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Abstract: Robotised Non-Destructive Testing (NDT) has revolutionised the field, increasing the
speed of repetitive scanning procedures and ability to reach hazardous environments. Application
of robot-assisted NDT within specific industries such as remanufacturing and Aersopace, in which
parts are regularly moulded and susceptible to non-critical deformation has however presented
drawbacks. In these cases, digital models for robotic path planning are not always available or
accurate. Cutting edge methods to counter the limited flexibility of robots require an initial pre-scan
using camera-based systems in order to build a CAD model for path planning. This paper has sought
to create a novel algorithm that enables robot-assisted ultrasonic testing of unknown surfaces within
a single pass. Key to the impact of this article is the enabled autonomous profiling with sensors
whose aperture is several orders of magnitude smaller than the target surface, for surfaces of any
scale. Potential applications of the algorithm presented include autonomous drone and crawler
inspections of large, complex, unknown environments in addition to situations where traditional
metrological profiling equipment is not practical, such as in confined spaces. In simulation, the
proposed algorithm has completely mapped significantly curved and complex shapes by utilising
only local information, outputting a traditional raster pattern when curvature is present only in
a single direction. In practical demonstrations, both curved and non-simple surfaces were fully
mapped with no required operator intervention. The core limitations of the algorithm in practical
cases is the effective range of the applied sensor, and as a stand-alone method it lacks the required
knowledge of the environment to prevent collisions. However, since the approach has met success in
fully scanning non-obstructive but still significantly complex surfaces, the objectives of this paper
have been met. Future work will focus on low-accuracy environmental sensing capabilities to tackle
the challenges faced. The method has been designed to allow single-pass scans for Conformable
Wedge Probe UT scanning, but may be applied to any surface scans in the case the sensor aperture is
significantly smaller than the part.

Keywords: NDT; free-form surface profiling; autonomous robotic systems

1. Introduction

Enabling robotised scanning processes is the harnessing of prior knowledge to fully
traverse surfaces. For mobile or static-base robots completing NDT scans, knowledge of
positions that have not been scanned is essential to ensure completeness of an inspection
process that guarantees component integrity. Currently, this is ensured by planning a path
over a known surface or part, that is then either verified of modified by an operator to
ensure completeness.

Paths for parts equipped with an accurate CAD model can be produced automatically
with commercial software. For parts without an accurate digital-twin, such as legacy parts
or components with moulding errors, an operator has had to define a path on the robot’s
teach-pendant manually to capture its unique profile.
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For one-off scans or for scanning parts with unique moulding errors, this process
voids the high speed and repeatability benefits available to robotised NDT. In these cases,
robotic platforms must be able to flexibly scan parts through online path planning, and
to provide the same guarantee of completeness in surface coverage that is achieved by a
human operator manually inspecting the part.

Recently, NDT has been enabled to define a 2-scan process. The first scan reconstructs
the part for path planning of a subsequent scan with NDT equipment. The second scan
can then commence, fully covering the known surface that is within reach of the robot.
Methods of reconstructing part surfaces in the initial scan have been widely researched
with respect to both Photogrammetry and in the field of machining.

In the field of Photogrammetry, automated robotised methods for free-form surface
profiling have developed significantly. Processes involving 3D or 2D cameras have evolved
from requiring user-inputted positions [1] to fully automated 3D model reconstruction
techniques. Automated photogrammetry has been applied to a wide range of scales, from
fine-detail model reconstruction using robotic arms [2,3] to large-scale reconstruction using
autonomous robots with wide-aperture sensors [4]. A recent example of photogrammetry
enabling a 2-pass scan within NDT utilising Structure-from-Motion (SfM) [5].

These methods have relied on multiple volumetric inspections of a complex object
using wide field-of-view sensors such as traditional RGB or RGB + Depth (RGB/D) cameras.
This work has considered surface profiling in the case of limited-range sensors, such as line-
scanners or ultrasonic devices that have a field of view many magnitudes smaller than the
inspected surfaces. In the case of laser scanners, a volumetric pre-scan is not safe for human
operators working nearby. Volumetric scanning of curved objects cannot guarantee surface
discovery in the case of water-coupled ultrasound devices without lengthy re-scanning
processes due to beam divergence and scattering.

