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Abstract: This study proposed an error-matching measurement and compensation method for curve
mating and complex mating. With use of polynomial curve fitting and least squares methods for error
analysis, an algorithm for error identification and error compensation were proposed. Furthermore,
based on the proposed method, an online error-matching compensation system with an autorevising
function module for autogenerating an error-compensated NC program for machining was built.
Experimental verification results showed that the proposed method can effectively improve the
accuracy of assembly matching. In a curve-type mating experiment, the matching error without
compensation was 0.116 mm, and it decreased to 0.048 mm after compensation. The assembly
accuracy was improved by 28%. In a complex-type mating experiment, the verification results
showed that the error reductions after compensation for three mating shapes (straight line, triangle,
and curve shape) were 81%, 87%, and 79%, respectively. It showed that the proposed method can
improve the assembly accuracy for complex mating shapes, which would also be improved without
losing production efficiency.

Keywords: error mating; complex mating; in-process measurement; error compensation

1. Introduction

In response to the needs of manufacturing applications, the international industry,
academia, and research institution sustain the research on improving the machining accu-
racy of the machine through hardware improvement or software-based error compensation.
For production lines with high-precision requirements, due to the tight tolerance zone
design of each process, high-specification and high-precision machines are usually required
for each process, resulting in higher hardware costs for the production line. Therefore, if
the real-time error measurement and compensation in the manufacturing process enable
the front and back processes to perform matching error compensation processing, then the
matching between the processes can be greatly improved and the re-work rate and defect
rate can be reduced, thereby reducing the manufacturing cost of the production line.

In addition, in the production of precision industrial products, it is often necessary to
individually manufacture components and then perform the precision assembly. The as-
sembly matching accuracy depends on the requirements of individual processing accuracy
and the selection of two components (part and counterpart) with the smallest matching
error. At present, most of the production methods in the industry are mass production,
and then suitable part and counterpart are manually matched and selected for assembly.
However, due to the different manufacturing processes of the parts and the counterparts,
and the different manufacturing tolerance ranges, the cost of maintaining manufacturing
accuracy is high; additionally, the manual selection is time-consuming and inefficient. The
online curve shape measurement and matching error compensation system proposed in

Sensors 2021, 21, 7660. https://doi.org/10.3390/s21227660 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8977-463X
https://doi.org/10.3390/s21227660
https://doi.org/10.3390/s21227660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227660
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227660?type=check_update&version=2


Sensors 2021, 21, 7660 2 of 19

this research is to parallel and efficiently measure the error of the part on the production
line, and then convert it into the correction error of the counterpart to be machined, af-
terward automatically generate the numerical control (NC) processing program with the
correction. With high-efficiency information communication, the suitable counterpart is
machined, so that the matching accuracy between the part and its counterpart is improved
in the low-cost and high-efficiency manufacturing process. Another advantage of this
method is that there is no need to require strict tolerances in every manufacturing process,
which makes the production line more robust and results in lower production costs.

The matching shapes between the part and its counterpart can be divided into straight,
triangle, and curve types. Our previous study proposed matching error compensation
methods for straight and triangle matching [1,2]. This research proposes more complex
matching shapes that are curved matching error measurement and compensation methods
to meet the industry’s demand for complex assembly matching. The proposed method
can be used for automated production lines with CNC machine tools, robotic arms, and
measurement systems. The autoerror compensation module and production line monitor-
ing module can be integrated with the automation production line to improve production
line efficiency, and greatly reduce unnecessary manual matching costs. The compensation
method used in the research is passive compensation. By measuring the positional coordi-
nates of the mating area of the part, the deviation and geometric error of the mating area
are automatically calculated, and then the measured error is converted into a correction
amount for its counterpart through the error conversion module. Subsequently, use the
established NC program autoidentification and compensation module to compensate the
correction amount to the corresponding section of the NC program, and finally use the
compensated NC program to machining the counterpart, thus the counterpart can be
accurately matched with the part.

