had only one element of 1, representing the corresponding cat-

egory; the remaining elements were 0, and then, the product of the matrix 𝑇 and the ra-

dial layer output 𝑎1 was calculated. Finally, 𝑛2 was obtained through the competition 

calculation of the transfer function of the competition layer, the larger element took the 

value 1, and the rest was 0, so that the classification of the input vector could be completed. 

As a variant of the RBF network, PNN network has a simple structure and few pa-

rameters to be adjusted. Furthermore, it can achieve arbitrary nonlinear approximation. 

Figure 7. PNN classification model diagram.

The weight of radial layer ω1 is directly taken from input dataset X, and dimension Q
of X corresponds to the number of neurons in the radial layer. When X is input into the
network, the distance between X and ω1 is obtained using the Euclidean distance and
stored in dist. The value in dist is then multiplied by the polarization factor b point by point.
The results are applied to the radial basis function provided as output a1.

It is worth noting that when polarization factor b is too small, the input of activation
function n1 will become smaller; therefore, output a1 will increase following radial basis
function conversion, which will improve the contribution of the training dataset to the
current dataset, leading data overfitting. On the contrary, if polarization factor b is too
large, the contribution of the training dataset to the current dataset will decrease, leading
to data underfitting.

The weight of the competition layer was set as the expected value vector matrix T, in
which each row vector had only one element of 1, representing the corresponding category;
the remaining elements were 0, and then, the product of the matrix T and the radial layer
output a1 was calculated. Finally, n2 was obtained through the competition calculation of
the transfer function of the competition layer, the larger element took the value 1, and the
rest was 0, so that the classification of the input vector could be completed.

As a variant of the RBF network, PNN network has a simple structure and few
parameters to be adjusted. Furthermore, it can achieve arbitrary nonlinear approximation.
Compared with the traditional BP network, the training time of the PNN network is only
slightly longer than the time of reading data and has global convergence, which is suitable
for real time gesture decoding.

3.3. Learning Framework

In this paper, the influences of the subjects at different muscle fatigue levels, forearm
angles and acquisition times on gesture decoding were studied. To this end, the TD features
from sEMG data were extracted. A detailed flow is described in Figure 8. The features
datasets were then divided into two sets, one for training and the other for decoding. To
control variables, the four different categories were divided for analysis, namely:

(1) Influence of Muscle Fatigue (MF): Compare the effects of different muscle fatigue
levels (normal or fatigue), same acquisition time and forearm angle on gesture
decoding accuracy.

(2) Influence of Forearm Angle (FA): Compare the effects of different forearm an-
gles (30◦, 45◦, 75◦), same muscle fatigue level and acquisition times on gesture
decoding accuracy.

(3) Influence of Acquisition Time (AT): Compare the effects of different acquisition
times (day1, day2, day3), same muscle fatigue level and forearm angles on gesture
decoding accuracy.

(4) Influence of MF, FA and AT: Compare the effects of different muscle fatigue, forearm
angle and acquisition time on gesture decoding accuracy.
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4. Results and Discussions

In the practical application of gesture decoding based on the sEMG signal, trained
classification models have never used a validation dataset. In order to fit the accuracy of
the actual classification model for gesture decoding, the commonly used cross validation
method (dividing the dataset into k mutually exclusive subsets of similar size, then suc-
cessively selecting the union of k-1 subsets as the training set and the remaining subsets
as the test set) was not employed; instead, the method in which the training and testing
datasets are completely separated from each other was used (data from the testing dataset
were not used for training). Furthermore, the results were the mean values obtained by
disrupting the data cycle training ten times. Additionally, decoding accuracy was selected
as validation metric.

4.1. Influence of Muscle Fatigue

In this section, Class a datasets trained models were used to test Class a and Class
b datasets, respectively, to obtain the effect of muscle fatigue on the accuracy of gesture
decoding. At the same time, Class b datasets trained models were used to test Class a and
Class b datasets, respectively. Results are shown in Figure 9.