Within the field of machining, validation of machining quality or accurate part pro-
filing when there is no available CAD model has been implemented using Coordinate
Measuring Machines (CMMs). CMMs utilising limited field-of-view sensors for full-
surface profiling have also been thoroughly investigated [6]. Their use has relied on
spline-surface approximations to predict surface positions [7–9], or planar raster-tangent
path planning [10]. These methods all require saturation of user-sampled positions, user
input to define surface tangents, or rely on tangents defined by a gantry constrained raster-
ization pattern. The spline-surface approximation method has been successfully applied
to ultrasonic-sensor surface discovery [11]. This method requires that the surface can be
defined by a global spline, as opposed to an atlas of piece-wise smooth splines. This is dis-
advantaged when inspecting objects with discontinuities such as holes, as these cannot be
captured by a global b-spline representation. Surfaces with global b-spline representations
are also known as doubly ruled surfaces.

In aiding accurate offline path planning for Eddy-Current inspections, CMM machin-
ery and software were applied within a manual pre-scan procedure to generate a CAD
model [12].

This work has sought to completely remove the reliance on operator inputted infor-
mation regarding the target surface, except for its maximal curvature. The authors have
further aimed to completely automate the surface-profiling process, unconstrained by sen-
sor type, robotic platform, or spline representations of the surface. The only requirement
on sensor information is that the position of the surface relative to the sensor and the
normal-direction of the surface are recoverable at each scan position. Approximate normal
direction extraction requires discovery of at least 3 accurate local surface points.

Enabling full surface discovery requires a search process and memory structure to
discover and store potential surface points for later traversal.

A candidate heuristic process are Flood Fill Algorithms (FFAs) that propagate through
maps or networks in order to discover all positions within a connected surface or graph.
The pseudo-code for two dimensional pixel maps has been presented in Algorithm 1 and
accompanied by Figure 1.
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Algorithm 1 Flood Fill algorithm on the plane.

1: FFA on the plane
2: Begin at Pixel P1
3: Open-List = {P1};
4: Points-Found = {};
5: while |Open-List| > 0: do
6: Pa = Open-List.back()
7: Points-Found.insert(Pa);
8: Open-List.delete(Pa);
9: for direction ∈ {′UP,′ DOWN′,′ LEFT′,′ RIGHT′} do

10: Pb = Pa + direction
11: if Pb is new point AND not boundary point then
12: Open-List.insert(Pb);
13: end if
14: end for
15: end while

First iteration Last iteration

Green: Found-points
Blue: Open-list
Black: Boundary points

Figure 1. Colour Flood-Fill on the plane.

This work has generalised planar FFA heuristics to three-dimensional surface traversal,
inventing the Complete-Surface Finding Algorithm (CSFA). Whereas FFAs require a pre-
known data structure, the novel CSFA requires only curvature information about the target
surface to ensure complete coverage when applied to sensors of arbitrary dimensions
and sensitivity.

Simple stack-based FFA and scanline heuristics are of particular interest in the simula-
tion section. Scanline implementations choose a preferred direction of motion for search
until a boundary position is reached. When a boundary position is discovered, the less-
preferable step is then taken until a free path is found in the preferred direction of motion.
The resultant path is a traditional rasterization pattern, which is widely utilised within
NDT path planning operations.

FFAs have been applied in various contexts, due to their simplicity and versatility. In
the context of image processing, FFAs have seen ongoing widespread use in commercial
products as a time-efficient method for filling a bounded region with a given colour [13].
The principle of the bucket-fill programme has been inverted to aid segmentation algo-
rithms in 2D and 3D contexts from a user-inputted mask [14–16]. In recent years FFAs
have aided machine-learning programmes in object recognition through automatic mask
generation [17]. Mixed mapping and network theoretic implementations have been imple-
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mented to guide image reconstruction. First, FFAs were shown to be as effective as quality
guided algorithms [18], and subsequently used to enhance nearest neighbour node quality
optimisation methods in various fields [19–21].