In the past, many studies have investigated error compensation methods to improve
the machining accuracy of the machine. Wang et al. [3] proposed an on-machine and vision-
based measurement method to measure the volume error of a micromachine tool then
compensated to the machining trajectory. Zhang et al. [4] used Cross Grid Encoder KGM181
to measure and identify the geometric error and developed an automatic compensation
system module. Jia et al. [5] comprehensively summarized and classified contouring-error
reduction methods for three-axis and five-axis CNC. The advantages and disadvantages
of different kinds of methods were discussed and compared. Yang et al. [6] improved the
tracking accuracy of the CNC machine tool by establishing a two-stage feedforward friction
compensation model. Experimental verification was also conducted and showed that the
proposed method could improve the tracking accuracy of CNC machine tools by around
20%. Wan et al. [7] proposed a three-axis CNC geometric error model using a homogeneous
transformation matrix, which converts high-order nonlinear spatial geometric problems
into algebraic equations by fitting geometric error components through a cubic polynomial
function. Nghiep et al. [8] investigated the mechanism of tool deflection error, then mini-
mized the deflection error by controlling the cutting parameters and suitable lubrication
mode. Zhao et al. [9] proposed an effective error compensation method with a new error
prediction model and error compensation strategy for coordinated five-axis machine tools.
The influence of the coordinated workspace of prismatic joints (CWP) and the coordinated
workspace of revolute joints (CWR) on the objective error was investigated, then it was com-
bined with the interpolation algorithm to predict the relative position and orientation error.
Zhou et al. [10] investigated nonlinearity error on five-axis CNC machining. A close-form
representation of the envelope surface methods was proposed to calculated the nonlinearity
error. The Cutter location data from commercial computer aided manufacturing (CAM)
and practical machining experiment were collected and compared to determine the surface
deviation. Shi et al. [11] investigated the degradation of contouring accuracy of machine
tools caused by transient backlash error (TBE). A mathematical model for feed drive with
backlash was developed from full-closed loop type feed drive. Based on this model, the
TBE was demonstrated. Simulation and experiment were carried out for validation, and it
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showed the magnitude of TBE could be forecasted if the open-loop gains and the backlash
widths are identified. Bi et al. [12] proposed an adaptive machining method for curved
contour based on a novel isometric mapping. The method includes three steps: the first,
using a laser scanner based on-machine measurement (OMM) system to obtain the real
geometry of the deformed surface. The second, establish an isometric mapping between
two sets of points. The accuracy of matching between the nominal surface and the actual
surface is defined according to the deviation of the geodesic distance of the two sets of
points. The third adaptively adjusts the toolpath according to the result of isometric surface
mapping to compensate for the deformation error. Simulation and machining experiments
were carried out to prove the feasibility and effectiveness of the proposed method. Huang
et al. [13] developed a new elastic deformation compensation interpolation (MEDCI) al-
gorithm to generate a modified position command, thereby reducing the tracking error
caused by elastic deformation.

Monitoring and control of the manufacturing process are important for the devel-
opment of manufacturing industries. Process monitoring is the manipulation of sensor
measurement (e.g., vibration, force, temperature) in determining the state of processes.
Different real-time monitoring techniques to monitor the manufacturing process have been
investigated, such as Dinardo et al. [14] used vibration signals to continuously monitoring
the machine condition. This approached allows for self-assessment of health and degra-
dation status of the machine system. Teti et al. [15] provided a comprehensive review
of sensor technology, signal processing, and decision-making strategies for machining
monitoring. Different techniques and methods of signal feature extraction and feature
integration for decision making were elaborated and discussed. Han et al. [16] proposed a
novel method to predict health management of complex multi-state manufacturing systems.
The hard failure and soft failure of the manufacturing system were defined. With consider-
ing the functional dependence of the manufacturing component and soft failure, developed
Remaining Useful Life (RUL) method. The functional importance of the manufacturing
component was defined and used for optimizing the process of manufacturing system
maintenance decision making.

For high-precision products, measurement accuracy plays a key role. The Coordinate
Measuring Machine (CMM) is widely used in industry to evaluate dimensional and geomet-
ric characteristics of complex high precision parts. However, due to the demand for shorter
cycle times of measurement tasks, in such conditions, dynamic errors will certainly have
a much more influence on the measurement accuracy. Echerfaoui et al. [17] investigated
the dynamic errors in the CMM through experimental work. Experimental design and
statistical analysis tools were combined to evaluate the measurement parameters effects
at high measuring velocity, then these parameters were used to investigate the variation
of dynamic error. Ostrowska et al. [18] developed a virtual articulated arm coordinate
measuring machine (VAACMM) using three different metrological models. Verification
method based on measurements of multi-feature check standard and posterior predictive
p-value test was proposed for assuring the correct functioning of developed VAACMM.
Xing [19] et al. proposed a method that combined volumetric errors (VEs), vector sim-
ilarity measures (VSMs), and the exponentially weighted moving average (EMWA) for
machine tool accuracy monitoring. Simulation machine error data and the real machine
tool test were carried out to verified the proposed method. The results showed that VE is
significant for monitoring the machine tool accuracy condition, and VSMs work well in VE
feature extraction. Yang et al. [20] developed a high-accuracy online prediction algorithm
of five-axis contouring errors according to three-point arc approximation (TPAA). The
experiment results showed that the proposed TPAA algorithm can predict contouring error
with higher accuracy than linear segment approximation (LSA). Tang et al. [21] approached
a new analyzing method to calculate the straightness and angular errors according to
measuring guideway surface and fitting curve. Jia et al. [22] proposed the Non-Uniform
Rational B-Splines (NURBS) interpolator method for the calculation of the contour error. A
parameter compensation-based second-order Runge–Kutta method was used to precisely
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calculate the new interpolation-point parameter. Mao et al. [23] proposed a new method
based on resampling to create surface fitting for the data from the Coordinate Measuring
System. The method consists of three parts: NURBS curve fitting for each row, resampling
on the fitted curve, and surface fitting from the resampled data. The numerical experiments
were conducted with simulation and practical data. The results demonstrated fast, effective,
and robust calculation.

