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Abstract: Speech emotion recognition (SER) plays an important role in real-time applications of
human-machine interaction. The Attention Mechanism is widely used to improve the performance
of SER. However, the applicable rules of attention mechanism are not deeply discussed. This paper
discussed the difference between Global-Attention and Self-Attention and explored their applicable
rules to SER classification construction. The experimental results show that the Global-Attention can
improve the accuracy of the sequential model, while the Self-Attention can improve the accuracy of
the parallel model when conducting the model with the CNN and the LSTM. With this knowledge,
a classifier (CNN-LSTM×2+Global-Attention model) for SER is proposed. The experiments result
show that it could achieve an accuracy of 85.427% on the EMO-DB dataset.

Keywords: artificial intelligence; speech emotion recognition; attention mechanism; neural networks

1. Introduction

Speech Emotion Recognition (SER) has a wide range of potential applications in
areas, such as human–robot interactions [1], computer-aided instruction, e-commerce, and
medical assistance [2,3].

Traditional, effective analysis methods can be roughly divided into dictionary-based
methods and machine-learning-based methods. The methods based on an emotion dictio-
nary need to use an emotion dictionary which has been labeled manually. These methods
rely heavily on the quality of the emotional dictionary, and the maintenance of the dictio-
nary needs a lot of work and material resources. With the continuous emergence of new
words, the dictionary cannot meet the application’s needs [4].

The machine-learning method has attracted great attention from researchers. Convolu-
tional Neural Networks (CNNs) [3,5,6] and LSTM networks [7] and their combination [7–9]
have been widely used. Misbah Farooq et al. [8] used a feature-selection algorithm based on
CNN to reduce the influence of artificial design that was insufficient to accurately describe
the emotional state of the speaker.

However, due to the mechanism of traditional CNN, traditional CNN is difficult to
extract the high-dimensional speech features. In view of this, recurrent neural networks
(RNN) is then proposed. Nevertheless, RNN takes sequence data as input and is capable
to extract high-dimensional time series feature, RNN has performance degradation due
to long-term dependence, gradient disappearance, and gradient explosion. LSTM is then
proposed to address this issue, which can be combined with CNN has achieve a great
success in SER. Jianfeng Zhao et al. [6] combines 1D and 2D CNN with LSTM and reaches
an accuracy of 82.42% on the EMO-DB dataset. However, although CNN+LSTM can deal
with time series well to a certain extent, it can’t achieve a satisfactory performance on
feature extraction of length data. In view of this, Yawei Mu et al. [10] introduced Attention
mechanism to establish CNN+BiLSTM+attention model and conducted experiments on the
IEMOCAP data set, reaching the accuracy of 64.08%. Ranjana Dangol et al. [7] established
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the CNN+LSTM+Self-Attention model and achieved the accuracy of 83.38% on the EMO-
DB data set. In addition, as mentioned by Dzmitry Bahdanau et al. [11], when the Attention
mechanism and LSTM are used to construct models for speech recognition tasks, the
principle of the attention mechanism is mainly to calculate the weight of core features
in the LSTM framework with a single layer and extract information more relevant to the
target. However, when there are two or more LSTM layers in the CNN-LSTM model,
the impacts of Attention mechanism with different forms and positions are not clear,
which is worth to further explore. This paper mainly explores the impacts of Attention
mechanism with different forms and positions on LSTM, CNN, and CNNLSTM model.
Three models are then established, which are CNN+LSTM×2+Global-Attention model,
CNN+LSTM×2+Self-Attention model and CNN+LSTM+Global-Attention+LSTM model.
By comparison, CNN+LSTM×2+Global-Attention model can achieve the accuracy of
85.427% on the EMO-DB dataset, which is better than the other two models. It is further
reflected that the position and form of the attention mechanism have a certain influence on
the model performance. By comparing the accuracy, convergence speed, and generalization
ability of the model, we finally chose the CNN+LSTM×2+Global-Attention model to extract
emotional features from miscellaneous voice information, and improved the recognition
accuracy. The results of the exploratory experiment in this paper will provide some
reference for subsequent researchers when using the attention mechanism.

Our major contributions in this article are documented below:

• To explore the influence of difference Attention Mechanisms on different models:
We set up Sequential Networks and Parallel Networks respectively, to explore the
influence of difference Attention Mechanisms on different models. As for the forms of
the attention mechanism, we used Self-Attention and Global-Attention.

• To propose a CNN-LSTM×2+Global-Attention model: By comparing the training
convergence speed, accuracy, and generalization ability of different models, we pro-
posed a CNN-LSTM×2+global-attention model and conducted experiments on the
EMO-DB dataset, which achieved an accuracy of 85.427%.

