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Abstract: Sudden Cardiac Death (SCD) is an unexpected sudden death due to a loss of heart function
and represents more than 50% of the deaths from cardiovascular diseases. Since cardiovascular
problems change the features in the electrical signal of the heart, if significant changes are found
with respect to a reference signal (healthy), then it is possible to indicate in advance a possible SCD
occurrence. This work proposes SCD identification using Electrocardiogram (ECG) signals and a
sparse representation technique. Moreover, the use of fixed feature ranking is avoided by considering
a dictionary as a flexible set of features where each sparse representation could be seen as a dynamic
feature extraction process. In this way, the involved features may differ within the dictionary’s
margin of similarity, which is better-suited to the large number of variations that an ECG signal
contains. The experiments were carried out using the ECG signals from the MIT/BIH-SCDH and the
MIT/BIH-NSR databases. The results show that it is possible to achieve a detection 30 min before the
SCD event occurs, reaching an an accuracy of 95.3% under the common scheme, and 80.5% under
the proposed multi-class scheme, thus being suitable for detecting a SCD episode in advance.

Keywords: ECG signals; sparse representations; sudden cardiac death

1. Introduction

Sudden cardiac death (SCD) is an unexpected death caused by cardiovascular
problems [1] with or without a history of heart disease [2,3]. In general, SCD occurs
within an hour after the onset of symptoms, although the person has no history of a fatal
heart condition [4]. SCD accounts for more than 50% of all deaths from cardiovascular
disease [1], ranking second as the leading cause of death, after cancer [5]. SCD is a vital
challenge for clinicians, as it can be experienced in individuals with no history of heart
diseases. Numerous heart diseases lead to SCD, such as ventricular tachyarrhythmias
(VTA), ventricular tachycardia (VT), ventricular fibrillation (VF), bradyarrhythmia (BA),
coronary artery diseases (CAD), valvular diseases (RV), myocardial infarction (MI) and
genetic factors [6]. However, deaths by SCD are related to ventricular tachyarrhythmias
(including VF and VT) and BA [7], making the heart unable to pump blood effectively. The
VF is an underlying quality in most SCD episodes and is considered the leading cause
and possible detonator [8–10], representing about 20% of SCD episodes. The survival rate
decreases approximately 10% per minute for patients after VF onset [1]. Therefore, an
early prediction of SCD in a person suffering a VF is of great value for timely intervention,
increasing the survival rate.

Predicting an SCD is vital since several actions can be taken to counteract it. For
example, the Public Access Defibrillation (PAD) procedure rescues patients from impending
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death after collapse. However, the success rate of cardiac function restoration primarily
depends on when first aid is given to stimulate the heart [11]. It would be preferable to
prevent the onset of SCD by providing medical aid before the collapse occurred, which
leads to the question of whether it would be possible to have warning systems capable
of recognizing cardiac arrest half an hour before the crisis [12]. Efforts have been made
regarding this severe health problem, developing efficient ways of predicting the SCD
through invasive and non-invasive techniques [13–15]. The main goal is to predict the
SCD before its onset using ECG signals [13,16], since ECG is one of the most important
physiological signals to identify cardiac abnormality and electrical conductivity features.
Recent works have experimented with features of ECG and heart rate variability (HRV),
a signal extracted from ECG, to detect the subtle changes that occur within the signals
before an SCD and to identify in advance a possible SCD risk. Also, additional features
(time, frequency, time-frequency, and non-linear) and machine learning algorithms have
been used to predict SCD from ECG and HRV signals. According to recent reports, an
SCD could be predicted up to 25 min before its onset through intelligent signal processing
methods [17,18]. Thus, tools such as diagnostic support systems based on computational
analysis and signal processing techniques have been shown to help detect SCD in advance.