Further, FFA variants have been extensively implemented in robotic path planning
and control. Discretised potential field variants such as modified CFill and Flood-Field
Methods (FFMs) have been shown to have greater time efficiency in comparison to Potential
Field Methods (PFMs) [22,23]. FFAs have gained interest in the context of optimal path
planning for 2D platforms [24,25], that has demonstrated flexibility through effective
integration with optimal motion planners such as the A* algorithm [26]. These concepts
have evolved in application to optimal motion planning in 3D space for UAVs with an
exhaustive search pattern [27]. Further FFA integration and heuristic mirroring has shown
to enhance traditional path planning algorithms [28,29]. The above Flood-Fill methods
have been implemented on data either with a pre-defined link structure or with a full
exploration in each potential direction. For unknown surface profiling constrained by
costly rearrangement procedures and a limited field of view, these procedures are either
non-applicable or significantly sub-optimal.

2. Method

The aim of this paper has been to generate a complete set of points that describe
the full surface by utilising the simple operations presented in Algorithm 1. To embed
planar FFA operations within a 3D context requires the local position and normal direction
information at each position.

A point source has been placed with a given stand-off from the surface in the normal
direction, and a ray is then generated to intersect with the surface from which the tangent
directions have been extracted. The 3D analogue of moving in the 2D principle directions
is given by approximating the local surface covered by the sensor array with a tangent
plane, defined by the observed points and approximate normal direction. Given a surface
normal, the principal axes corresponding to ‘UP’ and ‘DOWN’ directions have been
calculated through the Gram–Schmidt orthonormalization process [30]. Given a normal
vector −→n = [nx, ny, nz] = [ni], and principle directions −→e 1 = [1, 0, 0], −→e 2 = [0, 1, 0] and
−→e 3 = [0, 0, 1], the smallest component −→x has been selected as basis direction;

−→x = {−→e i if |n[i]| = min
k∈[1,2,3]

|n[k]|}. (1)

The chosen basis direction has then been orthonormalised with the surface normal
through the Gram–Schmidt process. The next basis direction −→y is taken by cross product
of normal and tangent vectors. The basis directions [−→x ,−→y ] have formed the cardinal
directions that planar FFA’s utilise of ‘DOWN’ and ‘RIGHT’. The point source traverses the
surface in an analogue implementation of the traditional planar FFA, displayed in Figure 2.
If no data or insufficient data is available at a given position, the current search point is
marked as being in the ambient space with no additional points hypothesised, representing
the 3D analogue of a 2D boundary position.

The approximate local surface normal direction can be extracted from at least three
distance measurements from a single position with a 2D sensor array. Well-calibrated 1D
linear sensors arrays would require two measurement values within a small displacement
range, and single-element 0D sensors would require data from at least three positions. The
algorithm may be applied to any sensor capable of a surface-tool stand off measurement.

The authors have further adapted the simple embedded stack-based FFA implementa-
tion to produce a scanline variation that generates automatic rasterization patterns within
post-processing. For surfaces with uni-directional curvature, this has been achieved by
retaining the order of the extrapolated X, Y basis directions. Retaining order on surfaces
with significant curvature in two directions, such as the sphere or bowl requires including
a ‘preferable direction’ reference. This is so that when X and Y surface–tangent directions
change their order during traversal, preference is given to the one that lies within a con-
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sistent plane in 3D space. On these surfaces, an irregular rasterization pattern emerges
without preference vector. Irregular rasterization is not necessarily a negative feature,
since for many robots and applications, there is an axial movement limit imposed that
prevents multiple circular passes. This has been demonstrated in the results section, while
rasterization is achieved in post-processing, online searches will require additional search
positions that do not observe the target object in order to define boundary positions.

•

Ray-emitting sensor

Z-axis

X-axis, ‘UP’
Y-axis, ‘RIGHT’

Figure 2. Flood Fill analogue in three dimensions. Grey lines represent iso-lines on the surface.

Finally a continuous surface must be discretised to ensure program closure, requiring
a 3D analogue to 2D pixels. This structure allows positions that have been checked to
be logged as seen. An Octree structure composed as a collection of boxes, or leaves has
been chosen as it is less susceptible to numerical point-collisions present with a hash-table
structure [31].

In order to assure full surface discovery, it is required that a step determined by the
local information moves to a different Octree-node on the surface. Movements in 3D space
under a set of changing basis directions may not align to a granular space oriented to the
standard X, Y, Z bases. The undesirable effect of stepping within the same leaf may be
prevented by moderating the Octree-leaf widths relative to the operator-specified step
size d.