The paper is organized as follows: In Section 2, related studies are presented and
discussed. Section 3 provides the architecture of the proposed models. Section 4 analyzes
and discusses the experiments performed. Finally, conclusions are drawn in Section 5.

2. Related Work

Traditional methods of Speech Emotion Recognition (SER) are mainly based on basic
acoustic emotion features and machine learning models. Since human emotions are com-
plex and abstract, basic acoustic emotion features in traditional speech emotion recognition
is not able to fully reflect emotional information, which limits the performance of machine
learning models to a certain extent.

With the improvement of hardware and the growth of data volume, deep learning
has rapidly made great progress and breakthroughs in various fields. With the powerful
nonlinear representation capability of deep networks, speech emotion recognition has
entered a new era. Zeiler et al. [12] visualized the features of Convolutional Neural
Networks (CNN) through Transposed Convolution, showing that deep neural networks
can combine low-level features into high-level semantic features. Human emotion is
the knowledge of the high semantic category. It is an efficient and feasible method to
extract speech emotion features through deep neural networks. Therefore, more and
more researchers have tried to apply deep neural networks to SER and have achieved
remarkable results. Zhu et al. [9] extracted deep emotion features from Mel-Frequency
Cepstral Coefficients (MFCC), pitch, formants, short-term zero-cross rate, and short-term
energy by using a combination model based on the Support Vector Machine (SVM) and
Deep Belief Network (DBN). Zhong Qiu Wang et al. [13] used Deep Neural Networks
(DNN) to encode the basic acoustic features of each audio segment into a fixed-length
depth feature vector and identified emotions through Extreme Learning Machine (ELM).
Zhao et al. [14] used the attention-based BiLSTM and the Fully Convolutional Networks
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(FCN) to learn spatiotemporal emotion features from the basic acoustic features, and then
fed them to a machine-learning model for emotion classification. Kim et al. [14] extracted
deep emotional features from 20 basic acoustic features through deep network EMNET
(composed of CNN and LSTM). Some studies [10] have shown that different emotions
show differences in speech frequencies, and there is more emotion-related information
distribution between high and low frequencies. In recent years, researchers have attempted
to replace basic acoustic emotional features with spectrograms. Different from the basic
acoustic features, the spectrogram is a time–frequency diagram which can show how
the energy of speech changes with time and frequency, and it can well reflect the time-
domain and frequency-domain characteristics of speech while retaining temporal and
local information. Therefore, the SER based on the combination of spectrograms and
CNN has become a hot technology. Aharon Satt et al. [15] extracted deep emotional
features from the spectrograms through CNN and LSTM. Nicholas Cummins et al. [16]
also adopted spectrograms as input of pretrained CNN. Jinkyu Lee et al. [17] proposed the
SER framework based on language spectrum and RNN-ELM. Lili Guo et al. [18] combined
CNN depth features based on a spectrum and DNN depth features based on low-level
acoustic features into a fixed-length feature vector to train ELM to perform SER. Although
there has been a breakthrough in SER, how to effectively extract emotion features from
lengthy speech has become a technical problem in the field of SER. Therefore, this paper
adopts several existing neural network frameworks (CNN, RNN, LSTM, and the attention
mechanism) to explore the role position of attention and the influence of its form on the
model to provide some reference for subsequent researchers when using the attention
mechanism. It can also extract emotional features from miscellaneous voice information
and improve recognition accuracy.

In recent years, CNN has rapidly developed into a powerful technology and has
achieved breakthrough achievements in many fields such as image, video, text, and voice.
Therefore, CNN has also been applied in the field of SER by some researchers. Misbah
Farooq et al. [8] used a feature selection algorithm based on CNN to reduce the influence
of artificial design that was insufficient to accurately describe the emotional state of the
speaker.

Traditional CNN are unable to directly acquire the correlation between present and
former time series information. Therefore, Recurrent Neural Networks (RNN) is introduced.
RNN, as a kind of neural network that takes sequence data as input, circulating in the
evolution direction of the sequence and have all nodes linked in a chain, can learn the
correlation of time series information. As mentioned by Pascanu et al. [19], the RNN
contains a hidden layer, which constantly updates the output value with the change of time.
Traditional RNN has performance degradation due to long-term dependence, gradient
disappearance, and gradient explosion. Therefore, researchers proposed a variant of RNN
called LSTM to improve it. LSTM solves these problems by using the concept of gating
to selectively decide what information to be used.As an improvement of the RNN, the
LSTM can solve the issue of gradient vanishing in RNN. Hochreiter et al. [20] described
that the LSTM controls the storage and deletion of information in the network through
a gating mechanism. However, although LSTM can improve the long-term dependency
problem existing in RNN, it is hard to learn the information of a long time series. Therefore,
Bahdanau et al. [11] proposed an attention mechanism to solve the above problems.