In [19,20], an automated prediction of SCD based on HRV signals was performed.
Signals were analyzed through techniques that identify data repeatability or time-frequency
features such as the Recurrence Quantification Analysis (RQA) and the Discrete Wavelet
Transform (DWT); statistics features such as entropy also were used. One important issue
in this works is that data analysis can generate a large set of features. Then, a feature
reduction is required to consider only the more relevant features; for this purpose, some
analysis such as Kolmogorov complexity or feature ranking, commonly based on the t-test,
are used. To reduce the information that the classifier has to process is an advantage of these
works. In both cases, a prediction up to 4 min before SCD was reached through k-Nearest
Neighbor (kNN) and SVM (Support Vector Machine) classifiers having an accuracy of
86.8% and 94.7%, respectively. Prediction time was increased up to five minutes with an
accuracy of 93.71% when the kNN classifier processed time-domain features extracted
from HRV signals [21]. One disadvantage of SCD detection based on HRV signals is that
computational time increases [17], which could be an issue to consider in an application
where time is relevant. Therefore, SCD detection also has been studied by directly using
ECG signals. In [16], the authors used a simplified evaluation of ECG signals based on
a proposed Sudden Cardiac Death Index (SCDI) for the prediction of SCD. The SCDI
integrates a weighted combination of the main features identified in the ECG signal and
provides a way to obtain a unique value, which is able to differentiate between normal
and SCD classes. The classification with SCDI and SVM reached 98.68% accuracy up to
four minutes before SCD. A different prediction approach was proposed in [22], where
the authors analyze how ECG signal features change in consecutive time intervals. With
this analysis, the time resolution of the prediction process was increased, and, using a
multi-layer perceptron (MLP) classifier, it was possible to predict SCD 12 min before
onset. Recently, an approach to SCD prediction based on ECG signals was presented
in [18]. This approach employs the Wavelet Packet Transform (WPT), which considers
high-frequency bands in the ECG decomposition, reaching an accuracy of 95.8% and a
prediction 20 min before onset. However, the frequency bands are fixed and depend on
the sampling frequency, inhibiting the analysis of frequencies defined by the user. An
alternative was to use Empirical Mode Decomposition (EMD), a technique able to separate
the ECG signal into a set of frequency bands based on its information. In this way, a
prediction 25 min before SCD was possible, with 94% accuracy [17].

However, these predictions were made by considering a binary classification in normal
and SCD signals. The main drawback of this comparison scheme is that the ECG signal of
a patient could contain features that differ from a normal ECG signal due to, for instance,
previous heart disease, but not necessarily because of a future SCD episode. Therefore, this
evaluation could not be accurate since there is a high probability of SCD misdetection.



Sensors 2021, 21, 7666 3 of 15

This work addresses the feature change in the ECG signal that occurs as the SCD
event becomes closer, since this could help in early identification. A methodology based
on sparse representations allows distinctive features to be found in normal and previous
SCD signals. If these ECG signals are analyzed at different intervals before SCD, and their
features are learned, a likely SCD episode could be identified in advance. The learned
dictionaries allow a dynamic feature representation of the signal to be obtained, providing
a certain flexibility degree to recognize the intraclass variation and improve the description
and identification of SCD signals. Moreover, this approach considers a novel multi-class
scheme that makes it possible to distinguish a previous SCD signal from a normal signal
and, additionally, to more accurately know if this related to a closer or further time interval
from the SCD.

Following this, Section 2 contains the proposed method. The experiments designed to
evaluate the feasibility of the proposed method, and the results achieved, are described in
Section 3. Finally, conclusions and future work are indicated in Section 4.

2. Materials and Methods

A block diagram of the proposed methodology is presented in Figure 1. As a first
step, an automatic decimated as a function of time (t) is applied to segment the ECG signal;
then, the ECG signals are normalized. The generation of the signal basis (dictionaries) is
performed in the training phase through the OMP and k-SVD algorithms. The training
enables dictionaries to learn the main features of each signal set. Thus, it is expected that
the dictionaries help to recognize similarities with a test signal through its decomposition.
The common scheme for classifying pre-SCD signals consists of comparing the features
of an input signal x with the features of two sets of signals, normal and pre-SCD. If the
features of x are not similar to the normal signals, then x corresponds to an SCD signal.
This evaluation may generate bias in classification, since any signal that differs from normal
signals will be associated with an SCD class. A modification to the common scheme is
proposed by using a multi-class evaluation of the signal. In this scheme, several classes are
considered; for instance, the normal class and some time intervals pre-SCD. Then, x will be
associated with the class of higher similitude. The difference between the two schemes is
illustrated in Figure 2.

