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Abstract: The SPR phenomenon results in an abrupt change in the optical phase such that one can
measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have
demonstrated that the phase changes more acutely than the intensity, leading to a higher sensitivity
to the refractive index change. However, currently, the optical phase cannot be measured directly
because of its high frequency; therefore, investigators usually have to use complicated techniques
for the extraction of phase information. In this study, we propose a simple and effective strategy for
measuring the SPR phase shift based on phase-shift interferometry. In this system, the polarization-
dependent interference signals are recorded simultaneously by a pixelated polarization camera in
a single snapshot. Subsequently, the phase information can be effortlessly acquired by a phase
extraction algorithm. Experimentally, the proposed phase-sensitive SPR sensor was successfully
applied for the detection of small molecules of glyphosate, which is the most frequently used
herbicide worldwide. Additionally, the sensor exhibited a detection limit of 15 ng/mL (0.015 ppm).
Regarding its simplicity and effectiveness, we believe that our phase-sensitive SPR system presents a
prospective method for acquiring phase signals.

Keywords: phase-sensitive SPR; pixelated micropolarizer array; phase-shift interferometry

1. Introduction

Surface plasmon resonance (SPR) has become known for the rapid, sensitive, and label-
free sensing of physical and (bio)chemical processes at interfaces [1,2]. The optoelectronic
phenomenon refers to the observation that the free electrons on a metal surface occur with
collective oscillation, resulting in the maximum absorption of incident light with a specific
wavelength or at a certain incident angle [3,4]. The resonance conditions (wavelength and
angle) of SPR are easily affected by the changes in the refractive index surrounding the
metal surface. Such changes can be measured by the shift in the resonance angle [5,6],
the resonance wavelength [7–9], or the intensity of the reflected light [10–12], which are
the three commonly used types of SPR interrogation technologies. Thus, SPR sensors are
frequently implemented to detect the refractive index changes caused by binding events
between analytes and receptors on the metallic sensor surface, which relates to the mass
deposited on the SPR sensing surface. In other words, the SPR signals are proportional to
the mass change caused by the analytes. If the molecular weight of the analyte is large (i.e.,
higher than 1000 Da), direct detection by the SPR sensor is possible. However, the direct
detection of small molecules is a challenge for the detection sensitivity of SPR sensors [13].

In addition to causing resonance angle and resonance wavelength shifts, as well as
the intensity change in the reflected light, the SPR phenomenon also causes an abrupt
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change in the optical phase such that one can measure the phase shift of the reflected
light as a sensing parameter, i.e., the SPR sensor is phase-sensitive. Phase-sensitive SPR
could be a strategy for the direct detection of small molecules, given that many studies
have demonstrated that the phase changes more acutely than the intensity, leading to a
higher sensitivity to the refractive index change [14–20]. However, currently, the optical
phase cannot be measured easily and directly because of its high frequency; therefore,
investigators have to use some specific techniques for the extraction of phase information.
Thus, phase-sensitive SPR systems usually need a phase modulator to help them extract
the phase information.

In the past, electronic modulators such as piezoelectric transducers (PZT), acousto-
optic modulators (AOM), electro-optic modulators (EOM), photoelastic modulators (PEM),
and liquid crystal modulators (LCM) were the most widely implemented modulators in
phase-sensitive SPR systems. For instance, in the Mach–Zehnder interferometer, the refer-
ence beam is introduced as a temporally modulated phase by a PZT and interferes with the
signal beam that is coupled with surface plasmons, and then the SPR phase can be obtained
by analyzing the interference signals [21,22]. Instead of a mechanical moving component,
some groups adopted AOMs and EOMs to generate two light beams with slightly different
frequencies to produce optical heterodyne signals, and the interference signal with a beat
frequency can retrieve the phase difference caused by the SPR phenomenon through the
use of a phase meter [23–25]. To simplify the structure to a single-beam configuration,
many groups incorporated a PEM into the SPR system in order to introduce a sinusoidal
phase modulation between the p- and s-polarizations, and determine the phase information
under SPR by decomposing the detected harmonic signals [17,18,26]. An LCM is also a
phase retarder that is able to induce an accurate phase shift between the p- and s-polarized
components by applying appropriate voltages, and finally obtaining the SPR-induced
phase difference with the use of a phase retrieval algorithm [27,28]. Recently, a few teams
have also proposed SPR ellipsometry based on PEM and LCM phase modulators [29,30].
However, the use of electronic modulators could result in a significant increase in both the
complexity and the cost of the system, not to mention that it may also increase noise [20].

