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Abstract: Although the single threshold is still considered a suitable and easy-to-do technique to
extract water features in spatiotemporal analysis, it leads to unavoidable errors. This paper uses an
enumerative search to optimize thresholds over satellite-derived modified normalized difference
water index (MNDWI). We employed a cross-validation approach and treated accuracy as a random
variable in order to: (a) investigate uncertainty related to its application; (b) estimate non-optimistic
errors involving single thresholding; (c) investigate the main factors that affect the accuracy’s model,
and (d) compare satellite sensors performance. We also used a high-resolution digital elevation
model to extract water elevations values, making it possible to remove topographic effects and
estimate non-optimistic errors exclusively from orbital imagery. Our findings evidenced that there is
a region where thresholds values can vary without causing accuracy loss. Moreover, by constraining
thresholds variation between these limits, accuracy is dramatically improved and outperformed the
Otsu method. Finally, the number of scenes employed to optimize a single threshold drastically
affects the accuracy, being not appropriate using a single scene once it leads to overfitted threshold
values. More than three scenes are recommended.

Keywords: MNDWI; reservoir; remote sensing; water level tracking; Poço da Cruz reservoir; water
spectral index; caatinga biome

1. Introduction

Several studies have been dedicated to enhancing water features extraction by remote
sensing techniques aiming to monitor and characterize hydrological dynamics of lakes and
reservoirs [1–6].

The accuracy in water feature extractions by remote sensing has been constantly
pursued by the development of several methods and approaches, such as: enhancement
of water spectral indices [7–11]; use of supervised classification algorithms based on
machine learning [12] to segment water/non-water features and tailor an appropriated
threshold [13] and combining different bands, sensors and spectral indices [14–17].
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Threshold segmentation remains attractive due to its easy implementation, lower in-
vestment of time, and relative accuracy in extracting water features [8,13]. However, select-
ing an appropriate threshold to maximize accuracy is challenging and time-consuming [7],
and can underestimate or overestimate surface water features due to its spatial-temporal
variability [17].

Despite the well-known limitation of employing a single threshold to correctly classify
all instances, especially in spatiotemporal classification problems [13,18], the results from
Bangira [12] and Sarp and Ozcelik [19] evidence that the performance of supervised clas-
sification methods is slightly superior to those achieved through threshold segmentation
which still puts its use as a solution feasible to be implemented producing accurate results.

In addition, factors such as complexity land-covers near water boundary, background-
ing effects, physical-chemical and biological water characteristics (e.g., turbidity, color,
chlorophyll), presence of aquatic vegetation, shadows, mixed pixels, coarse pixel resolution
affect negatively more sophisticated classifying methods as well [7,12], therefore, not being
an exclusive limitation related to threshold methods.

On the one hand, several works recurrently point out that a single global optimum
threshold approach is a suitable technique for time series analysis and track water dynam-
ics [8,13]. On the other hand, the accuracy variability from its application is understud-
ied. So far, there is no knowledge of research in which accuracy’s variability, calculated
over water level estimation using Landsat-8 and Sentinel-2 imagery, has been used to
support the choice of the threshold. Furthermore, the accuracy exclusively from orbital
imagery, not considering errors due to coarse digital elevation model resolution, has not
yet been investigated.

Apart from that, most optimization approaches are based on the premise that the
lack of threshold stability may be a problem [18], which leads to a subjective choice [7]. A
stable optimal threshold value has been regarded by many authors as an indication that
a single threshold value is suitable to classify multiple scenes across space and time [20].
Conversely, results from Du [21] and Weekley and Li [1] indicate that the accuracy sta-
bility could be reached even in a threshold range variation, depending on the index and
methodology used.

The purpose of this paper is to investigate the uncertainty involving using a single
optimized threshold over multitemporal Landsat-8 and Sentinel-2 imagery scenes. Our
primary objectives were: (1) understanding how accuracy varies with thresholds values
to identify ranges less subjected to errors; (2) investigate accuracy statistics, exclusively
from orbital imagery through employing a high-resolution digital elevation model, and
to compare each sensor performance; (3) comparing the advantage in using the proposed
cross-validation approach to support threshold choice versus a nonparametric and un-
supervised method of automatic threshold selection; and (4) contributing to operational
steps improvement in adjusting a single threshold in multitemporal classification problems,
regarding the accuracy and computational effort.