The results obtained by the two models using Class a and Class b as both training
and testing datasets, respectively, were close, and average decoding accuracies were
approximately 95%. When using Class a to test Class b and Class b to test Class a, the
results obtained by the two models were also close. However, compared to the first two
types of models, a considerable reduction was observed in the average decoding accuracies,
which were close to 88%. In addition, decoding accuracy rates fluctuated greatly, with a
maximum gap of nearly 15%. This pointed to the effect muscle fatigue has on the accuracy
of gesture decoding, making it unstable. Additionally, a Pearson correlation analysis was
performed on each subject to verify the universality of the influence of muscle fatigue
on the model (Table 3). When compared to using Class a datasets for both training and
testing, using Class b datasets for both training and testing datasets instead resulted in
lower correlation coefficient R values. This could be related to the fact that muscle fatigue
in each participant was unpredictable. Nevertheless, almost all R values were higher than
0.4. Most of the R values of Class a to Class b and Class b to Class a in each subject were
over 0.5.
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Figure 9. Influence of muscle fatigue on the accuracy of gesture decoding. Class 𝑎 to Class 𝑎 means 
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Figure 9. Influence of muscle fatigue on the accuracy of gesture decoding. Class a to Class a means
to use Class a datasets as training and testing datasets, and the same goes for Class b to Class b, while
Class a to Class b means to use Class a datasets as training datasets, Class b as testing datasets, and
the same goes for Class b to Class a. (a) Influence of muscle fatigue using LDA; (b) influence of
muscle fatigue using PNN.
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Table 3. Correlation analysis on each subject for the influence of muscle fatigue.

Model Subj.1 Subj.2 Subj.3 Subj.4 Subj.5

Class a to Class a
LDA 0.6409 0.8109 0.7111 0.4123 0.5616
PNN 0.4987 0.6057 0.6943 0.5313 0.5413

Class b to Class b
LDA 0.4884 0.8545 0.3950 0.6125 0.4910
PNN 0.4402 0.6866 0.4828 0.4836 0.5880

Class a to Class b
LDA 0.5360 0.9183 0.6695 0.6302 0.6870
PNN 0.6141 0.7128 0.7331 0.7391 0.6751

Class b to Class a
LDA 0.9255 0.5556 0.5789 0.5843 0.7746
PNN 0.3734 0.5210 0.6684 0.6731 0.6448

4.2. Influence of Forearm Angle

The results from the previous section showed that muscle fatigue had an impact on
the accuracy of gesture decoding. Furthermore, under same conditions, when using Class
a and Class b as training and testing datasets, respectively, while using Class a to test Class
b and Class b to test Class a, the results were close. Therefore, it is reasonable to assume
that when comparing the effect of forearm angle and acquisition time on the classification
models, the accuracies of using single Class a or Class b datasets will be similar. Here, only
Class a datasets were used in this section, for paper limitation reasons.

To avoid the influence of signal acquisition time, the training datasets and correspond-
ing testing datasets were collected on the same day. The datasets with forearm angles of
30◦, 45◦ and 75◦ collected in three days were used to test the datasets with forearm angles
of 30◦, 45◦ and 75◦ collected on the same day. The results are shown in Figure 10.

The results of the above two classification models showed that when using same
angle data for both training and testing, the accuracies of the two models were the highest.
However, the greater the gap of forearm angle was the lower the decoding accuracy. For
instance, when 30◦ of forearm angle was used as training dataset and 45◦ and 75◦ as testing
datasets, the average decoding accuracies decreased by about 3% and 7%, respectively,
compared to using 30◦ as testing dataset. At the same time, when the forearm angle of 45◦

was used as training dataset to test 30◦ and 75◦, the decoding accuracies returned by the
classification models were similar. It is confirmed that forearm angle had an impact on the
accuracy of gesture decoding, and the greater the angle difference, the bigger the impact
was. Moreover, a Pearson correlation analysis was performed on each subject to verify the
universality of the influence of forearm angle on the model (Table 4). It can be seen that
almost all R values were greater than 0.7 except for subject 1 in 45 as validation dataset,
confirming the universality of the impact of forearm angle.

Table 4. Correlation analysis on each subject for the influence of forearm angle.