The previous research on error compensation mostly focused on the improvement
of the processing accuracy of a single part and less focused on the assembly parts. This
research focuses on the measurement and error compensation for high-precision assembly
matching. The error of a part is measured in real time on the production line, then the
error compensation value for its counterpart is calculated according to the error of the
part. Furthermore, the error compensation value is compensated into the counterpart NC
program. Finally, the counterpart is machined using a compensated NC program. Thereby,
if an error exists on a part, the error is autocompensated to its counterpart to be machined,
so that the high-precision matching assembly can be obtained. In the past, our research
team has proposed compensation methods for straight and triangle matching errors [1].
This paper extends a method for measuring and error compensation for curved and
complex matching errors. In Section 2, the matching error measurement and compensation
methods were described and elaborated. Section 3 described the online error measurement
and compensation system developed based on the proposed method. In Section 4, the
experiments and verification results were presented and discussed. Finally, the conclusion
was summarized in Section 5.

2. Methodology

In the matching error measurement and compensation method, the user needs to
define the key nodes in the mating area of a part, then the coordinate of the key nodes is
directly measured on the production line to create the actual size and geometric profile. The
tolerance chain in the design was included in the calculation of the theoretical minimum and
maximum dimensions of the part. Subsequently, the size and geometric profile obtained
from the measured part are compared with the theoretical size and geometric profile to
determine the size and profile error of the part, and then convert into the compensation
value of the counterpart to be machined. Finally, a corrected counterpart NC program
is autogenerated according to the compensation value, then machine the counterpart
that matching to the part. The methodology includes: (1) the selection of the key nodes,
(2) measurement methods, (3) curved contour reconstruction, (4) error comparison, and
(5) error conversion and NC program autocorrection.

2.1. Selection of Key Nodes

Before calculating the error and compensation, the product needs to be measured by
the measurement instrument. First, it is necessary to define the key measurement points
in the part mating area, so that the complete measurement information of the actual size
and contour profile can be obtained and reconstructed. There are three types of matching
assembly shapes between the part and counterpart, namely straight line, triangle, and
curved. The straight line matching focuses on straight and length. To construct a straight
line, two points are needed. The triangle matching focuses on the triangle side length and
the angle. To construct a triangle, it is necessary to create two lines and the angle between
the line must be known. Therefore, four points are needed to create two lines and using
dot product equation to obtain the length of two lines and the angle between the lines. For
the curve shape, the required points to construct a hill or valley are at least three points.
However, for large hills or valleys, it is recommended to add one point for every increase of
5 mm. To construct the curve shape, the polynomial regression and least squares methods
were used. The number of points will influence the accuracy of the curve construction.
More number of points will provide higher accuracy of curve reconstruction, but it will
take a longer measurement time. Alternatively, a fewer number of points will result in
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lower accuracy of curve reconstruction, but shorter measurement time. The mating error of
the part can be obtained by comparing the actual shape after machining and the theoretical
shape from the CAD. Furthermore, this mating error value is used to modify the shape of
its counterpart to obtain precision matching in assembly.

2.2. Measurement Method

The point-to-point measurement method in the Renishaw Equator 300 is used to mea-
sure the part. This method uses several points to reconstruct the shape of the part. First, the
origin position of the machining coordinate system must be checked, then the coordinates
of the key points must be measured according to this coordinate system; furthermore, the
actual curve must be reconstructed based on the measured coordinates. Subsequently,
the actual curved and theoretical curved (from CAD drawing) is compared, and then the
deviation is calculated between the theoretical point and the actual point. Figure 1 shows
the mating area that consists of a straight line, triangle, and curve shape. The two key mea-
surement points of the straight line are the point P1 and P2 in Figure 1a. The coordinates of
P1 and P2 can be directly measured by the Renishaw Equator 300 measurement instrument.
The length of the straight line can be obtained through these two points. For the angle of
the triangle shape, the angle between the two lines can be calculated using a dot product,
for example, θ2 can be calculated using Equation (1).