To ensure that each step defines a new leaf, the maximum potential length step within
a leaf must be less than or equal to the step size. For leaf width w and step size d, the
maximum step size, along the leaf’s diagonal can be restricted with Equation (2).

w ≤ d√
3

. (2)

On high-curvature surface sections the surface will inflect within each Octree leaf,
reducing the Cartesian arc-length from one observed position to another. An upper bound
for the arc-length reduction for curved surfaces needs to be defined to ensure that each
step along the surface defines a new leaf.

Arc-length reduction due to the projection of a line along a curved surface is bounded
by the surface’s curvature, which defines how a local linearisation deviates from the true
surface profile. This term has been defined for a small step-vector

−→
dx by the Second

Fundamental Form (SFF) denoted II [32];

Arc-length difference ≈
−→
dxT II

−→
dx/2. (3)

The principal curvatures of the surface are eigenvalues of the SFF, and so the maxi-
mum possible inflection of a curve bound to the surface is in the direction of maximum
principal curvature.
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If the maximal principle curvature over the surface is κmax, then an upper bound on
the minimal required leaf-width for a step size d may be derived;

w/d ≤ |1− |κmax|d/2|√
3

. (4)

Dynamic discrete sampling may apply this principle to calculate minimal necessary
Octree leaf-widths and step sizes in highly curved regions [33]; however, in this paper we
restrict the analysis to uniform leaf-widths.

Flat surfaces have an over-sampling value of w = d/
√

3 (in units of d), since the
maximal principal curvature is 0. This has returned Equation (2), since the step-size in
ambient space is equivalent to that of the surface projection, the step taken always contained
within the same spatial plane. An example of detrimental point-aliasing when curvature is
not considered has been presented in the results section.

Finally, in the case of surfaces with a significantly restricted width, the step size should
be limited to less than half of the minimum surface width.

The complete algorithm when simultaneously considering a pulse-echo test has been
described in pseudo-code in Algorithm 2.

Algorithm 2 Pseudo-code for the novel CSFA.

1: Input: Maximum expected curvature κ, step-size d, and maximum Cartesian reach
∆X,

2: Octree = GenerateWorkSpace(κ, d, ∆X),
3: Operator moves sensor to surface,
4: GetData()→surface position and normal vector P1, N1,
5: Open-List = {P1}
6: Points-Found = {}
7: while |Open-List| > 0 do
8: Pa = Open-List.back()
9: Open-List.delete(Pa)

10: if 0 <
∣∣JΩ

a {= InverseKin(Pa)}
∣∣ then

11: Move to Ja = minmotion JΩ
a

12: GetData()→ Pa, Na, data
13: if !data.empty() then
14: Sensor.zdirection → Na,
15: GetUTdata(),
16: Octree.insert(Pa)
17: GramSchmidt(Na)→ {‘UP’, ‘DOWN’, ‘LEFT’, ‘RIGHT’}
18: for direction ∈ {‘UP’, ‘DOWN’, ‘LEFT’, ‘RIGHT’} do
19: Pb = Pa + direction
20: if Pb /∈ Octree then
21: Open-List.insert(Pb);
22: end if
23: end for
24: end if
25: end if
26: end while

The CSFA process results in a single-pass process that reduces the overall number of
steps, displayed in Figure 3.
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Current Scanning process Scanning with CSFA

Pre-scan
The part is scanned with

photogrammetric equipment to build a
digital twin for path planning.
Or the robot is jogged to key
way-points along the part.

Simultaneous surface discovery
and scanning.

Path planning on the profiled surface or
implementing points jogged-to
within a path following script.

Now the path is in place,
scan the surface.

Figure 3. The one-step process enabled by the CSFA removes the necessity of accurate digital-twins
and world-frame calibration, or lengthy robotic jogging procedures.
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Figure 3. The one-step process enabled by the CSFA removes the necessity of accurate digital-twins and world-frame
calibration, or lengthy robotic jogging procedures.