Figure 1. Framework for ECG signal analysis: pre-processing step to obtain 1 min intervals from
normal and SCD signals (yellow block), a training step for recognizing particular features from the
intervals of interest (blue block), and identification of test signals through their decomposition by
sparse representations (red block). In this approach, vector α is considered the feature vector.
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Figure 2. Proposed multi-class scheme and its comparison with the common scheme for SCD
signal classification.

2.1. Dataset

The data obtained from two international open access databases were used to evaluate
the proposed methodology. The ECG signals (normal and SCD) were obtained from the
MIT/BIH Normal Sinus Rhythm (NSR) [23] and the MIT/BIH Sudden Cardiac Death
Holter (SCDH) [24] databases. In the case of the NSR database, ECG signals of 18 patients
are included. Experts from the Arrhythmia Laboratory, at Boston’s Beth Israel Hospital,
confirmed that signals belong to subjects with a healthy heart rate, as shown in Figure 3.
On the other hand, the SCDH database includes the ECG signals of 23 subjects with SCD
caused by VF; these signals were obtained from the Boston area hospitals. Each signal
contains a recording of 24 h, including the exact time of the SCD. Three recordings were
excluded because they presented heart alterations that differed from an SCD or VF episode.
Figure 4 shows an ECG signal from a patient 2 min before the SCD occurrence. Table 1
summarizes some patient features. The clinical information of patients and the time of
SCD onset are registered in the SCDH database [24].

Figure 3. Example of an ECG signal from a healthy subject.

Figure 4. Example of an ECG signal from a subject that suffered an SCD episode.
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Table 1. Demographic information from the MIT/BIH-NSR and MIT/BIH-SCDH databases [23,24].

Gender Age

Total Male Female Unknown Range Mean

SCD 23 13 8 2 17–82 60.31
Normal 18 5 13 - 20–50 34.33

2.2. Pre-Procesing

The ECG signals of the NSR and SCDH databases were acquired at 128 Hz and 250 Hz
sampling frequencies, respectively, and digitized with an analog-to-digital converter of
12 bits [24]. To perform the analysis between SCD and control groups, the ECG signals of
the SCD group were downsampled to 128 Hz by convolving the signal with a low-pass
Finite Impulse Response (FIR) filter. Significant SCD symptoms generally occur within
one hour before onset (pre-SCD signals), even though the person does not have a history
of fatal heart condition [4]. Since the pre-SCD signals have significant features that can
be associated with an SCD event (see Figure 5), they are used for prediction tasks. Then,
during analysis of pre-SCD signals, the goal is to detect significant changes that allow for
the prediciton of SCD using time intervals of 1 min [16,19–21]. In this work, the minutes
5, 10, 15, 20, 25, and 30 before the SCD were analyzed. Additionally, the 1 min interval of
the control group is randomly extracted from the ECG signal. All the segments, pre-SCD
and control, were normalized, and their respective R-R intervals were extracted, as shown
in Figure 6. In a 1 min interval, there are about 70 R-R intervals, since an R-R interval
lasts approximately one second; see Figure 6b. Then, there are about 1260 samples for
the normal interval (18 subjects) and 1400 samples for each pre-SCD interval (20 subjects).
These samples were put into sets corresponding to each of the classes considered in this
work, i.e., C = {NSR, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min}. Finally, the samples
were analyzed to find their particular features and classify them.

(a) (b) (c)

Figure 5. Comparison of segments from ECG signals: (a) normal, (b) pre-SCD, and (c) during SCD.