In addition to the electronic modulators, there has been increasing interest in re-
cent years in the SPR system that combines spectral interrogation with phase detec-
tion [19,20,31,32]. The optical setup is usually based on white-light interferometry, and
incorporates a birefringent crystal into the SPR spectral interferometer to introduce spectral
phase modulation between the two co-propagating polarization components. The phase
change caused by the SPR effect is retrieved from the recorded spectral interferogram by a
windowed Fourier transform. Although the systems with spectral phase modulators are
set up more simply than the electronic modulator-based phase-sensitive SPR system, a
delicately custom-made birefringence crystal and a complex phase-retrieve algorithm are
needed [33]. On the other hand, there are also a few phase-sensitive SPR systems with no
need of phase modulators. For example, one such system makes use of ellipsometry to ana-
lyze the polarization ellipse of light that experiences SPR effect by rotating analyzer [34–36].
Though the rotating analyzer method is performed without electronic phase modulators, it
is incapable of real-time detection due to the limit of the mechanical speed.

The phase-sensitive SPR sensor has become a promising technique for optical biosens-
ing due to its high sensitivity to refractive index changes. However, this method is not
yet applied to commercial SPR instruments. This might be because of the complexity
of the optical system and the data acquisition and analysis. In this study, we propose a
phase-sensitive SPR sensor with a simple optical setup based on phase-shift interferome-
try. In this system, a pixelated polarization camera (PPC), which integrates the filters of
four polarization orientations at the pixel level, is introduced to acquire the four polar-
ization angles at the same time. Moreover, the phase information is extracted from the
polarization-dependent signals recorded simultaneously by the PPC on the basis of phase-
shift algorithms in a single snapshot measurement without extra electronic or mechanical
modulators. Furthermore, this technique enables internal referencing to be implemented
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simpler than the traditional phase-sensitive SPR sensors; the internal referencing is helpful
in degrading the effect of microfluctuations of temperature, which plays a key role in the
SPR detection performance. Experimentally, the proposed phase-sensitive SPR sensor was
applied for the detection of small molecules of glyphosate, which is the most frequently
used herbicide worldwide. Traditional methods for glyphosate detection are liquid chro-
matography and gas chromatography coupled to mass spectrometry, which are complex,
time-consuming and expensive [37,38]. This proposed system is anticipated to be a simple,
cost-effective, and sensitive detection method for glyphosate.

2. Materials and Methods
2.1. Reagents

Glycerol, immobilization buffer (10 mM sodium acetate, pH 5.0), and an amine coupling
kit containing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC), N-
hydroxysulfosuccinimide (sulfo-NHS), and 1.0 M ethanolamine · HCl, pH 8.5 (ETH) were
purchased from Bio-Rad (Sundbyberg, Sweden). Glyphosate and 11-mercaptoundecanoic acid
(MUA) were purchased from Merck KGaA (Darmstadt, Germany). Glyphosate receptor
was obtained from Nordic-MUbio (Susteren, the Netherlands).

2.2. Optical Setup

In order to measure the phase difference between the p-polarized and s-polarized
components in the light beam after being affected by SPR, the phase-sensitive SPR based on
simultaneous polarization measurement with common-path interferometry was established
(Figure 1). A linearly polarized laser (Thorlabs Inc., Newton, NJ, USA) with a wavelength
of 633 nm was used as the light source, with the output beam passing through a half-wave
plate (HWP) and a Glan–Thompson polarizer to adjust the polarization for final contrast.
After being incident into a homemade Kretschmann-based SPR device, the reflective light
travels through a quarter-wave plate (QWP) to convert into a pair of orthogonal circular
polarizations. Finally, the interference signals of the orthogonal circular polarizations
were recorded by the PPC (LUCID Vision Labs, Richmond, BC, Canada). The PPC has a
resolution of 2448 × 2048 and each pixel is aligned with a polarizer and a micro lens. The
polarization directions of each adjacent 2 × 2 pixel are filtered at 0◦, 45◦, 90◦, and 135◦,
respectively (Figure 1). Hence, light passing through the PPC can provide the intensity
signal of each polarized pixel with its associated polarization information. Ultimately, the
phase difference between the p-polarized and s-polarized components can be extracted
from the four-polarization simultaneous measurement. The principle and algorithm of the
phase extraction method used in this study are discussed in Section 3.1.