3. Robotic Path Planning

For robotic arm platforms, sections of the surface may lie out of reach, or a given
motion may be impossible to execute due to a kinematic singularity [34]. These issues
are incurred by a break in the correspondence between Cartesian space and the robot’s
fundamental coordinates, the possible joint-positions and link structure. In overcoming
the spatial limitations of the robotic manipulator, oriented target-points were converted to
configuration space coordinates. As a proof of concept investigation for the deployment
of the novel CSFA, test pieces were chosen to test the algorithm’s ability to ensure full
coverage on curved and complex surfaces while minimising the risk of collision. Collision
avoidance in the test cases were achieved by placing a motion-length limit. To maintain
full coverage in the case of required back-tracking, any motion above this joint-space limit
would cause the robot to move safely through a known point above the part. In the case
of a convex part, point-to-point motion was considered admissible within one step if the
subsequent point did not require motion in the current point’s normal direction of more
than the sensor-surface stand off. Since the algorithm requires an initial position to be
defined along the surface, an initial configuration is given at the start. The path-planner
then proceeded to choose the next in Cartesian space, and selected the candidate robotic
configuration with the smallest joint-motion. If the selected point induced a configuration
motion larger than the allowed threshold, the point was pushed back into the Open-List
and another chosen until a suitable point was found or only large-motions were possible.
In the latter case, the point with the smallest joint-wise motion was chosen. The robot
was then sent joint-wise position command motions, avoiding kinematic singularities and
ensuring the reachability of target points.
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4. Results

Tests on shapes with key non-linear aspects have demonstrated the method’s total
coverage of generalised locally differentiable surfaces. The shapes chosen have been
selected on the basis of surface irregularities that present challenges to full scanning.
Surfaces with cut-outs that are not captured by a global surface spline representation
demonstrated the advantage of the algorithm in handling machined parts, or in piece-
wise spline produced parts. These are not handled by the nearest available algorithm.
Additionally, curved and doubly-curved surfaces were chosen to validate the suitability
of the linearisation approximation method. In this section, surfaces chosen demonstrate
complete coverage of locally smooth parts and parts with cut-outs. By demonstrating on
positive, negative and zero curvature surfaces individually, the iterative and non-recursive
algorithm has been validated for all locally smooth and holed surfaces. The process
has been implemented in C++, utilising Simon Perrault’s Octree structure [35]. Robotic
simulations have been generated using RoboDK software with the Universal-Robotics
UR10e as a demonstrative platform, with mesh simulations presented in MeshLab.

The CSFA has demonstrated ease in generating raster-motions on aerofoil components
with varying step-sizes, displayed in Figure 4. Due to the relative flatness of the surface,
a raster pattern was achieved. For more curved surfaces, there will be over-sampling of
the space.

(a) (b)

Figure 4. Demonstration of rasterizing a curved aerofoil component. The robotic path is traced in
yellow, demonstrating the raster-like path obtained. (a) Sampling distance: 3 mm. (b) Sampling
distance: 10 mm.

The method has been demonstrated to avoid surface-holes, re-scanning areas previ-
ously uncaptured in early-scan stages, displayed in Figure 5. The stack based memory
of positions to check allowed effective full-surface discovery in the presence of irregular
geometries. Figure 5 demonstrates that the CSFA has a clear advantage over gantry-based
delivery platforms, covering complex surfaces without visiting the holed regions while
still capturing the whole surface without needing the planar limits of the plate as input.

Repeatedly holed surfaces present multiple points of return, demonstrated in Figure 6.
The CSFA process makes a linear approximation of the surface in the neighbourhoods

of discrete points. Displaying the algorithm on surfaces of positive and negative curvature,
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as in the sphere and bowl, demonstrates that it is robust in cases of local non-flatness. This
is displayed in Figure 7.

(a) (b)
Figure 5. The scan initially misses sections of the pipe due to the shape’s cross-sectional hole.The
missed points are picked up at the end of the scan as there is memory of surface-positions to check.
Points found are marked in blue, the robotic path traced in yellow. (a) Initial scan-pass. (b) End-of-scan.

Figure 6. A complex flat plate holed with differently sized voids. The robotic path in yellow backtracks
to allow for full surface discovery, shown by blue crosses, in the presence of surface-discontinuities.

(a) (b)
Figure 7. Points discovered while simulating a scan on a bowl and sphere of radius 150 mm with a
sampling distance of 3 mm. (a) Concave shape sampling. (b) Sphere sampling.