θ2 = cos−1

 →
L1·
→
L2

‖
→
L1‖·‖

→
L2‖

 (1)
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Figure 1. Illustration of the mating area that consists of straight line, triangle, and curve shapes.
(a) keypoints to measure straight line, (b) keypoints to measure triangle, and (c) keypoints to
measure curve.

For the curve shape, the point-to-point measurement method is used instead of the
scanning measurement method. The advantage of using the point-to-point method is that
it only needs several points to construct the curve, and the measurement time is short
compared with the scanning method that uses numerous points and a longer measurement
time. However, the number of points will affect the accuracy of the curve reconstruction.
More points will produce higher accuracy of curve shape but longer measurement time is
required as a consequence; on the other hand, fewer points will result in lower accuracy,
but the measurement time is shorter. For example, ten points were taken while measuring
the curve, as shown in Figure 1c.

As is known, the measurement has some degree of errors that may come from the
instrument or loading/unloading. The Renishaw Equator 300 that used in this study is an
automated flexible gauge that employs the comparator principle via RenCompare software
to account for the influence of systematic effects associated with Coordinate Measurement
System (CMS) [24,25]. The parallel kinematic-based mechanism is used in the Equator
instrument to minimize the machine’s dynamic errors at high measurement speed. To
handle the temperature effect of the environment, the re-mastering process can be managed
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with the built-in sensor and software configuration [26]. Accordingly, in comparative
coordinate measurements, the main uncertainty contributors are environmental effect,
machine repeatability, calibrated master part, part fixture, sampling strategy, and the geo-
metric element best-fit algorithm. The critical factor that affects to coordinate measurement
machine is the part-alignment procedure used to define the coordinate system or frame
of reference. In coordinate measurement, an improper part fixture set-up influences the
measurement accuracy. When each part is fixed within 1 mm relative to the master part,
size and position measurements made immediately following re-mastering may have a
comparison uncertainty of ±2 µm relative to the certified measurement of the master part.
Angular misalignment can be avoided by using an appropriate fixture for part holding.
However, clamping the part to be inspected in the proper position and orientation is not
always easy. To minimize the loading/unloading errors, the Erowa Power Chuck tooling
system with repeatability <5 µm was used to hold the part.

The uncertainty of Equator comparator measurement for touch-trigger probing (TTP)
mode is less than 0.6 µm. The number of probing points has no significant influence
on the comparator measurement uncertainty, and comparison uncertainty is less than
0.5 µm for the angular misalignment within a range of ±1 mm. A large number of contact
points provides smaller measurement uncertainty. The length measurement uncertainty of
the Equator comparator remains below ±2 µm when the fixture/component is relocated
within an error range of ±1 mm (fixture requirement is according to the Equator system
specification) [1].

For the part-alignment in the measurement, the coordinate translation and rotation
conversion as shown in Figure 2 were performed. The rotation conversion formula can be
expressed as Equation (2).{

X2 = (X− X0) ∗ cos a− (Y−Y0) ∗ sin a + X0
Y2 = (X− X0) ∗ sin a− (Y−Y0) ∗ cos a + X0

(2)

where X2, Y2 are coordinate after rotation; X, Y are coordinate before rotation; X0, Y0 are
center of rotation (reference point).
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2.3. Fitting Method

The straight line fitting and geometric angle fitting are common problems in engineer-
ing applications. The least squares (LS) or total least squares (TLS) method can be used to fit
the two-dimensional straight line. However, the LS or TLS method cannot be directly used
to fit the three-dimensional spatial straight line due to the large number of equations to be
solved; the solving process is relatively cumbersome, with poor practicability. Therefore,
the three-dimensional problem is converted into a two-dimensional problem, then LS or
TLS methods are used to fit the straight line. Polynomial curve fitting is a common method
of data fitting. Polynomials can be used to fit data points in two ways. First, the polynomial
passes through all the data points, and second, the polynomial does not necessarily pass
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through any of the points, but gives a good approximation of the data overall. Figure 3
illustrates N data points with their corresponding coordinates (X1, Y1), (X2, Y2) . . . (XN, YN)
and curve-fitted line. For a given coordinate, such as (Xi, Yi), a deviation Di exists between
the corresponding value on the Y-axis and the Y value on the curve C. This deviation value
can be positive, negative, or zero. The maximum order of the polynomial is dictated by
the number of data points used to generate it, and can be calculated as m = N − 1. The
polynomial can be created passing through all the points when the polynomial of the
degree is N − 1. On the other hand, if the polynomial of the degree is less than N − 1, the
polynomial does not pass through any of the points, but overall approximates the data.
The general form of polynomials function can be written as Equation (3).