2. Materials and Methods
2.1. Study Area

The ‘Poço da Cruz’ (PC) reservoir, in Figure 1, was commissioned in 1958 and is
located on the Moxotó River, an intermittent tributary of the São Francisco River, one of
the most important rivers basins in Brazil. According to recent bathymetric surveys, its
storage capacity is 0.484 km3, corresponding to a maximum surface area of 56.34 km2.
The Moxotó River Basin drains about 9619 km2, and the area affluent to the reservoir is
4716 km2. The region’s climate is semi-arid, where the mean annual rainfall is 421.8 mm,
highly concentrated during the four months from December to May. Evaporation rates are
about 1568 mm/year. The study area is inserted at the Caatinga biome, a seasonal tropical
dry forest present in South America, characterized by a high albedo during the dry season
and vegetation health highly correlated to precipitation and soil moisture.
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Figure 1. Location map of the test area.

2.2. Data-Sets
2.2.1. Digital Elevation Model

The digital elevation model (DEM) of the PC reservoir was provided by the Brazilian
Water Agency (ANA) and consisted of an aerial laser survey using the LiDAR (Light
Detection and Ranging) method for the land part integrated with a bathymetric survey
for the flooded area. The latter was carried out with an eco-probe using a single beam for
shallow waters and a multibeam for deep waters. Both were referenced to the Brazilian
Geodetic System (SGB), resulting in a density DEM of 2 points/m2 and a 1 m resolution
image [22].

2.2.2. Data Acquirement and Image Pre-Processing

The image acquisition and pre-processing were carried out using the Google Earth
Engine (GEE), a platform for geospatial cloud processing that makes available several
spatial Earth-imaging missions and collections [23]. Satellite imagery was selected and
processed through this tool to generate the water Modified Normalized Difference Water
Index (MNDWI) images. This index proposed by Xu [11] introduced the short-wave
infrared (SWIR) rather than the NIR band [10]. Such modification enhanced: (1) the ability
to suppress vegetation and built-up noise; (2) the stability of the adjusted thresholds [11,18];
and (3) the accuracy in classifying impure pixels [14]. Furthermore, MNDWI is one of the
most widely used water indices in surface water mapping, providing a great empirical
application base.

MNDWI images were composited from Landsat-8/OLI (Operational Land Imager)
and Sentinel-2/MSI (Multispectral Instrument) using the following dataset available
in GEE:

• Landsat-8 Surface Reflectance Tier 1 collection provided by United States Geological
Survey (USGS), a Level-1 precision and terrain corrected product, atmospherically
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corrected surface reflectance using LaSRC algorithm, with a 30 m resolution, 16-day
temporal resolution. Bands B3 (green) and B6 (SWIR) were used in the MNDWI
composition. We used 19 free-of-cloud images available from 14 April 2013 to 24
September 2020;

• Sentinel-2 collection provided by the European Space Agency (ESA), a Level-2A
orthorectified product, atmospherically corrected surface reflectance using the Sen2Cor
algorithm. Along with a 5-day temporal resolution, SWIR band (B11) available with
20 m spatial resolution, and Green band (B3) available with the 10 m and resampled
to 20 m were used in the MNDWI composition. We used 24 free-of-cloud images
available from 22 December 2018 to 17 September 2020.

2.2.3. Hydrological Monitoring Data

The observed water levels (OWL) from the PC reservoir were provided by Waters
and Climate Agency of Pernambuco state (APAC), available in a daily temporal resolution,
starting on 1 July 2000. In addition, OWL was converted to the SGB by adding 0.9 m. Gaps
in OWL corresponding to the image acquisition dates were filled using linear interpolation
according to Table 1.

Table 1. Filled gaps in observed water level data.