The irregular rasterization pattern may be seen in Figure 8. Unlike for surfaces of
only one direction of curvature such as in Figure 4 or Figure 5, rasterization for double-
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curvature surfaces is irregular. This incurs inefficient motions compared to traditional
spiral-rasterization patterns.

Figure 8. Sampling on a concave shape. The robotic path, that can form irregular patterns without a
preferred direction, is shown in yellow. Discovered points on the bowl are shown as blue crosses.

A horizontal rasterization pattern of subsequent circles resembling traditional spiral-
ized patterns may be imposed by using a preferred direction vector; however, they can
result in large re-arrangement procedures seen in Figure 9.

Figure 9. Sub optimal horizontal rasterization of a concave surface. Yellow trace lines demonstrate
costly re-arrangement procedures to discover all the points shown in blue.

Curvature considerations are also demonstrably necessary for full surface coverage
of components. Without over-sampling the space based on known surface curvature, full
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coverage is not guaranteed since taking a step will not necessarily take the algorithm to a
new Octree-leaf. In turn, the algorithm stops prematurely as it aliases the points before
and after the step within the Octree map. The effect of this is displayed in Figure 10.

Figure 10. Points in bold display the extent of discovery with no over-sampling regime. Sampling
rate: 1 mm, radius of bowl: 150 mm.

5. Experimental Results

Complete coverage of locally differentiable surfaces has been shown in simulation
when there are no limitations due to the robotic platform or sensor. Two key test pieces
were identified to validate the algorithm’s practicality in deployment. These were a surface
of doubled-curvature and a surface with a cut-out. The doubly curved surface has been
chosen to show that with the correct step size, sensors with small ranges may complete
the search process, and that the approximation found for the surface normal is a suitable
one. Moreover, since the important quantity in Octree sampling to guarantee completeness
is the ratio of curvature to step size, the doubly curved surface shows that the heuristic
presented is applicable to surfaces of all curvatures, given a step size that does not hinder
sensor-surface coupling. The part with a section cut out further validates the approach
when the surface is not globally represented by a global b-spline, as is necessary within
the nearest algorithm. Since the algorithm utilises an iterative and non recursive heuristic,
by demonstrating the process on these surfaces it is also demonstrated to work on curved
surfaces with varying curvature and with cut-outs. It is important to note that the hardware
chosen for completing the scanning process is the limiting factor, as smaller sensors are
necessary to complete scans on objects that have extreme curvatures.

Experimental testing of the CSFA utilised three flange-mounted Panasonic HG-C1030-
P lasers, connected to an Arduino board for real-time data collection. The laser’s viewing
range was 30 mm ± 5 mm, limiting the feasible step size over highly curved surfaces,
as height variations of over 5 mm over the step would remove the possibility of further
surface discovery. The laser’s repeatability did not affect motion planning, as it was in the
range of 10 µm. The lasers were held within a 3D-printed cradle displayed in Figure 11.
An external laptop collected data from the Arduino and Universal-Robots UR10e robotic
platform simultaneously. Connecting through a COM port and Ethernet-enabled TCP/IP
connection, respectively, position data and commands were received and sent to the robot.
The CSFA, data interpretation, and inverse kinematics solutions were coded in C++. The
external laptop had an Intel Core i5 processor with the program built and run from a Visual
Studio programming environment. Results were imaged using Meshlab.

To represent a non globally smooth b-splineable surface, laminate plates were placed
into a planar pattern with a cut out displayed in Figure 12a alongside the point-cloud of
collected data displayed in Figure 12b. Full discovery of the target surface demonstrates
the applicability of the CSFA in cases where a direct path along the surface to every point
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is not possible. The recollection of hypothesised points to visit allows traversal around
corners, completely scanning regions with no direct path to one another.

Figure 11. The tri-laser holder, attached to the UR10e flange. The design with rotational symmetry
around axis 6 of the robot minimised the footprint of the tool.

(a) (b)
Figure 12. Automatic online profiling and scanning of an object with non-smooth shape. After a new point is found, the UT
probe is applied to collect data. (a) Non-smooth shape created from arranged plates. (b) Resultant point cloud collected by
the tri-laser and projected to the World-Frame using the live Joint-position of the robot.