(a) (b)

Figure 6. (a) 1-min interval from a pre-SCD signal and (b) an R-R interval extracted from it.
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2.3. Sparse Signals

A signal xn×1, considered as a vector in a finite-dimensional subspace Rn, is strictly
or exactly sparse if most of its entries are equal to zero, i.e., if the set of values F(x) =
{1 ≤ i ≤ n | x[i] 6= 0} is of cardinality y � n. The signal x can be modeled as the linear
combination of m elemental signals (atoms), such that

x ≈ Dα =
m

∑
i=1

α[i]di (1)

where αm×1 is the sparse representation of x containing the coefficients associated with the
atoms (di) in a matrix dictionary Dn×m involved in the decomposition [25,26] (see Figure 7).
Signals sparsed by D are written as a superposition of a small fraction of the atoms in the
basis. An atom di of n× 1 is an elemental signal representing part of the energy or featuring
a specific type of signal to which the dictionary was adapted. Thus, a dictionary D is an
indexed collection of m atoms, i.e., a n×m matrix, whose columns are the atoms. When the
dictionary has more columns than rows, m > n, is called overcomplete or redundant, and
has a setting in which x ≈ Dα. Two possible operations can be performed on a dictionary:
analysis and synthesis. The analysis is the operation that obtains the sparse representation
α of a complete signal x by using the expression α = D′x, where D′ is the transpose
dictionary. The synthesis performs an approximate reconstruction of x using Equation (1),
as shown in Figure 7.

Figure 7. Reconstruction (synthesis) process of a signal x using its sparse representation α and a
dictionary D. Coefficients in α are related to the atoms or elemental signals in D; therefore, an
approximation of the original signal ≈ x can be obtained.

In previous works, overcomplete dictionaries have demonstrated a high performance
in classification tasks [27,28]. There are two types of dictionary: a fixed dictionary and a
learned dictionary. Fixed dictionaries contain predefined signals, usually generated by a
known function, e.g., sine or wavelets, and provide an analysis operation in a reasonable
processing time. When the signals to be analyzed have well-identified features, a fixed
dictionary is the best option; otherwise, a learned dictionary must be created. A learned
dictionary implies a learning process in which the particular features of a signal set must be
captured and recognized through an analysis process. Although dictionary learning means
a higher processing time, this option achieves a better performance when the fixed existing
dictionaries do not accurately represent the signals that need to be processed [27–29].

Once a dictionary has been defined, it is possible to obtain a sparse representation of
the signals. For instance, Figure 8a shows an R-R interval of the original ECG signal. This
signal has been decomposed in atoms, along with their corresponding coefficients, through
the analysis operation. The atom di and its α[i] coefficient generate an elemental waveform
that represents a part of the original signal (see Equation (1)). Figure 8b shows seven of the
sixteen elemental signals in which the original signal was decomposed, while Figure 8c
shows its reconstruction through the synthesis operation by using a different number of
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waveforms. The higher the number of signals used in the reconstruction, the more similar
characteristics of the reconstructed and the original signal (Figure 8d).

(a) (b)

(c) (d)

Figure 8. (a) Original signal, (b) signal decomposition (analysis) in elementary waveforms, (c) signal
reconstruction (synthesis) by using different number of atoms, and (d) signal reconstruction with all
numbers of atoms.

2.4. Dictionary Learning

A trained dictionary is obtained through a dictionary-learning process. In this work,
the dictionary-learning process is performed by two algorithms: Orthogonal Matching
Pursuit (OMP) and k-Singular Value Decomposition (k-SVD). OMP, a greedy algorithm,
reduces the resource requirements and obtains a sparse solution by performing the analysis
operation, given a dictionary [25]. After this, k-SVD evaluates how accurate the dictionary
is for decomposing the input signals. Both algorithms and their use in SCD prediction are
explained in detail in this section.

2.4.1. Orthogonal Matching Pursuit (OMP)

The OMP algorithm searches for an approximate solution through the selection and
combination of atoms in D that minimize the error-constrained (Equation (2)) sparse coding
problem, where ‖α‖2 =

√
∑i |αi|2 is the `2 norm, and ε is the error threshold in the range

[0, 1]. Thus, Equation (2) allows for signal decomposition until an ε error level is reached;
therefore, the number of coefficients may vary from one signal to another.