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 (3)

where an, an−1, . . . , a1, a0 are the coefficients, and n is the order of the polynomials.
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The higher degree polynomials may give a larger error or are more likely to overfit. To
obtain the best fit curve line to data points, the least squares method was used to minimize
the sum of the squares of the residuals at all the data points. In addition, to avoid overfitting
problems in curve construction using the polynomials method, regularization was used
in the least squares to control the overfitting. The smaller the value, the better the fitting
degree. The minimum sum of squares of error can be calculated using Equation (4).

QL =
N

∑
i=1

[yi − (axi + b)] 2 (4)

The polynomial curve fitting with the minimum sum of squares of error can be
calculated using Equation (5).

Qc =
N

∑
i=0

(yi − (a0 +
m

∑
j=1

ajxj))
2

(5)

2.4. Error Comparison

The theoretical coordinate of the key points of the workpiece can be obtained from
the CAD drawing, whereas the actual coordinates of the workpiece can be obtained by
measuring the machined workpiece. For instance, Figure 4 illustrates the theoretical shape
(dashed line) of a part. Assuming that the theoretical coordinates of the pick point are
(6,5), then this coordinate value will be entered into the proposed error compensation
system setting. After machined the part, the actual shape of the part was measured by
using Renishaw Equator 300 instrument. The measurement probe will touch two points
(keypoint 1 and 2) on the side a and (keypoint 3 and 4) on side b. Subsequently, straight
line a’ and line b’ were constructed according to those points, and the intersection point
between straight lines a’ and b’, which is (8,6), was obtained, as shown in Figure 4. The
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error is determined by comparing between actual part coordinate value and theoretical part
coordinate value. In addition, the tolerance chain is also included in the error comparison.
The maximum and minimum dimension of part is calculated according to the tolerance
chain. For the error of part in the tolerance chain, it does not need to compensate to the
counterpart. On the other hand, if the error of the part exceeds the tolerance chain, it is
needed to compensate the error to the counterpart.
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2.5. Error Conversion

The actual measurement information is provided in CSV format. Therefore, a CSV
data-parsing module was established to analyze the content of the source file and determine
whether the data content belongs to the part or counterpart.

To easily understand the error conversion, an illustration assembly between part
and counterpart is depicted in Figure 5. To convert the part error to the counterpart
error, the first step is to measure the actual shape of the part, as shown in the red solid
line in Figure 6a, then calculate the deviation between actual coordinates and theoretical
coordinates (including the tool diameter). Since positive and negative signs will affect the
cutting tool direction in the machining process, a vector method that has magnitude and
direction is used for conversion. In a cartesian coordinate system, the components of the
vector are the projections of the vector along the X and Y direction. After the deviation
value was obtained, then the coordinate of the counterpart is corrected according to the
deviation value of the part. The counterpart correction coordinate can be calculated by
using Equation (6). The shape of the counterpart after compensation is shown in the red
solid line in Figure 6b. The assembly matching before and after compensation is shown in
Figure 6c,d. {

X1 − ∆x − 1
2∅ = X2

Y1 − ∆y − 1
2∅ = Y2

(6)

where: X1, Y1 are the actual coordinates of the part; ∆x, ∆y are error amount X and Y; ∅ is
the cutting tool diameter; X2, Y2 are the corrected coordinates of the counterpart.
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2.6. Autogeneration of an Error-Compensated NC Program

To achieve online automatic error compensation, the above-mentioned error conver-
sion results need to be inserted into the NC machining program to correct the cutting tool
path. Therefore, it is necessary to declare the processing block for error compensation in
the system in advance. In the setting section on the human–machine interface, the key
measurement point and the corresponding NC program block is designed. The system will
automatically search and identify the set block in the original NC program according to
the key measurement setting, then integrate the error compensation amount into the X-, Y-,
and Z-coordinate value of the block.

The NC cutting process generally consists of G00, G01, G02, and G03. In this research,
Regular Expressions in the C# programming language is used to identify a single block.
Regular Expressions is a way to search a pattern with a certain rule string; therefore, this
method is suitable for searching NC code in a single block. To automatically generate
an error-compensated NC program for a counterpart, the first step is to find the block
number to be compensated. After the deviation value is obtained by subtracting the actual
coordinate from the theoretical coordinate of the part, then the coordinate of the counterpart
is corrected according to the deviation value of the part. The detail of the auto-generated
error compensation NC program can be seen in the previous work [1].