Satellite Image
Acquisition Date CDAY ∆T

(Days)
OWL_CDAY

(m)
Filled OWL

(m)

Landsat-8

14 April 2013 16 April 2013 2 424.31 424.35
13 September 2016 5 October 2016 22 417.62 416.97
29 September 2016 5 October 2016 6 417.62 417.44

15 October 2016 5 October 2016 10 417.62 417.28
2 December 2016 21 December 2016 19 415.00 415.65
4 February 2017 10 February 2017 6 414.31 414.46

12 June 2017 31 July 2017 49 413.60 413.16
15 August 2017 31 July 2017 15 413.60 413.44
2 October 2017 31 October 2017 29 412.59 412.91

5 December 2017 20 November 2017 15 412.29 412.84
6 January 2018 19 February 2018 44 415.64 414.02

2 June 2019 3 June 2019 1 420.61 420.62

Sentinel-2

1 January 2019 31 December 2018 1 419,18 419,17
2 November 2019 3 November 2019 1 419.52 419.53

17 November 2019 18 November 2019 1 419.38 419.39
12 December 2019 13 December 2019 1 419.30 419.32

10 April 2020 17 April 2020 7 431.82 431.43
4 July 2020 3 July 2020 1 432.42 432.41

Note: CDAY: closest day with available OWL. ∆T: elapsed time in days between images’ acquisition date and the CDAY. OWL_CDAY:
observed water level at the CDAY. Filled OWL: Filled observed water levels gaps by linear interpolation.

2.3. Threshold Optimization and Uncertainty Analysis
2.3.1. Image Segmentation and Water Level Estimation

The image segmentation and water level (WL) estimation process are illustrated in
Figure 2. All geospatial operations necessary to image segmentation and water extraction
elevation (Yc) were automated by using the following R packages: sf [24] and raster [25].
In addition, data manipulation and statistical analysis were also conducted in R, using the
packages: dplyr [26], ggplot2 [27], and reshape2 [28].
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served or filled water level (Yo), shown in Section 2.2.3, to calculate RMSE (Equation (2)). 

Figure 2. Water level estimation process: (a) MNDWI images; (b) thresholding MNDWI images; (c) masking MNDWI
images by a buffer derived from DEM, considering the maximum elevation at 437 m (2 m higher than the maximum
operational limits) to eliminate disconnected water bodies and WL values arising from misclassified pixels; (d) creating a
polygon from raster MNDWI masked image; (e) converting polygons to border points; (f) extracting elevations at point
positions from DEM; (g) removing outliers from extracted elevation dataset; (h) water level estimation (Yc) from the
median statistic.

First, the predefined threshold T was used to segment all MNDWI images in the
dataset (Figure 2a), whereby values greater than T were classified as water (Figure 2b).
After water/non-water segmentation, a mask derived from DEM, corresponding to the
maximum elevation at 437 m (2 m higher than the maximum operational limits), was
applied over the binary classified raster layer to discard pixels outside its boundaries
(Figure 2c).

This geospatial operation was carried out to avoid WL arising from misclassified
pixels and disconnected water bodies. Similar technics were used by [29] to constrain
the study area and exclude effects from build-up areas, anthropogenic land cover, and
buildings. After masking, the raster was converted to polygon (Figure 2d), and then
vertices transformed to points (Figure 2e). A WL dataset was extracted from DEM at
coordinate points (Figure 2f).

After DEM extraction, a large dataset of WL values is generated as output, being nec-
essary to choose a unique representative WL (Yc) value to calculate accuracy (Equation (2)).
This problem is circumvented by adopting the Median statistic, which represents a central
tendency of data.
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Before the Median calculation, the Tukey method [30] was applied to remove extreme
values from the extracted WL dataset (Figure 2g). This procedure reinforces noise reduction
and removes undesirable extreme WL values, such as remaining misclassified pixels at
higher land and border points identified inside the water body (arising from image failures
such as vertical lines Figure 2a,d,e).

In addition, some characteristics present in PC inlet branches, such as agriculture,
shallow waters, pastures, macrophyte vegetation, and eutrophication, have a substantial
similarity of wetlands, marshland, and inundated areas. Hence, it cannot be correctly
addressed without a sub-pixel level approach [31], which leads to omission errors in water
detection [32]. WL extracted from these areas probably corresponds to Figure 2g lower tail
and were effectively trimmed after filtering (Figure 2h).

Therefore, the values beyond the higher and lower limits shown in Equation (1) are
removed to aggregate more confidence and stability to extracted WL dataset. The variables
Q1 and Q3 represent the first and third quartiles from extracted WL values, respectively.
These steps are illustrated in Figure 2g,h.