α = arg min
α
‖α‖0 s. t. ‖x− Dα‖2

2 ≤ ε (2)

The OMP error-constrained is described in Algorithm 1, where the inputs are the
dictionary D, a signal x, and a given minimum error ε; the expected outputs are the α
vector and a residual rj. The algorithm ensures that e < ε and r0 = x, since the signal x was
not yet decomposed. I is the vector of dimensions j× 1 that stores the indexes of atoms
involved in the decomposition of x. The OMP algorithm performs an iterative process
that chooses the optimal local solution from a set of possible solutions. In each iteration
j, this process tries to find, in D, the atom di with the highest correlation to the current
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energy of the residual rj−1 (Algorithm 1, lines 3–4). The index of the i-th atom fulfilling
the arg max condition is stored in I at each iteration, helping to compile the submatrix DI .
The α vector is computed with the atoms in DI ; the residual is updated as rj, containing
the remaining energy of x, which is not yet represented by DIα (Algorithm 1, lines 5–6).
Finally, e is estimated by the ratio between the energy remaining in rj and the energy of the
original signal (Algorithm 1, line 7). Thus, OMP generates a set of local optimal solutions,
allowing it to find the optimal global solution for the sparse representation α.

Algorithm 1: Orthogonal Matching Pursuit.
input : D, x, ε
output : α, rj
initialization : I = (), r0 = x, e = ε + 1, j = 0

1 while e < ε do
2 j = j + 1
3 i = arg max |D′rj−1|
4 I(j) = i
5 α = (DI)

−1x
6 rj = x− DIα

7 e = ‖r‖2
‖x‖2
∗ 100

8 end

2.4.2. k-SVD

As mentioned above, a dictionary can be adapted to recognize the characteristics of
a specific type of signal. k-SVD is an algorithm that allows for the learning process to
provide a basis according to a set of signals. Therefore, this is called dictionary learning
(Algorithm 2). The process starts from a set X containing M training signals of the same
type, an initial dictionary D0, and a given number K of iterations; according to the literature,
between 10 and 20 iterations are required [30,31]. The end goal is to capture the essential
characteristics of the signal set in a final learned dictionary DK. First, the matrix of sparse
representations, αk of dimensions m×M, is obtained by using OMP and the dictionary
Dk−1 (Algorithm 2, line 2). Since OMP has analyzed a set of signals of the same type, the
αk matrix should contain some common atoms in the decomposition of the signals. It is
assumed that if an atom takes part in the decomposition of several signals, it adequately
represents part of the energy of the signals in X and must be preserved; otherwise, it must
be recomputed. Then, the m atoms of Dk−1 are analyzed to find their participation in αk. For
this, the set of signals w in which the j-th atom takes part (Algorithm 2, line 4) is obtained.
A submatrix αw is generated by containing the w columns in αk and setting its j row to 0,
with the aim of performing a signal reconstruction without the participation of the j-th
atom. Then, the residual matrix (R) is computed by the difference in values between the
original signal set X and the product of the current dictionary with the current coefficients
(Algorithm 2, lines 5–6). In this way, the residual R between the subset of original signals
Xw and their reconstruction Dkαw provides a more accurate approximation of the j-th atom
when it is processed by SVD (Algorithm 2, line 7); where U are the eigenvalues, V the
eigenvectors and Σ the diagonal matrix containing the singular values in descending order.
The update of the j-th atom and its respective coefficient, dj and αj, is computed in lines 8–9
of Algorithm 2. It is expected that, in the first iterations, Dk−1 does not provide an accurate
decomposition αk but that the dictionary’s ability to represent X improves as k increases,
until it reaches DK.
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Algorithm 2: K-Singular Value Decomposition.
input : D0, X, K
output : DK

1 for k = 1, 2, ..., K do
2 αk = OMP(Dk−1, X, ε)
3 for j = 1, 2, ..., m do
4 w = {l ∈ 1, 2, ..., M | αk[j, l] 6= 0}
5 αw[j, w] = 0
6 R = Xw − Dk−1αw
7 [UΣV] = SVD(R)
8 dj ∈ Dk = u1
9 αj ∈ αk = v1Σ(1, 1)

10 end
11 end

3. Results and Discussion

In ECG applications, it is expected that, by using α as a feature vector, the sparse
representation helps to distinguish between the different ECG signals (normal and SCD).
Since the aim is the early detection of changes in an ECG signal, which could be associated
with a possible SCD, two general steps were followed in this methodology: (i) dictionary
learning, to identify the features of each signal class in C and (ii) signal classification,
by measuring the similarity between the features of a new input signal and the learned
features for each class.