The attention mechanism is often used in speech recognition, object detection, and
other tasks, and has demonstrated its powerful ability. For SER, the speech will be mixed
with much information irrelevant to emotion, especially environmental noise and so on.
The attention mechanism can better extract the emotional information of speech and
remove the interference, which can improve the accuracy of the model. Ranjana Dangol
et al. [7] proposed an emotion recognition system combining CNN and LSTM with a
relationship awareness self-attention mechanism. The average recognition accuracy of this
system can reach 81.05%. Minji Seo and Myungho Kim used visual attention CNN and
visual word bags for cross-SER. They used Visual attention Convolutional Neural Network
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(VACNN) to pretrain the log-Mel spectra of the source dataset. Qianjin Du et al. [21] used
the attention-based LSTM model and the 1D CNN model to extract and integrate the
features in speech, respectively, and finally, input the features into the Softmax.

In the speech emotion-recognition task, the attention mechanism can be used to focus
the model on the part that can better express the emotional information, in order to ignore
the irrelevant information and to improve the recognition performance. However, there are
many forms of attention. In this paper, a comparative experiment was conducted to contrast
the effects of Self-Attention and Global-Attention on the model in the effective phonological
task. At the same time, when the attention mechanism and LSTM are used to build models
for speech-recognition tasks, the principle of the attention mechanism is mainly to calculate
the weight of core features in the LSTM framework with a single layer [22], and extract
information more relevant to the target. However, when there are two or more LSTM layers
in the LSTM framework, it is worth further exploring how the position of the attention
mechanism affects the model. Therefore, in order to explore the role of the attention mecha-
nism and the influence of its form on the model, CNN+LSTM×2+Global-Attention model
and CNN+LSTM×2+Self-Attention model CNN+LSTM+Global-Attention+LSTM model
were established, respectively. The role of the attention mechanism and the influence of the
form on the model were evaluated from the perspective of model accuracy, convergence
rate, and model loss. The research conclusions of this paper can provide some reference
for future researchers when using the attention mechanism. They can extract emotional
features from miscellaneous voice information and improve recognition accuracy.

3. Proposed Method
3.1. Feature Introduction

The emotional feature used in our experiments is MFCC. The MFCC is one of the
most widely used spectral-related features in SER, which can effectively describe the shape
of the vocal tract, and the vocal tract shapes are different when different emotions are
pronounced. Therefore, the model can distinguish different emotions from the MFCCs of
speech. First, MFCCs are filtered by a set of filter banks in line with the frequency response
characteristics of the human auditory system. This group of filters is called Mel-filters
bank. In the frequency domain, this group of filters is dense in the low-frequency band
(more filters) and sparse in the high-frequency band (fewer filters). The low-frequency
amplitude–frequency response is large, while the high-frequency amplitude–frequency
response is small. The human auditory system also conforms to such characteristics, being
low-frequency sensitive and high-frequency insensitive.

The technology of MFCC extraction is to input the audio spectrum into a set of triangle
filters (Meyer filter banks) to filter in the frequency domain according to the characteristics
of human ears for sound frequency, where the relationship between the center frequency of
the triangle filter and frequency f is shown in the Equation (1):

Mel( f ) = 2595lg
(

1 +
f

700

)
(1)

where f is the frequency in Hz.

3.2. Feature Extraction

The proposal of the MFCC is based on the concept of Mel frequency, which can
compensate for the distortion of the convolutional channel and is one of the most commonly
used and effective characterizations of parameters. The extraction process of MFCC
includes the Normalization, the Framing, the Windowing, the Fast Fourier Transform
(FFT), the Meyer-filter-bank Filtering, the Logarithmic Energy Calculation, and the Discrete
Cosine Transform (DCT).

The extraction process is as follows: First, we traversed all WAV files of the EMO-DB
database and saved the files’ path of all the voices. This was performed in order to use the
method of path truncation to add labels to each file, and then read the WAV files and obtain
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the information on the WAV files, and finally extract the MFCCs of the WAV files. Among
them, since only speech signals lasting over 250 ms contain enough information for emotion
recognition, Hamming window with a length of 25 ms and sliding step length of 10 ms
are used to carry out 64 STFT-Mel filtering processing. A total of 10 × 63 + 25 = 635 ms
of fragments were processed. Since the sampling frequency in the experiment is 16 kHz,
when 16 points are 1 ms and 25 ms corresponds to 400 points, the length of the Hamming
window is 401. The process of adding Windows is shown in Equations (2) and (3), where
(2) is the calculation of adding Windows, and (3) is the Window Function:

S_W(n) = S(n) × w(n) (2)

w(n) =

{
0.5− 0.5cos[2πn/(n− 1)] 0 ≤ n = N − 1
0 other

(3)

As the speech signal is continuous in the time domain, the features extracted only
reflect the characteristics of the frame. In order to better reflect the time-domain continuity
of the feature, we performed different treatments of MFCCs. Commonly used treatments
are the first-order difference and the second-order difference. Let c(t) be the data point of
the digital audio signal, and the difference calculation is shown in Equation (4):

dt = ∑N
n=1 n(ct+n − Ct−n)

2 ∑N
n=1 n2

(4)

3.3. Model Construction

In order to explore the impact of attention mechanism with different forms and
positions on SER, several models are constructed. With the concern of article length, the
model constuction process of one model is presented.

A CNN-LSTM neural network is consists of 3 CNN blocks+LSTM+Attention block,
which is shown in Figure 1.
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Figure 1. The detailed architecture of the proposed CNN+LSTM×2+attention model for speech
emotion recognition.

Among them, the CNN model has advantages in feature extraction. Its unique
convolutional kernel can effectively extract local emotional features and obtain global
emotional features at high levels. At the same time, the pooling operation can effectively
adapt to different speech speeds and changes in speech positions to improve recognition
accuracy. At the same time, CNN is based on local receptive fields and weight sharing.
According to the rules, the CNN model with fewer parameters requires relatively less
data in training. A deeper network is undoubtedly able to better extract high-dimensional
emotional features. Therefore, the CNN model can extract speech features with better
emotional description ability in the case of less data volume. It is undoubtedly a good
feature extractor. So, for the CNN block, its structure is shown in the Figure 2. Since there



Sensors 2021, 21, 7530 6 of 20

are only 535 voice files in the EMO-DB dataset, and only MFCC and its first-order and
second-order differentials are used as the input layer, only three CNN blocks are used in
this paper to prevent overfitting caused by excessive computation and too complex of a
network.
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However, speech emotion recognition is based on speech sequence, and the CNN
model cannot make good use of the time information in it, so it has some limitations.
Therefore, the LSTM network, a variant of RNN, is added after the CNN blocks in this
paper. Through a gating mechanism, LSTM controls the storage and deletion of information
in the network. Each LSTM contains a hidden layer and a memory layer that controls
network status updates and output values. The gates used in LSTM include the output gate,
input gate, and forgetting gate. The output information c̃ is controlled by the parameters of
each gate. xt and ht respectively represent the input value and output value of the LSTM
network.

Candidate memory unit information c̃ at time t is calculated as the Equation (5). The
input gate it is determined by the current input data xt and the previous time unit output
ht−1, as in Equation (6). The forgetting gate ft controls the transmission of historical
information, as per Equation (7). The output gate Ot calculates the output value ht of the
LSTM unit, as per Equation (8).

c̃ = tanh(Wxcxt + Whc ht−1 + bc) (5)

it = σ
(
Wxixt + Whi ht−1 + bi

)
(6)

ft = σ
(

Wx f xt + Wh f
ht−1 + b f

)
(7)

Ot = σ(Wxoxt + Who ht−1 + bo) (8)

where σ is the logical Sigmoid function and W is the weight.
By taking the output value of each independent hidden layer as the input value of the

next hidden layer, the RNN with multiple hidden layers can be built, and even the deeper
RNN with a more complex structure can be built.

For speech recognition, LSTM is generally the first choice. It can fit the data well
based on time, and calculate outputs by memorizing information, which has achieved good
results in various tasks related to time series. However, according to the structure of LSTM,
a hidden state will be obtained at every moment s, which is called hs, and the target hidden
state will be obtained at the last moment t, which is called ht. In the traditional LSTM
application process, hs is often not used. Therefore, there will be a problem: LSTM has the
forgetting gate ft, which will forget the speech information that enters the network to a
greater extent, so the network is more inclined to remember the later speech information,
that is to say, the output ht will pay too more attention to the information at the end of the
speech. Therefore, the attention layer is introduced.

Global-Attention

First, at(s) is used to represent the weight of the hidden state at the moment s in all
the hidden states. The weight of the hidden state at all times t is combined to obtain at,
whose length is consistent with the time step. As for the weight at(s) in a speech at the
moment s, it is determined by the hs at the time s and the ht of the whole speech:

at(s) = align(ht, hs) =
exp(score(ht, hs))

Σs′ exp(score(ht, hs′))
(9)
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where the score function is:

score(ht, hs) =


hT

t hs dot
hT

t Wahs general

vT
a tanh

(
Wa

[
ht, hs

])
concat

(10)

In order to accelerate the calculation speed and reduce the complexity of the model,
the dot model is chosen.