Lower = Q1 − 1.5 × (Q3 − Q1)
Higher = Q3 + 1.5 × (Q3 − Q1)

(1)

2.3.2. Threshold Optimization and Accuracy Evaluation

The general threshold optimization process is illustrated in Figure 3. It consists of an
enumerative search, in which all the MNDWI images in the input dataset are segmented
using the same single threshold value. The process illustrated in Figure 2 is carried out for
each threshold T[i] in the predefined threshold array—which varies between a minimum
and maximum value with an increment of 0.01. Some previous simulations were run to
define the range of the threshold array aiming to minimize the computational effort.
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By running the Figure 2 process recursively, each image in the input dataset has the
corresponding estimated WL (Yc), which in turn is compared to its corresponding observed
or filled water level (Yo), shown in Section 2.2.3, to calculate RMSE (Equation (2)).

Finally, the optimum threshold value T* is taken as the one corresponding to the
minimum RMSE value after the enumerative search described above.

RMSE =

√√√√√ n
∑

i=1
(YC − Yo)

2

n
(2)

2.3.3. Uncertainty Analysis

This work aimed to investigate uncertainties concerning using the single threshold
approach. Moreover, to address a method to fulfill this purpose, we must consider that:

The single threshold method is a stump, a machine learning model consisting of a
one-level decision tree, therefore an adaptative non-linear technique;
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• Our interest is to support constructing a model capable of predicting WL on indepen-
dent test data;

• A fitting method typically adapts to training data, and hence the training error is
commonly an optimistic estimate of test error (generalization error) [33];

• Once each image produces only one WL (Yc) to compare with each observed gauges
(Yc), our training set was limited to the number of Landsat-8 and Sentinel-2 scenes
available (Section 2.2.2);

• With a restricted number of training instances (19 Landsat 8 and 24 Sentinel 2 images),
we are not in a data-rich situation to divide the training and a test set;

• The computational effort required to tune our model (enumerative search) is consider-
able due to the complexity of the WL estimative process described in Figure 2;

The Bootstrap methodology [34,35] is the most suitable approach to be applied. By
mimicking the cross-validation method, this method fits the model on a set of bootstrap
samples drawn with replacement from the original dataset and then evaluates how well
it predicts the original training set [33]. Given the nature of our optimization problem
(Figure 3) that demands all the geospatial operations described in Figure 2 recursively,
training and test were carried out as distinct processes, making it impossible to keep track
of predictions not containing information used in threshold optimization.

Considering the computational burden of the optimization by enumerative search,
20 thresholds values (T*) were generated for each image dataset. The number of MNDWI
images (n) taken as input in the training set of the optimization process (Figure 3) varied
and assumed the predefined values n = (1,3,7) to investigate how this factor affects accuracy.
Therefore, 6 datasets of 20 optimized thresholds (T*) were obtained: 3 MNDWI Landsat-8
and 3 MNDWI Sentinel-2.

The input dataset images were randomly selected, with repositioning. In this approach,
the whole dataset is assumed to be the population of size N (Figure 4) following the
Bootstrap methodology mentioned above.
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the former step as input; (4) the process is repeated 20 times for each image collection and each sample size n = (1,3,7).



Sensors 2021, 21, 7494 8 of 15

The accuracy empirical probability density function was derived by employing the
flowchart illustrated in Figure 5, which generated a dataset of 500 RMSE and T* values. It
then was used to analyze the uncertainties concerning thresholding.
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2.3.4. Threshold Stability Analysis

The RMSE and T* datasets, generated by mimicked cross-validation, were analyzed to
investigate intervals a ≤ T* ≤ b where the threshold selection leads to minimal and more
stable RMSE values.

The OTSU algorithm, an automatic, unsupervised method [32], was applied to com-
pare cross-validation results. The EBImage R package [36] was used to segment each
MNDWI image, by maximizing the intraclass water/non-water pixel variance. Before
OTSU segmentation, the images were masked to constrain the study area (described in
Section 2.3.1).