To identify the features of the signals considered in C, a trained dictionary is necessary
for each class. Through the learning process with k-SVD, a dictionary identifies the common
elemental signals of a particular class. As mentioned in Section 2.2, C considers the samples
for normal ECG signals and six time intervals at 5 min, 10 min, 15 min, 20 min, 25 min,
and 30 min previous SCD, i.e., seven classes in total. Therefore, seven trained dictionaries
are required to perform ECG signal classification based on sparse representations. For
dictionary learning, it is necessary to have a set of samples of the same type from which the
common elemental signals can be identified through the k-SVD algorithm. For this purpose,
the samples in each class of C were randomly selected and divided into test and training
subsets; the division of the training and test sets followed a 55–45% relationship, i.e., for the
training and test sets, ten and eight recordings were taken from the MIT/BIH NSR database,
and eleven and nine recordings from the MIT/BIH SCDH database. No recording from the
training stage was used for the test stage. Thus, the k-SVD was performed, receiving an
initial dictionary D0 filled with random values, the training set of samples of a particular
class c ∈ C, and K = 20 iterations as parameters. The maximum number of iterations
was set to ensure the dictionary was completely trained; fewer iterations could reduce
the performance during signal decomposition. As a result, the dictionary Dc, which was
specifically adapted to recognize the elemental signals of class c, is obtained. This process
is repeated for all the classes of interest; in this case, for all the classes in C. Therefore, a
set of trained dictionaries DT = {DNSR, D5min, D10min, D15min, D20min, D25min, D30min} are
used to obtain the most accurate decomposition of their respective signals, which can be
used for signal classification.

The class of a new input signal x must be identified based on the information that
is contained in dictionaries. For this, it is necessary to obtain a description of the signal
through its features. The α vector obtained by the sparse representation simplifies the
signal that can be used as a feature vector. Due to the dictionary’s training process, where
more relevant elemental signals were selected, a feature-ranking process is not necessary.
The α vector corresponding to x must be evaluated to find the higher similitude between
its features and the features of a specific set of signals, i.e., a dictionary in DT. To perform
features evaluation, it is necessary to obtain α and, to find the higher similitude, x must be
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sparse by all the dictionaries in DT. The OMP algorithm is used to sparse x (Algorithm 1),
with the learned dictionary for a class Dc ∈ DT, the input signal to classify x and an error
value ε = 0.05 as parameters; a high value of ε limits the level of signal decomposition.
This process is repeated for each class; then, a set of feature vectors αC is obtained. For
classification, it is assumed that a dictionary with learned features of a particular class
must recognize a signal of the same type more easily than other dictionaries, as reported
in [32]. One way of measuring the recognition of the signal that each dictionary performs
is by assessing α coefficients. For instance, if xc1 is a signal of class c1, then the dictionary
Dc1 will be able to represent the signal without generating high coefficients, because most
of the xc1 features are already contained in the elemental signals of Dc1. Thus, αC can
be evaluated by the minimum sum of coefficients, as indicated in Equation (3), and the
class of the i-th dictionary is the most likely class to be associated with signal x. Moreover,
having a trained dictionary composed of elemental signals that participate in the ECG
decomposition without a specific ranking allows for a dynamic feature extraction process.
For example, two samples belonging to the same class could be decomposed by combining
different elemental signals from the dictionary. Their energy will be well-represented in
their α vectors, since all the elemental signals in the dictionary were adapted for the same
type of signal. In this way, a certain flexibility is reached in the feature selection, avoiding
the use of both a fixed number of features and a fixed ranking.

i = arg min
C

∑ |αC[i]| (3)

For the classification stage, two experiments were performed under the common
scheme and the multi-class scheme. To guarantee that signal selection in a classification
experiment does not affect the final results, a two-fold cross-validation was computed, then
repeated ten times. The obtained results under the proposed methodology were evaluated
by using the accuracy (Acc) measure as presented in Equation (4), where true positives
(TP), true negatives (TN), false negatives (FN), and false positives (FP) were considered.
Moreover, the results were also compared with those obtained in the related works.