Trend Model Subj.1 Subj.2 Subj.3 Subj.4 Subj.5

30◦ as
Validation dataset

LDA 0.8437 0.8741 0.7607 0.7948 0.8622
PNN 0.8273 0.8542 0.8206 0.7484 0.9582

45◦ as
Validation dataset

LDA 0.5925 0.9974 0.9486 0.9368 0.7738
PNN 0.6883 0.8715 0.9388 0.9458 0.8211

75◦ as
Validation dataset

LDA 0.9536 0.9428 0.9797 0.7718 0.9981
PNN 0.9147 0.9358 0.9486 0.7408 0.9429

4.3. Influence of Acquisition Time

Similar to Section 4.2, the impact of acquisition time on gesture decoding was dis-
cussed in this section. In order to control the impact of muscle fatigue and forearm
angle, only Class a datasets were used. Additionally, datasets with acquisition time of
day1, day2, day3 were used to test the datasets of acquisition time of day1, day2, day3,
respectively, with the same forearm angle (Figure 11).
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Figure 10. Influence of forearm angle on the accuracy of gesture decoding. 30° as validation da-
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Figure 10. Influence of forearm angle on the accuracy of gesture decoding. 30◦ as validation dataset,
45◦ as Validation dataset and 75◦ as Validation dataset means using Class 30◦, Class 45◦ and Class
75◦ to test the trained model, respectively. (a) Influence of forearm angle using LDA; (b) Influence of
forearm angle using PNN.
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Figure 11. Influence of acquisition time on the accuracy of gesture decoding; day1 as Vali-
dation dataset, day2 as Validation dataset and day3 as Validation dataset means using Class
day1, day2 and day3 to test trained model, respectively. (a) Influence of acquisition time using
LDA; (b) Influence of acquisition time using PNN.

From the results in Figure 11, it became clear that when using the same acquisition
time data as both training and testing datasets, the accuracies of the two models were the
highest, and the average decoding accuracies were close to 95%, which were similar to the
results of forearm angle. Moreover, the bigger the gap of acquisition time was, the lower
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the decoding accuracy. For example, using day1 as training dataset, day3 as testing dataset,
while using dataset day3 to test day1, the average decoding accuracies both decreased by
more than 20%. Nevertheless, models trained by day2 were used to test datasets day1 and
day3 respectively, and average decoding accuracies decreased lower than the above models,
by approximately 5–10%. Similarly, to the previous section, Pearson correlation coefficient
was used to validate the universality of the conclusion (Table 5). The majority of R values
were rarely lower than 0.95. This is due to the fact that acquisition time had a considerable
impact on gesture decoding (maximum above 20%), and the longer the collection time
span, the more severe the impact. The Pearson correlation coefficient became insensitive
in this instance, and tiny variations in the decoding accuracy of various participants will
not induce changes in the correlation coefficient. Additionally, all subjects showed the
same trend.

Table 5. Correlation analysis on each subject for the influence of acquisition time.

Trend Model Subj.1 Subj.2 Subj.3 Subj.4 Subj.5

day1 as
Validation dataset

LDA 0.9881 0.9995 0.9929 0.9815 0.9865
PNN 0.9916 0.9996 0.9736 0.9697 0.9938

day2 as
Validation dataset

LDA 0.9884 0.9837 0.9581 0.9772 0.9620
PNN 0.8750 0.9627 0.9940 0.9812 0.9913

day3 as
Validation dataset

LDA 0.9960 0.9987 0.9289 0.9996 0.9984
PNN 0.9941 0.9960 0.9515 0.9907 0.9869

In summary, among factors such as muscle fatigue, forearm angle and acquisition
time, the acquisition time had the greatest impact on the accuracy of gesture decoding,
which may also be related to the position offset of the disposable electrode patch at different
acquisition times.

4.4. Influence of MF, FA and AT

The three influencing factors (i.e., different muscle fatigue level, different forearm
angle and different acquisition time) were included in each classification model. Therefore,
18 classification models were designed within three categories (AB_C, BC_A, CA_B) for
each subject (Table 6).

Table 6. Classification of sEMG model.

Model AB_C (6 Models)

1 A_b_30 B_a_45 C_a_75
2 A_a_30 B_b_45 C_b_75
3 A_a_45 B_b_75 C_a_30
4 A_b_45 B_a_75 C_b_30
5 A_a_75 B_a_30 C_b_45
6 A_b_75 B_b_30 C_a_45

Model BC_A (6 Models)

1 B_b_30 C_a_45 A_a_75
2 B_a_30 C_b_45 A_b_75
3 B_a_45 C_b_75 A_a_30
4 B_b_45 C_a_75 A_b_30
5 B_a_75 C_a_30 A_b_45
6 B_b_75 C_b_30 A_a_45

Model CA_B (6 Models)