Firstly, the two quantities in LSTM, the hs and the ht, and the score at each moment
through the score function are obtained. Then the Softmax function was used to normalize
the scores of all moments to get the weight of each moment at(s). By multiplying at(s) and
hs, we can calculate the correlation vector Ct(s) before and after the Global-Attention. Ct of
the whole speech segment can be obtained after averaging or summation of Ct(s) at each
moment, which can be considered as the vector of the speech segment.

Self-Attention

For the self-attention, the ht is first transmitted to a fully-connected layer. The resulting
output u(t) is used for comparison with a trainable parameter matrix u (random initializa-
tion), used to represent context information to obtain at(s) (alignment coefficient). Then,
Softmax is used for normalization, and the specific calculation is shown in the following
Equations (11)–(13):

u(t) = tanh(Wht) (11)

at(s) = align(ht, hs) =
exp
(

score
(

u(t), u
))

Σs′ exp
(

score
(

u(t), u
)) (12)

s = Σat(s)ht (13)

where s is the final output vector.
It can be concluded from the above formula that the principle of the attention mech-

anism is mainly to calculate the core weight of features. There is no decoder module in
self-attention, and the distribution coefficient matrix in it has indicated the association
between words in the context. The context vector Ct(s) in the global-attention model
represents the association between the words in the source sentence and the target words
to be generated.

Therefore, the form and position of the attention mechanism will affect the calculation
of weights and ultimately affect the performance of the model. In simply stacking LSTM
layers, if the attention mechanism is set between two LSTM layers, the attention mechanism
can only act on the features extracted by the first LSTM layer. The attention block is
embodied in the structure of the web, as shown in Figure 3 below:
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Figure 3. The overall architecture of the proposed global attention.

So, based on the advantages and disadvantages of CNN, RNN, and the effectiveness of
the attention mechanism, we used the CNN as the emotional-feature extraction apparatus
and the RNN as a classifier for emotion recognition in the model. We combined the
advantages of CNN’s feature extraction with the LSTM gating mechanism and the attention
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mechanism to improve the recognition accuracy. The model structure is shown in Figure 4
below:
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Figure 4. The overall process from input to output.

By calculating MFCC and its first-order and second-order differentials, and by stacking
them together, a three-channel color picture (64 × 64 × 3) with transverse length related
to signal duration and longitudinal length related to filter bank, is obtained, which is the
input layer of the network. The Python speech-feature built-in functions were used to
extract the above three features. For network parameter settings, see Table 1:

Table 1. The network parameter Settings.

Layers Size Strides Output Shape Param

Input shape (64,64,3) 0

CNN BLOCK1

Conv2D(64) (3,3) (1,1) (64,64,64) 1792

BN 256

Activation(elu) 0

Maxpooling2D (2,2) (2,2) (32,32,64) 0

CNN BLOCK2

Conv2D(64) (3,3) (1,1) (32,32,64) 36,928

Conv2D(64) (3,3) (1,1) (32,32,64) 36,928

BN (32,32,64) 256

Activation(elu) (32,32,64) 0

Maxpooling2D (4,4) (2,2) (15,15,64) 0

CNN BLOCK3

Conv2D(128) (3,3) (1,1) (15,15,128) 73,856

Conv2D(128) (3,3) (1,1) (15,15,128) 147,584

BN (15,15,128) 512

Activation(elu) (15,15,128) 0

Maxpooling2D (4,4) (2,2) (6,6,128) 0

LSTM layers
LSTM(64) (36,64) 49,408

LSTM(64) (36,64) 33,024

attention block (0,64) 4096

SoftMax Dense(7) (0,7) 455

This is an improvement on the negative part of RELU. When x is less than zero, the
ELU activation function adopts a method similar to the exponential calculation.

In addition to the model proposed above, we also conducted the following compara-
tive experiments:

(1) Set the CNN network with the same parameters and the same number of layers as
the original model without the LSTM layer and attention block as seen in Figure 5,
and compare the experimental results.

(2) Set the CNN network with the same parameters and the same number of layers as the
original model, add the LSTM layer as seen in Figure 6 and compare the experimental
results without using the attention block.

(3) The position of the attention mechanism was changed as seen in Figure 7, and the
CNN+LSTM+Global-Attention+LSTM network with the same parameters as the
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original model was set to explore the influence of the position of attention on the
accuracy of the model.

(4) Change the form of the attention mechanism as seen in Figure 8 and set the CNN+
LSTM×2+Self-Attention network with the same parameters as the original model to
explore the influence of the form of attention on the accuracy of the model.

(5) The position of the attention mechanism was changed as seen in Figure 9, and the
CNN+LSTM+Self-Attention+LSTM network with the same parameters as the original
model was set to explore the influence of the form of attention on the accuracy of the
model.