A curved mock-aerofoil segment provided additional experimental data displaying
application to a use-case commonly seen within NDT in Figure 13. The total time taken
for this use-case was 7 min 30 s for 3 cm spaced collection points. Providing a real-world
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use-case for NDT, the full surface discovery of a doubly-curved surface with no-prior
path planning provides the proof of concept for single-pass profiling of a complex surface
and validation for the linearised surface approximation, while the part is relatively small
compared to the robot’s reach, the strength of this example is in the surface’s extreme
curvature. This use-case validates the application to surfaces commonly seen as complex
within NDT.

Figure 13. Point Cloud of a complex doubly-curved surface profiled in real time, aligned to the CAD
model in post-processing.

Finally, the proof of concept for simultaneous non-contact surface profiling with the
tri-laser platform combined with Conformable-Wedge-Probe scanning is presented. The
process is two-step; the tri-laser discovers the surface, displayed in Figure 14a, the tool
reversed and the Conformable Wedge Probe applied to the discovered position, displayed
in Figure 14b.

In deployment, sensor ranges provided the most significant challenge. Since the tool’s
base had a diameter of 5 cm, the curvature of parts observed within that region had to
not exceed the viewing range of the laser-sensors in order to ensure the tool and part did
not collide.

The main source of risk to deployment was an incorrect laser-tool calibration. During
early testing, the sensor’s beam had an orientation offset that with larger step-sizes often
risking collisions with the part. Scanning the planar part with a re-printed tool that
corrected the laser-flange alignment, and calibrated using the four-point method, the
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standard deviation of points from the horizontal plane was 0.81 mm with mean signed-
error of O

(
10−16 mm

)
.

(a) (b)
Figure 14. Automatic online single-pass profiling of a surface. (a) Initial non-contact surface discovery
and profiling with the tri-laser. (b) Subsequent application of the Conformable-Wedge coupled
UT device.

Further, while demonstrations were limited by the lack of a collision avoidance schema,
these experiments have proven the algorithm’s capability in autonomous scanning pro-
cesses, and applicability to robotic NDT. The main challenge facing industrial deployment
of robotic NDT where parts have no accurate digital-twin is the flexibility of the robotic
platforms in use, and their ability to define complete surface coverage. We have proven the
ability of this algorithm to overcome this issue in realistic contexts.

6. Discussion

The authors have successfully implemented an adaptation of the FFA for full coverage
of free form surfaces. The implementation has been demonstrated on positive and negative
curvature surfaces, highlighting how the linearised approximation is not a detriment to
overall surface following capabilities of the algorithm.

In post-processing, the CSFA has been shown to output a raster-path along arbitrar-
ily locally differentiable surfaces. For doubly-curved surfaces, the rasterization pattern
becomes irregular and there is an over-sampling of points. However, the method ensures
total coverage of the part which is preferable in NDT to sparse sampling. The potential
applications of the algorithm are not limited to automatic rasterization procedures. The
Octree memory method would allow fully automated discovery and scanning of structures
with any robotic platform, such as mobile robots traversing a large structure. Further,
the traversal method can be applied with any limited-aperture sensor, enabling a gener-
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alised surface-movement strategy when sensor data is limited. Finally, the discrete-point
approach allows the method to capture surfaces that cannot be globally splined. The
limitation in the case of significant surface discontinuities such as part-edges is that the
process will not necessarily find the other side of the part, discovery determined by the
sensor’s range and aperture size relative to the discontinuity. In practical deployments
the sensor range was the key limitation, limiting the sensors step size due to the surface
curvature so as to continue full surface discovery. Practical demonstrations applied to com-
plex cut-out surfaces and realistic doubly curved aerofoil mock-ups show the real-world
application with limited-range laser sensors. Proof of concept for wedge-probe coupled
UT applications provide the NDT specific aims of this paper of removing the need to path
plan for full-surface scanning.

For complex surfaces such as aerofoils or machined plates with cut-outs, the algorithm
demonstrated is safe for deployment. For more complex shapes such as external pipe-
scans, limited knowledge of the environment is necessary to prevent collisions. Future
work will deploy the algorithm using low-cost environmental sensors to prevent collisions
and path planning such as Rapidly exploring Random Trees (RRT) algorithms to scan
complex components.

Future works investigating online surface profiling will further consider options to
remove the necessity for user-inputted curvature estimates and step-sizes entirely. Adapta-
tions to specific sensor types for surface profiling shall also be considered.
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