1 C_b_30 A_a_45 B_a_75
2 C_a_30 A_b_45 B_b_75
3 C_a_45 A_b_75 B_a_30
4 C_b_45 A_a_75 B_b_30
5 C_a_75 A_b_30 B_b_45
6 C_b_75 A_b_30 B_a_45
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For example, in AB_C category, the data collected by day1 and day2 were used for
training, and data acquired by day3 were used for testing. For the first model in AB_C
category, two of the five groups in A_b_30 and B_a_45 were randomly selected, respectively,
to form training datasets and then choose one of five groups successively in C_a_75 as
testing dataset, and the same procedures were followed for the other 17 models. To
lower bias in the experimental results, the participants with the best and worst decoding
performance were eliminated, and then, ten decoding result points were deducted from
each of the three subjects in the center, for a total of 30 points in each model. The obtained
results are shown in Figure 12.
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Figure 12. Influence of MF, FA and AT on the accuracy of gesture decoding. AB_C means using
Class day1 and day2 as training datasets and using Class day3 as testing dataset. The same applies
for BC_A and CA_B. (a) Influence of MF, FA and AT using LDA; (b) influence of MF, FA and AT
using PNN.
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According to the results, the decoding accuracy rates of all major categories were not
stable, with a maximum rate gap of more than 25%. Conversely, it was easy to find that
the trend of decoding accuracies between AB_C and BC_A was similar, but the average
accuracies of AB_C were higher than that of BC_A, nearly 5–10%. On the other hand, the
trend of decoding accuracies of CA_B was stable, which was different from the other two
categories. As a result, it is postulated that a major reason for this situation was the different
acquisition time. Moreover, when choosing bigger gap of forearm angle data as training
datasets (randomly choose two out of five groups in angle of 30◦ and 75◦, respectively), the
average decoding accuracies generally deteriorated.

5. Conclusions

In this paper, the effects of muscle fatigue, forearm angle and acquisition time on
the validation accuracy of gesture decoding were investigated. For this purpose, four
specific muscles (i.e., SFD, FCU, ECRL and FE) and 11 hand movements, commonly used
in daily life, were selected. Meanwhile, four TD features (RMS, WL, ZC, and SSC) and two
classification models (LDA and PNN) were chosen to analyze the sEMG signal.

The analysis of the signal was performed in four parts: The first part was an analysis
of the influence of muscle fatigue on the accuracy of gesture decoding. The second and
third parts were analyses of the influence of forearm angle and acquisition time on the
accuracy of gesture decoding. The final part was a comprehensive analysis of the effect of
the three elements mentioned above on gesture decoding accuracy.

From Section 4.1, it was concluded that muscle fatigue had an impact on the classifi-
cation model for gesture decoding, by decreasing the average accuracy by approximately
7%. Nevertheless, the validation accuracy exceeded 88%, which showed that the negative
impact of muscle fatigue was relatively small (Figure 9). Based on the results of Sections 4.2
and 4.3, it can be concluded that when using same forearm angle or acquisition time data
as both training and testing datasets, the decoding accuracies of the two models were the
highest, both close to 95%. Furthermore, it was observed that the average test accuracy was
deteriorating with the increasing gap of forearm angle and acquisition time. However, the
negative impact on the accuracy of gesture decoding of acquisition time was substantially
higher than that of forearm angle. The maximum accuracy decrease of acquisition time
was more than 20%, whereas that of forearm angle was less than 10%. Finally, the impact
of three influencing elements on the classification model was comprehensively considered.
The results showed that the decoding accuracy of each category was not stable. Among
them, AB_C and BC_A had a similar accuracy trend, and the average accuracies of AB_C
were higher than that of BC_A, close to 5–10%. However, the trend of average decoding
accuracies of CA_B was relatively stable.

On the one hand, human hand movement is one of the most complex limb move-
ments, with many factors that hinder gesture decoding. On the other hand, as a non-
invasive signal connected to limb movement, sEMG has several advantages in an intuitive
human–computer interface, including convenience, freedom of space and light constraints.
Therefore, the study of sEMG-based gesture decoding opens new opportunities for future
practical applications, such as prosthetic control and virtual reality.

Although this article has provided theoretical and experimental results, many issues
that need further discussion still remain. First, the conditions for classifying muscle fatigue
levels are only outlined, so a more precise and effective definition of the conditions for
muscle fatigue classification is needed. Second, this paper only explored the EMG signals
of the three angles of the forearm when the human body sits upright, which only covers a
small part of the actual human movement. Therefore, more scenarios need to be explored.
Third, this article only used the EMG data collected in three days. In the future, we will
research the changes of EMG signal over time and the impact on the classification model
of gesture decoding in a longer time span. Finally, the experiment described in this paper
was carried out in a university laboratory, and the volunteers there were graduate students
pursuing a master’s degree, so they were young and had little age difference. Furthermore,
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the problem of the left-hand or right-hand dominant was not considered in this research. In
the following expansion experiment, volunteers of various ages and dominant hands will
be recruited to carry out the experiment in order to ensure that the experimental outcomes
are universal.
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