Figure 1. Schematic illustration of the phase-sensitive SPR based on simultaneous polarization
measurement with common-path interferometry. HWP: half-wave plate, QWP: quarter-wave plate,
PPC: pixelated polarization camera.
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2.3. Preparation of the SPR Sensing Chip

The SPR sensing chips used in this study were BK7 substrates covered with Cr/Au made
by the Thin Film Technology Center at the National Central University (Taoyuan, Taiwan).
To detect biomolecules, the gold surface was modified with 11-mercaptoundecanoic acid
(11-MUA) self-assembled monolayers (SAMs). After that, the glyphosate receptors were
conjugated to the SAMs of the gold surface using amine-coupling reactions. The procedure
included first activating the carboxyl group of the SAMs with the mixture of NHS (0.1 M)
and EDAC (0.1 M) for approximately 10 min. Then, the glyphosate receptor at a concen-
tration of 40 µg/mL was incubated with the reactive surface for approximately 30 min.
Finally, the free active sites were blocked with ETH for approximately 7 min. Subsequently,
the glyphosate in phosphate-buffered saline (PBS) solution was injected into the sensing
cell to interact with the immobilized glyphosate receptors on the SPR sensing chip.

3. Results and Discussion
3.1. Principle of the Phase Extraction Method

In the proposed phase-sensitive SPR system, a linearly polarized light was introduced
and incident into the SPR device. The Jones vector of the light reflected by the SPR chip
surface can be expressed as [

Apeiφp

Aseiφs

]
(1)

where Ap and As are the electric field amplitudes of the reflected p- and s-polarized light,
respectively; φp and φs are the corresponding phase. Since only the p-polarized component
is affected by SPR, the phase of s-polarized component could be treated as a reference.
Therefore, the phase change induced by SPR can be denoted as φp − φs. After the reflected
light passes through the QWP, whose fast axis is at arbitrary angle θ to the x-axis, the Jones
vector is represented by[ 1√
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If the fast axis of the QWP forms an angle of 45 degrees to the x-axis (θ = 45◦), the
Jones vector after the QWP becomes Equation (3), which can be presented as two circular
polarizations in opposite directions. Ap√
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Next, the two circular polarizations interfere due to the use of polarization filters in
the PPC. Afterward, the interference signals of the four polarization angles are acquired by
the PPC at the same time. For instance, the Jones vector of the light after the polarization
filter at 0◦ on the PPC is

⇀
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In addition, the corresponding light intensity is then given as
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Similarly, the light intensities at the other three polarization filters on the PPC are
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The expressions of the four light intensities (I(0◦), I(90◦), I(45◦), I(−45◦)) are com-
posed of DC and interference items, and only the interference item is associated with
the phase difference

(
φp − φs

)
between the p- and s-polarized light. Finally, the phase

difference is calculated by

φs − φp = tan−1
(

I(90◦)− I(0◦)
I(45◦)− I(−45◦)

)
(9)

The proposed phase-sensitive SPR sensor is able to obtain the intensities of the four po-
larizations simultaneously by integrating common-path interferometry with the PPC, break-
ing down the drawbacks of the complex optical setups and asynchronous measurements.

3.2. Validation of the Phase Difference Calculation Method

In this study, the phase difference between the p- and s-polarized light was determined
from the polarization-dependent signals recorded by the PPC on the basis of phase-shift
algorithms as discussed above. To confirm the correctness of the estimated phase difference
using the PPC and the algorithms, waveplates (such as QWP and HWP) with known phase
differences were measured firstly. Experimentally, by inserting the standard waveplate
into the optical path (between the SPR device and the QWP, see Figure 1), a known phase
retardation was introduced. Then, the resulting phase differences in p- and s-polarized
light were obtained through the proposed phase extraction method. Figure 2 showed the
estimated phase differences after inserting the QWP and HWP into the optical path, in
which each waveplate was measured five times and the average estimated phase differences
for QWP and HWP were 90.8 and 180.6 degrees, respectively. Both the estimated phase
differences are very close to the theoretical phase differences, π/2 and π, of the QWP and
HWP, respectively. In addition, the coefficient of variation (CV) of the estimated phase
differences were less than 0.2% for the two waveplates, in which the CV value could
usually be used to represent the precision or repeatability of the system. Moreover, the
residual coefficient of variation (RCV) were around 1% and 0.5% for the QWP and HWP,
respectively; RCV was defined as the residual standard deviation divided by theoretical
phase differences of the waveplates (π/2 for QWP and π for HWP), which was used to
describe the accuracy of the system in this study. The results verified that the proposed
phase-sensitive SPR sensor has acceptable precision and accuracy values.