The total time for the compensation can be calculated using Equation (7):

Total time =

(
Kp

(
Stp

Vtp

)
+ Tc

)
(7)

where Kp is the number of key measurement points; Vtp is the velocity of touchpoint (max
10 mm/s based on Renishaw manual reference); Stp is the distance between the probe and
key measurement point (mm); Tc is the calculation time of deviation (s).

3. Mating Error Compensation System

Based on the proposed error compensation method, an online matching error compen-
sation system for complex shapes was developed in visual C# language. The architecture
of the system includes a login system, pre-setting system, and an intelligent error compen-
sation system.

3.1. Human–Machine Interface Setup

Before performing error compensation, the user needs to define the required key point
for measurement, and the corresponding NC processing program blocks information for
automatic compensation. Figure 7 shows the human–machine interface (HMI) point setup
interface. It provides information of work order number, workpiece name, operator, and
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time in the left area (#1 in Figure 7). On the right side (#2 in Figure 7), the user can enter
the number of points to be compensated for straight line, triangle, and curve shapes. The
system will record this information and use it for error compensation calculation. After
setting the number of points, the next step is to enter the theoretical coordinates of each
key point for the straight line, triangle, and curve shapes and the related NC block number,
as shown in Figure 8, so that the error can be compensated to the corresponding NC block.
Finally, the original NC program of the counterpart is imported.
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3.2. HMI On-Line Error Compesation

Figure 9 shows the error compensation interface. The system automatically displays
the part and counterpart theoretical coordinates of the key measurement point in the area of
the theoretical coordinates and original NC program, respectively (#1 in Figure 9). After the
part is measured by the Renishaw Equator 300 instrument, the system will automatically
record the actual coordinate measurement value of the part and display it in the actual
coordinate area (#2 in Figure 9). Subsequently, the deviation value between theoretical
and actual value is calculated, and then displayed in the compensation value area (#3 in
Figure 9). Furthermore, the system converts the compensation value into the coordinate
of the counterpart and corrects the NC program of the counterpart (#4 in Figure 9). This
modified NC program not only can be stored in the edge computer but also automatically
uploaded to the CNC controller of the machine tool.
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4. Experiment and Verification
4.1. Experiment Preparation

Experiments were designed to verify the effectiveness of the proposed method for
the curve-mating and complex-mating types. Aluminum workpieces were used in the
experiments. A Renishaw Equator 300 with a working range of 300 × 300 × 150 mm was
used to in-line measure the part. A CNC vertical milling machining center YTM-763 with a
travel range of 760 × 400 × 350 mm, maximum spindle speed of 20,000 rpm, and Delta
NC300A controller was used to machine the counterpart. A computer with the specification
of intel core i7-7700 and RAM 16 GB was used. The cutting parameters for experiment
verification are shown in Table 1.

4.2. Verification of Curve Mating

Figure 10 shows the finished part with curve mating. The cutting parameters used for
machining the part are shown in Table 1. The tolerance chain is ±0.05 mm. Ten key points
were used in the measurement and compensation. The location of key measurement points
are shown in Figure 10, and the corresponding coordinates are shown in Table 2. Figure 11
shows the finished counterpart without compensation and the location of key measurement
points. The corresponding measured coordinates and the conversion coordinates are
shown in Table 3. Figure 12 shows the finished counterpart with compensation and the
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location of key measurement points. The corresponding measured coordinates and the
conversion coordinates are shown in Table 4. Figure 13 shows the error comparison
between counterparts without and with compensation. It can be seen that the largest
error for counterpart without compensation is 0.116 mm, which exceeds the tolerance
range of 0.05 mm. After compensation, the error becomes 0.048 mm, which is within the
tolerance range. Consequently, the assembly accuracy increase to 28%. Figure 14 shows
the comparison assembly matching before and after compensation. It can be seen that
there is a quite big gap in between part and counterpart for the assembly matching before
compensation. On the contrary, the mating in the assembly matching after compensation
exhibits good matching.

Table 1. Cutting parameters for experiment verification.

Subject Curve Complex

Tool diameter (mm) 6 6
Spindle speed (rpm) 6000 6000
Feed rate (mm/min) 500 500

Material Aluminum Aluminum
Tool material Tungsten Carbide Tungsten Carbide

Tool flutes 3 3
Width of Cut (mm) 0.1 0.2
Depth of Cut (mm) 13.5 13.5
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Table 3. The measured coordinates and conversion coordinates of counterpart without compensation.