(6) Set the CNN network with the same parameters and the same number of layers as
the original model with the Self-Attention as shown in Figure 10.

(7) Set the CNN network with the same parameters and the same number of layers as
the original model with the Self-Attention as shown in Figure 11.
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4. Experiments and Results
4.1. Data Processing

The dataset used in this experiment is the EMO-DB dataset [23]. The EMO-DB dataset
is a German emotional speech database recorded by the Berlin Institute of Technology.
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Five men and five women simulated seven emotions (neutral, anger, fear, happy, sadness,
disgust, boredom) in 10 sentences (5 long and 5 short). The dataset contains 800 sentences,
with a sampling rate of 48 KHz (compressed to 16 KHz) and 16-bit quantization. Through
the hearing experiment of 20 participants (10 men and 10 women), 84.3% hearing recogni-
tion rate was obtained. This dataset retained 233 male emotional sentences and 302 female
emotional sentences, for a total of 535 sentences. After MFCC extraction, the final voice
signal size is a 64 × 64 × 3 array. Finally, an array of 3745 × 64 × 64 × 3 containing all
MFCCs of voices (3745 is the total number of speech data points) can be obtained. The
training data and test data were obtained by dividing them proportionally.

In this experiment, voice-sample labels were vectorized and converted into one-hot
coding. This is essentially a binary vector, with only the index bit being 1 and the rest being
0. Labels used in this experiment and their corresponding relations are shown in Table 2:

Table 2. Labels used in this experiment and their corresponding relations.

Emotion Label Number One-Hot Coding

anger W 0 [1 0 0 0 0 0 0]
boredom L 1 [0 1 0 0 0 0 0]
disgust E 2 [0 0 1 0 0 0 0]

anxiety/fear A 3 [0 0 0 1 0 0 0]
happiness F 4 [0 0 0 0 1 0 0]

sadness T 5 [0 0 0 0 0 1 0]
neutral version N 6 [0 0 0 0 0 0 1]

In addition, the extracted samples were randomly scrambled, and the training set and
test set were divided in a ratio of 8:2. Since it is difficult to guarantee the equal length of the
difference between the recording time of the speech samples, it is necessary to normalize
the speech length before extracting the features, this is to conduct zero-filling processing
for the samples shorter than the threshold value, and truncate the samples higher than a
threshold value.

4.2. Model Fitting

When compiling the network model, we used the SGD optimizer, and the learning
rate was set to 0.0001. The loss function adopted is the Categorical_Crossentropy function
because the label is vectorized by one-hot coding during the dataset partition and sorting.
In order to find the approximate accuracy range, we set up 1000 epochs. The results show
that after training 250 epochs, the changing of the loss value and accuracy are slow. Finally,
we obtained the curve of the loss value and accuracy.

4.3. Experimental Environment Configuration

The computer for this experiment has the following parameters: the CPU is Intel Core
i5-10030H 2.5 GHz (the Intel, Santa Clara, CA, USA), and the IDE uses Python 3.5 on Win10
(64-bit) system (Microsoft, Redmond, WA, USA), TensorFlow 2.2.0, and Keras 2.2.1 (the
Google, Santa Clara, CA, USA).

4.4. Experimental Results

Combined with the results of the same number of epochs between CNN alone and
CNN+ LSTM alone, and combined with the comparison of the confusion matrix as shown
in Figures 12–14, we found that the prediction accuracy of the CNN+LSTM×2+Global-
Attention model is significantly better than that of the CNN network alone and the CNN+
LSTM×2 method alone. Moreover, the accuracy of the test data of CNN+LSTM×2+Global-
Attention can reach 85.427%.
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Combined with the results of CNN alone and CNN+LSTM2 alone after the same
number of iterations and combined with the confusion matrix comparison, which was
showed in Figures 13 and 14, the test-set accuracy of the CNN+LSTM×2 model is better
than that of the CNN model, that is, the former has stronger generalization ability than the
latter. This proves again that although the CNN model can perform feature extraction, it
can be used in speech emotion-recognition tasks, but the recognition accuracy is relatively
low. Based on CNN, LSTM is added to learn the correlation of speech sequence time
through LSTM, which helps to improve the accuracy of speech emotion recognition.

On this basis, the attention mechanism was introduced, and the CNN+LSTM×2+
Global-Attention model was established. This model is significantly superior to the CNN
network alone and the CNN+LSTM method alone in terms of the accuracy of the test
set, and the accuracy can reach 85.427%, which is shown in Figure 12. This result also
proves again that, based on CNN+LSTM, the introduction of the attention mechanism
to calculate the core weight of features is helpful to further extract the emotion-related
information and ultimately improve the accuracy of the model. However, when there are
two or more LSTM layers in the LSTM framework, we assume that the features extracted
through the first LSTM layer are called local features. The features extracted through the
second LSTM layer on this basis are called global features. The principle of the attention
mechanism is to calculate the weight of core features. When there are two LSTM layers
in the LSTM framework, the position of the attention mechanism will affect the feature
objects it functions on and ultimately affects the performance of the model.