Figure 2. The phase shift of the QWP and HWP measured by the proposed simple phase-sensitive
SPR sensor.

3.3. Stability and Detection Performance of the Proposed Phase-Sensitive SPR Sensor

The performance of the SPR sensors strongly depends on the noise properties of the
detection system [39]. Thus, prior to the performance evaluation of the proposed phase-
sensitive SPR sensor, the stability of the system should be assessed. In the proposed system,
the phase shifts of SPR were obtained by the phase extraction method as described above.
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Experimentally, the phase stability was executed in deionized (DI) water near the SPR
angle for 20 min. The phase fluctuations over a period of 60 min are shown in Figure 3A,
and the standard deviation (SD) is calculated to be 7.4 × 10−3 degrees. In addition,
Figure 3B represents the distribution of the data points; approximately 68% (823 points),
95% (1142 points), and 99.7% (1196 points) lie within 1 SD, 2 SD, and 3 SD, respectively.
Therefore, the probability distribution exhibits a normal distribution, which indicates the
phase fluctuations are statistically independent and dominantly white Gaussian noise. In
the following, we adopt a moving average strategy to filter the noise and then increase the
signal to noise ratio because, generally, if a signal contains normally distributed noise, the
adjacent averaging is a good choice for removing the background noise.

Figure 3. (A) The phase fluctuations of the system in DI water environment over a period of 20 min.
(B) The distribution of the data points in phase fluctuation measurement. An angle of 0.0074 degrees
indicates one standard deviation of the phase fluctuation. (C) The SPR phase shift measured by the
phase-sensitive SPR sensor with respect to time for glycerol–water solution concentrations from 0%
to 5%. (D) The relationship between the SPR phase shift and the refractive index change. (E) The
phase shift of 0.3125%× 1

500 glycerol (8.94 × 10−7 RIU) measured by the proposed phase-sensitive
SPR sensor.

The physical sensitivity to refractive index changes in the proposed phase-sensitive
SPR sensor were evaluated by measuring a glycerol–water solution with concentrations
ranging from 0% to 5%, corresponding to a refractive index range from 1.33095 to 1.33810
refractive index unit (RIU). These solutions were subsequently injected into the sensing
cell at a constant flow rate. The SPR phase shift measured by the phase-sensitive SPR
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sensor with respect to time is shown in Figure 3C. The results reveal that the SPR phase
shift exhibits an increasing response with raising glycerol concentration. Meanwhile, the
relationship between the SPR phase shift and the refractive index change is illustrated
in Figure 3D, in which error bars represent 1 SD in each measurement and are smaller
than the symbol size. It can be observed a linear region with the highest slope occurs
from 0 to 8.94 × 10−4 RIU, which represented the most sensitive region of the sensor,
implying a near-resonance condition. The highest slope, i.e., the maximum sensitivity, was
~6.07 × 103 degrees/RIU. Therefore, the physical detection limit, defined as the SD of the
blank (DI water) divided by the maximum sensitivity of the system, was estimated to be
4.6 × 10−7 RIU. Taking this one step further, the 0.3125% glycerol was diluted 500-fold to
obtain 8.94 × 10−7 RIU, close to the estimated physical detection limit, and then measured
by the proposed phase-sensitive SPR sensor. The result is shown in Figure 3E, and the signal
is estimated to be equivalent to seven times the baseline noise (SNR ≈ 7). An SNR ≥ 3
is considered a reliable threshold for distinguishing signal from background noise and,
therefore, the physical detection limit is very close to the estimated value (4.6 × 10−7 RIU).

The physical detection limit of refractive index change achieved by other phase-
sensitive SPR sensors is summarized in Table 1. The physical detection limit is in the range
8.0 × 10−6 RIU to 2.0 × 10−8 RIU, and most of the values are at the 10−7 RIU level. The
proposed phase-sensitive SPR sensor was constructed with a simpler optical setup but
exhibits a comparable performance.

Table 1. The physical detection limit achieved by other approaches and the proposed SPR approach.