Accuracy (Acc): the ratio of correct predictions to the total predictions.

Acc =
TP + TN

TP + TN + FN + FP
(4)

The sparse representations of processed signals were tested under the common scheme
(Figure 9) that considers the normal and SCD signal classes. Table 2 shows the results
of one of the tests and its metrics. The results showed that, in general, the evaluation
criterion (Equation (3)) could identify a higher similitude between the input signal and its
corresponding class, with an increased number of correct predictions. The accuracy (Acc)
indicates that the correct classification of pre-SCD signals was higher than 90%. A general
evaluation considering ten tests was performed to ensure the consistency of the results.
Table 3 shows the statistics of the ten tests, where a high accuracy and low dispersion
were observed at each time interval. Nevertheless, in the common scheme comparison
for the pre-SCD intervals, it is likely that a signal differing from the normal class would
be detected as SCD without considering the degree of difference, i.e., lower in further
pre-SCD intervals and higher in the nearest pre-SCD intervals. This condition may cause
the precision to have slight variations, despite the changing time interval.
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Figure 9. The common scheme used in SCD ECG signal classification, where an input ECG signal is
identified as normal or SCD depending on its features; if a signal does not fit the characteristics of
one class, then it is assumed to belong to the other.

Table 2. Results of an individual test under the common schemme.

Time Interval (before SCD) TP TN FP FN Acc (%)

5-min 382 258 55 1 92.0
10-min 375 290 62 5 90.8
15-min 369 271 68 1 90.3
20-min 373 332 64 4 91.2
25-min 383 281 54 2 92.2
30-min 397 331 40 0 94.8

Table 3. Measures for the ten tests of ECG SCD classification through sparse representations.

Time Interval (before SCD) Acc (%) ± std. dev.

5-min 94.4 ± 2.8
10-min 93.5 ± 2.7
15-min 92.7 ± 3.1
20-min 94.0 ± 3.1
25-min 93.2 ± 3.5
30-min 95.3 ± 2.5

A comparison with previous reports that performed pre-SCD signal classification
under the common scheme using the MIT/BIH NSR and MIT/BIH SCDH databases is
presented in Table 4. Data on the type of signal processed, methods, classifiers, and the
prediction time, along with its respective accuracy, were also included. The comparison
between these approaches and the proposed approach highlights the fact that the ECG
signal is directly processed. Other methodologies used the HRV signal, but this increases
the computational time, and a correction is required in the detection of R-R intervals [7].
Moreover, feature ranking is a common task in other works. Still, it is a complicated process,
as the behavior of some features may change over time, meaning one feature evaluation
per minute is needed to identify which features better represent that specific interval [19].
Since sparse representations provide a simplified description of the signal, α can be used
as feature vector, avoiding feature ranking. Additionally, it was found that the normal
and SCD signals can be identified with high precision using a simple criterion instead of a
more sophisticated classifier. Acharya et al. [19] also proved a simple evaluation by using
the Sudden Cardiac Index (SCDI) to detect SCD up to 4 min before the onset. In previous
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works, it was proven that it is possible to reach an SCD detection up to 30 min before onset,
with a high accuracy.

Table 4. Prediction and accuracy comparison. The MIT/BIH NSR and MIT/BIH SCDH databases were used in all cases.