Therefore, to explore the effect of the position of attention on the model performance,
we also conducted comparative experiments to establish the CNN+LSTM×2+Global-
Attention model and CNN+LSTM+Global-Atention+LSTM model, respectively. By com-
paring the confusion matrices of the two models, which were shown in Figures 12 and 15,
it can be concluded that the accuracy of the attention mechanism is better when the object of
attention is a global feature. By comparing the LOSS curves of the two models, which were
shown in Figures 16 and 17, when the attention mechanism acted on the global feature,
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the convergence rate of the model was faster and the model LOSS value of the test set was
lower than the train set. On the contrary, when the attention mechanism acted on local
features, the convergence rate of the model was relatively slow, and it can be seen from the
LOSS curve that the LOSS value of the model showed a slight upward trend in the later
period of training, indicating that there was a certain overfitting of the model.
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Figure 17. Model loss for CNN+LSTM×2+Global-Attention.

In order to explore the influence of the form of attention on the performance of the
model, we established the CNN+LSTM×2+Self-Attention model. We compared it with
the CNN+LSTM×2+Global-Attention model and the convergence rate of the two models
was not much different, which was shown in Figures 17 and 18, but the accuracy of the
former model was low. Moreover, after the convergence point of the former is passed, the
oscillating range of the LOSS value is relatively large, which suggests that models with
self-attention have a greater tendency to overfitting. The experiments results are shown in
Table 3.
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Table 3. The accuracy of the models set in this paper.

Group Number Model Accuracy

Parallel Network

1
CNN//LSTM×2+Global-Attention 63.284%

CNN//LSTM×2+Self-Attention 73.031%

2
CNN+Global-Attention//LSTM×2 69.025%

CNN+Self-Attention//LSTM×2 70.894%

Sequential Network

3
CNN 70.627%

CNN+LSTM×2 79.038%

4
CNN+LSTM+Global-Attention+LSTM 71.837%

CNN+LSTM+Self-Attention+LSTM 71.695%

5
CNN+LSTM×2+Self-Attention 78.772%

CNN+LSTM×2+Global-Attention 85.427%

6
CNN+Self-Attention 75.033%

CNN+Global-Attention 58.477%

Since we only discussed the impact of Attention mechanism on the sequential network
previously, we could not better explain the influence of different Attention mechanisms
on different models. Therefore, we added extra experiments in the Table 3. The dif-
ference between parallel network and sequential network is that parallel network is
a side-by-side structure of different types of networks. The sequential network was
originally proposed in this paper to connect different networks in sequence, such as
Input+CNN+LSTM+Attention+Output. In order to directly display the structure of paral-
lel network, we made schematic diagrams according to the model we add, as Figures 19–22.
Each branch has its own input layer, which can be the same or different. During training,
the branches do not affect each other. Since we need comparative experiments in this
paper, the same input layer is selected for each branch. Finally, the features extracted from
different branches are concatenated to obtain an output result.
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Our intention is to explore the impact of the different Attention mechanisms on
different networks. In the sequential network, the Attention mechanism considers the
features extracted by LSTM when calculating the weight. The sequential network is a
network whose structure is conducted by different networks in turn, which means that
the input of the LSTM is related to the output of the CNN. This may cause interference
between different networks in the sequential network. Therefore, it is impossible to further
understand the influence of Attention mechanism in sequential network when it acts on
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one network alone. Furthermore, parallel network also has the advantage of introducing
different network structures into branches and extracting features from their respective
perspectives, which can give full play to the advantages of each network. Therefore, it is
necessary to set up parallel networks.

We set up group 1 mainly to explore the influence of the forms of Attention mechanism
on the model when it acts on LSTM alone in the parallel network. We set up group 2 mainly
to explore the influence of the forms of Attention mechanism on the model when it acts
on CNN alone. According to the group 1 and 2, it can also be discussed that the formal
effects of different Attention mechanisms acting independently on different networks
in parallel networks. We set up group 3, mainly exploring whether CNN and LSTM
based on which all experiments in this paper are correct. We set group 4 and group 5
mainly to explore the influence of different Attention mechanisms on different sequential
networks. Comparing the results of the parallel networks and the sequential networks, we
found a special phenomenon. The ability of the Self-Attention to improve the accuracy of
CNN+LSTM in sequential networks is worse than that of Global-Attention. However, the
opposite is apparent in parallel networks.