Physical Detection Limit Reference

electronic modulators 1.2 × 10−6 RIU~5.5 × 10−8 RIU [21–24,26–29]

spectral phase modulation 8.0 × 10−6 RIU~2.0 × 10−8 RIU [20,31,32]

rotating analyzer 10−6 RIU~10−7 RIU [35,36]

this method 4.6 × 10−7 RIU

3.4. Application to Glyphosate Detection

Glyphosate is a small molecular (169.1 Da) organophosphorus herbicide and is the
most widely used nonselective herbicide in the world [37,40]. In addition, glyphosate has
been heavily restricted in many areas because it has perennial toxicity, residual toxicity, and
chronic effects [38]. For instance, the US EPA (Environmental Protection Agency) stipulates
that the maximum level of glyphosate in drinking water should be lower than 0.7 µg/mL
(4.14 µM) [41]. Meanwhile, in the European Union and China, the maximum residual
level of glyphosate in many crops and fruits should be lower than 0.1 µg/g (0.1 ppm) and
0.5 µg/g (0.5 ppm), respectively [42,43]. To date, the gold standard analysis approaches
for glyphosate are complicated, time-consuming, and need well-trained technicians. This
drives investigators to develop other ways to detect glyphosate that can bypass these issues.

To detect glyphosate, the chip surface was modified with glyphosate receptors using
the method described in Section 2.3. The sensorgrams of the glyphosate binding reaction
ranging from 50 ng/mL to 50 µg/mL are shown in Figure 4A, which shows the SPR
phase shift increasing in accordance with the increasing concentration of glyphosate. At
the same time, PBS solution was the dilution buffer and also acted as the control group
(blank). The sample was injected into the sensing cell and interacted with the immobilized
glyphosate receptors around 100 s, and then the washing step began at approximately 700 s.
The SPR phase shift with respect to the concentration of the glyphosate over the range
of 50 ng/mL to 50 µg/mL is shown in Figure 4B. The standard curve of the glyphosate
detection was analyzed by fitting with a nonlinear dose–response model, and the error
bar indicates 1 SD in three independent measurements. In accordance with the definition
of the International Union of Pure and Applied Chemistry (IUPAC), the detection limit
of the proposed phase-sensitive SPR sensor for glyphosate detection was estimated to be
15 ng/mL from the experimental results. This value is almost one order of magnitude lower
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than the worldwide strictest residual level (0.1 µg/g or 0.1 ppm) of glyphosate. Moreover,
we chose three herbicides (2,4-D, imazapyr, and pendimethalin) to further confirm the
specificity of the receptor. Experimentally, the concentrations were 5, 4.6, and 5.6 µg/mL
for 2,4-D, imazapyr, and pendimethalin, respectively. The results, shown in Figure 4C,
revealed that after the washing step, no increment in SPR phase shifts was found in the
three herbicides where the acquired phase shifts were similar to those of the blank test.
This result implied that the receptor was specific to glyphosate herbicides.

Figure 4. (A) The sensorgrams of glyphosate binding reaction measured by the phase-sensitive SPR
sensor. (B) The standard curve of the glyphosate detection over the range of 50 ng/mL to 50 ug/mL.
(C) Specificity test measured by the proposed phase-sensitive SPR sensor.

4. Conclusions

In this study, a phase-sensitive SPR based on a simultaneous polarization measure-
ment with a common-path interferometer configuration was developed. The SPR-induced
phase difference between the p-polarized and s-polarized components was extracted from
the polarization-dependent signals which were recorded by the PPC. The phase informa-
tion can be easily acquired on the basis of phase-shift algorithms in a single snapshot,
eliminating the drawbacks of complex optical setups and asynchronous measurements.
The proposed phase-sensitive SPR sensor offers a simple and effective method of measur-
ing the phase shift for real-time detection with no need of phase modulators. These help
to reduce the complexity and the noise of the system. Moreover, this technique enables
internal referencing to be implemented simpler than the traditional phase-sensitive SPR
sensors; the internal referencing is helpful in degrading the effect of microfluctuations of
temperature, which plays a key role in the SPR detection performance. Experimentally, a
physical detection limit of 4.6×10−7 RIU for refractive index changes was achieved for the
developed phase-sensitive SPR. In addition, this SPR sensor was applied for the detection
of glyphosate, with the concentration ranging from 50 ng/mL to 50 µg/mL. The detection
limit was estimated to be 15 ng/mL, which is almost one order of magnitude lower than
the worldwide strictest residual level of glyphosate. Given the simple optical setup and ac-
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ceptable precision and accuracy, we believe that our phase-sensitive SPR system represents
a prospective method of acquiring phase signals.
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