Point
Measured Coordinate Converted Coordinate

X (mm) Y (mm) X (mm) Y (mm)

1 1.193 −2.818 −2.006 −2.768
2 2.591 −8.382 −0.655 −8.332
3 1.100 −15.769 −2.176 −15.719
4 2.113 −25.866 −1.191 −25.816
5 2.810 −35.823 −0.542 −35.773
6 2.600 −43.425 −0.766 −43.375
7 1.621 −51.843 −1.799 −51.793
8 1.112 −61.007 −2.304 −60.957
9 1.933 −68.943 −1.445 −68.893
10 1.710 −73.453 −1.567 −73.403
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Table 4. The measured coordinates and conversion coordinates of counterpart with compensation.

Point
Measured Coordinate Converted Coordinate

X (mm) Y (mm) X (mm) Y (mm)

1 0.835 −2.818 −2.217 −2.719
2 2.236 −8.380 −0.964 −8.383
3 0.779 −15.769 −2.421 −15.779
4 1.808 −25.846 −1.181 −25.843
5 2.533 −35.822 −0.377 −35.824
6 2.335 −43.425 −0.535 −43.426
7 1.439 −51.843 −1.361 −51.847
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Table 4. Cont.

Point
Measured Coordinate Converted Coordinate

X (mm) Y (mm) X (mm) Y (mm)

8 0.851 −61.007 −1.751 −61.008
9 1.688 −68.943 −0.808 −68.944
10 1.558 −73.452 −0.995 −73.468
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4.3. Verification of Complex Mating

The verification for complex mating consists of straight line, triangle, and curve shapes,
as shown in Figure 15. The straight line part is represented by L1, whereas the triangle shape
is represented by the combination of L2, L3, and the angle in between. Meanwhile, the
curve shape is represented by point 5 to point 14. The corresponding measured coordinates
of the complex part were shown in Table 5. The cutting parameters for this experiment
were shown in Table 1. Figure 16 showed the finished complex counterpart without
compensation and the location of key measurement points. The corresponding measured
coordinates and the conversion coordinates were shown in Table 6. Figure 17 showed the
finished complex counterpart with compensation and the location of key measurement
points. The corresponding measured coordinates and the conversion coordinates were
shown in Table 7.
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Table 6. The measured coordinates and conversion coordinates of complex counterpart without compensation.

Point
Measured Coordinates Converted Coordinates

X (mm) Y (mm) Angle (Deg) Distance (mm) X (mm) Y (mm) Angle (Deg) Distance (mm)

1 −31.691 76.003 17.308 −32.443 76.003 17.308
2 −32.524 58.715 119.542 −32.220 58.715 119.542
3 −45.345 49.027 64.878 −46.193 49.027 64.878
4 −31.895 37.792 −32.637 37.792
5 −32.206 33.064 −32.354 33.064
6 −33.853 28.066 −34.033 28.066
7 −35.955 22.716 −35.893 22.716
8 −36.712 19.803 −36.540 19.803
9 −36.878 17.888 −36.776 17.888

10 −36.862 16.455 −36.762 16.455
11 −36.27 12.696 −36.164 12.696
12 −35.396 9.746 −35.268 9.746
13 −33.907 5.733 −33.715 5.733
14 −32.448 1.792 −34.033 1.792
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The actual distance between point 1 and point 2 of the straight line shape of the
complex part was 17.649 mm, and the angle between L1 and L2 was 118.948◦. Before
compensation, the actual distance between point 1 and point 2 of the complex counterpart
was 17.308 mm, thus the deviation was 0.341 mm. Meanwhile, the angle between L1 and
L2 was 119.542◦, thus the deviation was 0.594◦. After compensation, the actual distance
between point 1 and point 2 of the complex counterpart was 17.592 mm, which indicated
that the error decreased from 0.341 mm to become 0.057 mm. Furthermore, the actual angle
between L1 and L2 was 119.061◦, which demonstrated an error reduction of 81%.

In the triangle shape of the complex part, the actual angle between L2 and L3 was
63.948◦. Before the compensation, the angle between L2 and L3 of the complex counterpart
was 64.878◦, which indicated an error of 0.93◦. After the compensation, the angle between
L2 and L3 of the complex counterpart was 63.83◦, which showed that the error was reduced
to 0.118◦, and, therefore, an improvement of 87% as a consequence.