As shown in group 1 and group 2, regarding to a parallel network which is constructed
by CNN and LSTM×2, Self-Attention has a better performance than global attention.
However, the opposite result is shown in group 5. Regarding a sequence network which
is constructed by CNN and LSTM, global attention achieves a good accuracy at 85%,
while self-attention only has 78.7%. This may be due to the difference in the time steps’
attention weights between self-attention and global attention, while the time steps scale
of self-attention is smaller than that of global-attention. In the Sequential Network, self-
attention is more suitable for CNN. This shows that the attention mechanism can be
applied to the CNN network. The attention mechanism works better for the Sequential
Network, as shown by the accuracy of groups 1, 2 and 5. This is because the features
extracted by CNN and LSTM can be fully taken into account when calculating the weight
of attention in the Sequential Network. However, in the Sequential Network, Global-
Attention works better than Self-Attention. Self-Attention is only a mechanism for several
elements inside of the input or output, which means that some important elements may
be ignored, weakening the connection between the input and the output in Sequential
Network. However, the Global-Attention mechanism would consider all elements of the
input, and it is a mechanism occurring between the input and the output. According to
the accuracy of group 5 and 6, attention is more suitable for the Sequential Network after
the LSTM Network. This is partly due to the data structure, but the larger reason is that
attention weights are calculated based on LSTM.

In addition, the method proposed in this paper was compared with the methods
proposed by others on the same dataset, as shown in the table below in Table 4. Using
the same dataset, Ranjana Dangol et al. [7] conducted a CNN- and attention-based LSTM
model with an accuracy of 83.38%. They used the self-attention mechanism in their model.
Abdul Malik Badshah et al. [24] built a simple CNN model and achieved an accuracy of
73.57%. Kai Zheng et al. [3] conducted a model of multilevel residual CNN and achieved
an accuracy of 74.36%. As the CNN model only extracts some spatial features, the model
accuracy cannot be further improved if only CNN is used to build the model above.
Jianfeng Zhao et al. [6] used a 2DCNN+LSTM method and achieved an accuracy of 82.42%.
It is clear that the structure of the CNN+LSTM can improve the accuracy of the model
to a certain degree. Mingyi Chen et al. [25] used a 3D ACRNN model and achieved an
accuracy of 82.82%. Global attention was used in the model. After comparison, we also
fully considered the structural form of CNN+LSTM+attention, but we modified the number
of CNN layers and LSTM layers used. In this way, the complexity of the model can be
reduced, the accuracy of the model can be improved and overfitting can be avoided. Finally,
experiments show that the accuracy of the proposed model is superior to the above model.
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Table 4. The accuracy of the CNN+LSTM×2+global-attention compared to other methods.

Model Features Dataset Accuracy

Kai Zheng [3] Multilevel residual CNN spectrogram EMO-DB 74.36%

Jianfeng Zhao [6] 2D CNN+LSTM Log-Mel Spectrogram EMO-DB 82.42%

Ranjana Dangol [7] attention-based 3D CNN and LSTM MFCC EMO-DB 83.38%

Abdul Malik Badshah [24] CNN spectrograms EMO-DB 73.57%

Mingyi Chen [25] 3-D ACRNN MFCC EMO-DB 82.82%

CNN+LSTM×2+Global-Attention MFCC EMO-DB 85.427%

5. Conclusions

In this paper, we discussed the difference between Global-Attention and Self-Attention
and explored their applicable rules to SER classification construction. First, we extracted
the MFCC from the speech dataset as features and used it and its first-order and second-
order derivatives as the input layer of the model conducted in this paper. By comparing
the CNN model with the CNN+LSTM model, the accuracy of CNN+LSTM is shown
to be significantly better than that of CNN alone, indicating that the LSTM model can
learn the continuity between speech sequences and plays a good role in processing in-
formation about time series. To explore the impact of the Attention mechanism on the
sequential networks, we conducted the construction of the CNN+LSTM+Attention and
set up experiments on the EMO-DB dataset. Besides, to further discuss the influence of
the Attention Mechanism on the SER, we also conducted parallel networks. The experi-
mental results show that the Global-Attention can improve the accuracy of the sequential
model, while the Self-Attention can improve the accuracy of the parallel model when
conducting the model with the CNN and the LSTM. By comparing the results of all models,
we proposed a CNN+LSTM×2+Global-Attention model for speech emotion recognition.
The experiment result show that it can achieve an accuracy of 85.427% on the EMO-DB
dataset. By comparing the model proposed in this paper with the methods of others, the
CNN+LSTM×2+Global-Attention model proposed in this paper has certain advantages in
the task of speech emotion recognition. In addition, the research results of this paper will
provide some references for researchers to use attention for speech recognition tasks.
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