Work Signal Methods and Characterization Classifier Prediction Time (Acc)

U. Rajendra Acharya et al.
(2015) [19] HRV Non-linear features extracted

from DWT k-NN 4 min before (86.8%)

U. Rajendra Acharya et al.
(2015) [16] ECG Non-linear features extracted

from DWT SVM 4 min before (92.1%)

M. Murugappan et al.
(2015) [21] HRV Time domain features Fuzzy 5 min before (93.7%)

Hamido Fujita et al.
(2016) [20] HRV Non-linear features extracted

from DWT SVM 4 min before (94.7%)

Elias Ebrahimzadeh et al.
(2018) [22] HRV Non-linear, time-frequency, and

linear features MLP 12 min before (88.2%)

Amezquita-Sanchez et al.
(2018) [18] ECG Non-linear feature from WPT EPNN 20 min before (95.8%)

Olivia Vargas-Lopez et al.
(2020) [17] ECG Non-linear features from EDM MLP 25 min before (94%)

Proposed ECG Sparse Representations Sum of absolute α 30 min before (95.3%)

Although the traditional scheme (Figure 9) allows for comparison with the state-of-the-art
SCD prediction, it might not be suitable to compare only two classes: normal signals and
SCD signals. These SCD signals belong to patients with a history of heart disease [24].
Thus, the entire signal may behave differently than a normal signal, not just the signal in
the minutes before an SCD event. For this reason, an experimental evaluation based on
multiple classes was performed (Figure 10). In this case, the classes were associated with
the time intervals defined in C. Since the features of the ECG signal change as the SCD
gets closer, it is assumed that, by using different categories, local features (related with the
proximity of SCD) could be highlighted, while common features (related to previous heart
diseases) could be attenuated. In this way, the classification could be made more suitable.

Figure 10. Proposed multi-class scheme for SCD ECG signal classification, in which is considered
that differences with respect to normal signal do not necessarily correspond to an immediate SCD
but to pre-SCD intervals or even other specific causes; the number of classes (N) depends on the
conditions addressed in the experiment.
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Tests results under the proposed scheme are presented in Table 5; a two-fold cross-validation
was computed, and repeated ten times. Since a class of normal signals was included, an
approximation of the general results can be cmade, using the common scheme evaluated
in Table 3. Unlike previous studies using ECG signals [17,18], it can be seen that the greater
the distance from the start of an SCD event, the more difficult it is to predict the SCD with
high accuracy. From the ten tests performed at the time intervals in C, an average accuracy
of 80.5% was obtained for an SCD event up to 30 min in advance. The purpose of the
experimental evaluation is the comparison of SCD signals with the same conditions of a
history of heart disease; therefore, this is an evaluation with more equal conditions.

Table 5. ECG SCD classification through sparse representations based on the proposed
multi-class scheme.

Time Interval (before SCD) Accuracy (%) ± std. dev.

Normal minute 96.3 ± 1.4
5-min 86.2 ± 0.9
10-min 78.4 ± 1.6
15-min 80.1 ± 2.1
20-min 81.0 ± 1.3
25-min 83.8 ± 1.0
30-min 80.5 ± 2.8

4. Conclusions

The early anticipation of SCD is vital to medical specialists who can apply preventive
treatment, increasing survival. It was shown that dictionary learning is suitable to address
ECG signals’ feature identification, and sparse representations are helpful as feature vectors.
Moreover, since the ECG signal is sparse, through selecting the elemental signals that better
represent it, feature ranking was not necessary under this approach. Additionally, because
signal characterization was not based on fixed features but on elemental signals, it was
possible to perform a feature extraction adapted to the dynamic of the ECG signals. The
experiment performed under the common scheme showed that the methodology reached
an accuracy similar or higher than related works, but by considering a wider pre-SCD
interval. However, the binary evaluation under this scheme could be limited and bias the
classification of pre-SCD signals. The proposed multi-class scheme was able to address
the differences that were present among the pre-SCD signals, providing a more suitable
classification. Furthermore, by considering that the features of the SCD attenuate as the
SCD event gets closer, it was expected that identification of pre-SCD signals was reduced
in longer intervals and increased in shorter intervals. This behavior corresponds with the
results obtained under the multi-class scheme that reached an accuracy of 80.5% up to
30 min before SCD.

In future work, an analysis of elemental signals in dictionaries will be addressed to
identify and filter those that generate noise in the α vector and affect signal classification,
as was the case for the 5 min interval in Table 5. Since the aim is to detect an SCD
episode in advance, we will seek to implement this methodology as embedded system for
continuous monitoring.
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