Figure 18 showed the error comparison between counterparts without and with
compensation for a complex part. It can be seen for the curved shape of the complex part
that the error before compensation was 0.137 mm, whereas the error after compensation
was reduced to 0.029 mm, thus the accuracy improved by 79% as a consequence. However,
a large error has occurred in two areas. The first area is the meeting point between curve
and triangle that showed errors of 0.371 mm and 0.391 mm before and after compensation,
respectively. This is because the corner of the meeting point cannot be chosen as the key
measurement point; therefore, only the nearest to the corner can be chosen, which leads to
a larger error. The second area is the inside corner of the triangle. The inside corner of a
triangle cannot be reached by the probe of the Renishaw Equator due to the ball shape of
the probe with a certain radius. In addition to the probe ball shape reason, the polynomial
curve fitting method used to reconstruct the shape may result in overfitting due to higher
order polynomials. Nevertheless, the majority of errors were small and in the tolerance
range after compensation. Figure 19 showed the comparison assembly of complex mating
before and after compensation. It can be seen, before compensation, that the gap in between
the complex part and its counterpart is quite large due to the larger error. Meanwhile, the
gap in between the complex part and its counterpart after compensation was smaller and
exhibited better matching.
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The total time for this complex shape compensation can be calculated by using
Equation (7). The given parameters data: key measurement points were 14, the veloc-
ity of touchpoint was 10 mm/s, the distance between the probe and key measurement
point was 5 mm, and the calculation time of deviation was 1 s. After substituting these
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values into Equation (7), it showed that the total time for this complex shape compensation
was 8 s.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 20 
 

 
Figure 19. Comparison assembly complex mating before and after compensation. 

The total time for this complex shape compensation can be calculated by using Equa-
tion (7). The given parameters data: key measurement points were 14, the velocity of 
touchpoint was 10 mm/s, the distance between the probe and key measurement point was 
5 mm, and the calculation time of deviation was 1 s. After substituting these values into 
Equation (7), it showed that the total time for this complex shape compensation was 8 s. 

5. Conclusions 
In this study, an error-matching compensation method for curve mating and complex 

mating was developed. Error analysis and algorithms for error identification and error 
compensation of curve mating and complex mating were proposed. Polynomial curve fit-
ting method and least squares method were used for error analysis. Based on the proposed 
method, an online error matching compensation system was built. Experiment verifica-
tion results showed that the proposed method can improve the precision of assembly 
matching. For curve mating, the matching error before compensation was 0.116 mm, but 
the error decrease becomes 0.048 mm after compensation so that the assembly accuracy 
increase to 28% as consequence. For complex mating, the experiment verification results 
showed error reduction after compensation for each shape, which are 81%, 87%, and 79% 
for straight line, triangle, and curve shape, respectively. Accordingly, the precision assem-
bly of complex mating will also be improved. 

Author Contributions: Conceptualization, S.-M.W. and R.-Q.T.; methodology, S.-M.W. and R.-Q.T.; 
software, R.-Q.T.; validation, R.-Q.T. and H.G.; formal analysis, S.-M.W., R.-Q.T. and H.G.; investi-
gation, S.-M.W. and R.-Q.T.; resources, S.-M.W. and R.-Q.T.; data curation, R.-Q.T.; writing—origi-
nal draft preparation, S.-M.W. and H.G.; writing—review and editing, S.-M.W. and H.G.; visualiza-
tion, R.-Q.T. and H.G.; supervision, S.-M.W. All authors have read and agreed to the published ver-
sion of the manuscript. 

Funding: This research was funded by Ministry of Science and Technology, grant number MOST 
110-2221-E-005-063 and MOST 107-2221-E-033-066, and National Atmospheric Re-search Labora-
tory, grant number NARL-ISIM-109-003. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Wang, S.M.; Lee, C.Y.; Gunawan, H.; Yeh, C.C. On-line error-matching measurement and compensation method for a precision 

machining production line. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 6, 1–13. 
2. Wang, S.M.; Tu, R.Q.; Gunawan, H. Assembly error-mating measurement and compensation method for machining production 

line. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, 
Italy, 7–9 June 2021. 

3. Wang, S.M.; Lin, J.J. On-machine volumetric-error measurement and compensation method for micro machine tools. Int. J. 
Precis. Eng. Manuf. 2013, 14, 989–994. 

Figure 19. Comparison assembly complex mating before and after compensation.

5. Conclusions

In this study, an error-matching compensation method for curve mating and complex
mating was developed. Error analysis and algorithms for error identification and error
compensation of curve mating and complex mating were proposed. Polynomial curve
fitting method and least squares method were used for error analysis. Based on the
proposed method, an online error matching compensation system was built. Experiment
verification results showed that the proposed method can improve the precision of assembly
matching. For curve mating, the matching error before compensation was 0.116 mm, but
the error decrease becomes 0.048 mm after compensation so that the assembly accuracy
increase to 28% as consequence. For complex mating, the experiment verification results
showed error reduction after compensation for each shape, which are 81%, 87%, and
79% for straight line, triangle, and curve shape, respectively. Accordingly, the precision
assembly of complex mating will also be improved.
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