3. Results and Discussion
3.1. Errors Involving Single Threshold

Errors involving thresholding arises from two main reasons:

• Thresholds values are not constant in space and time and vary due to subpixel water-
land-cover composition [18] and due to environmental optical complexity [7] that
affects reflected spectral profile such as biological water characteristics, presence of
aquatic vegetation, and complex land-covers near water boundary;

• The noise arising from misclassified non-water features, whose spectral index values
are similar to water [7,11,37].

Figure 6 suggests that the lower RMSE values represent errors from spatiotemporal
reflectance variability, forming a block spreading randomly across the threshold axis.
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Visually, in Landsat-8 imagery, this type of error is more concentrated in RMSE values
below 2.5 m (Figure 6a), while in Sentinel-2, it is concentrated below 1 m (Figure 6b).
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Figure 6 also illustrates that noise from misclassification corresponds to higher RMSE
values concentrated on the left side (lower thresholds). These errors are associated with
higher negative MNDWI values, represented by pixels with high reflectance in the SWIR
band, such as build-up, rock, roads, sand [18], and low albedo features, such as asphalt,
shadows, mountains, building, and clouds [7].

3.2. Accuracy, Stability, and Precision

As illustrated in Figure 6, errors arising from pixels reflectance variability are more
limited, predictable, however unavoidable. Conversely, errors arising from noisy misclassi-
fication are higher, spread, and unstable. In this work, we removed noise effects through
(a) masking MNDWI images and constraining the area (b) applying outlier filters, and
(c) using the median statistic of extracted water levels. However, as illustrated in Figure 7,
as threshold values are lower than the optimum threshold value (T*), noise drastically
negatively impacts accuracy. These results follow Yang [37], who found that when the
threshold is lower than a specific value, it brings too much noise that cannot be effectively
eliminated, even by a filter.

Therefore, the optimized threshold T* can also be considered a critical value that leads
to an unstable region in terms of accuracy. Aiming to minimize RMSE, the optimization
process may take thresholds to highly negative values, which can work only in the specific
scene and produces too much noise when applied in another one, affecting accuracy
negatively. Hence, it is desirable to choose threshold values higher than T*, where error
variations are lower, increase linearly, smoothly, and are more stable.

The cross-validation approach allowed to estimate the cross-effects of optimized
threshold values (T*) over imagery dataset samples and thus to identify the stability region.
However, as shown in Figure 6, the stability region can be identified using all imagery
datasets (represented by the thick black line) without using a cross-validation approach,
which requires less computational effort and is less time-consuming.
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The optimized thresholds’ statistics illustrated in Table 2 shows that the mean values
stay very close to the lower limit of the stability region. In terms of standard deviation (SD),
the upper limits for Landsat-8 and Sentinel-2 can be reached by adding the mean value by
a multiplication factor, 1.39xSD and 1.5xSD, respectively. This procedure was used by [29]
to adjust threshold values for different dates and regions when the statistics are beyond the
normal range.
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Table 2. Accuracy and threshold optimized statistics.

MNDWI n
T* RMSE*

Min. Max. Mean SD CV Min. Max. Mean SD CV

Landsat-8
1 −0.440 −0.190 −0.325 0.097 −0.299 0.000 0.208 0.050 0.064 1.281
3 −0.430 −0.190 −0.335 0.062 −0.177 0.005 1.368 0.611 0.478 0.783
7 −0.410 −0.300 −0.328 0.033 −0.101 0.073 1.354 0.848 0.355 0.418

Sentinel-2
1 −0.393 −0.320 −0.365 0.030 −0.082 0.001 0.093 0.022 0.021 0.955
3 −0.387 −0.323 −0.353 0.023 −0.065 0.040 0.501 0.227 0.130 0.573
7 −0.383 −0.330 −0.351 0.017 −0.048 0.091 0.466 0.315 0.109 0.346

Note: T* is the optimized thresholds and RMSE* is the accuracy by varying the size sample (n) and imagery collection. SD: standard
deviation. CV: coefficient of variation.

By subsetting thresholds variation constrained to the stability region, Landsat-8 RMSE
statistics are drastically improved. As illustrated in Table 3, mean RMSE is reduced by
23.72%, 37.38%, and 7.31% for n = (1,3,7), respectively. The CI95% upper limit is reduced by
60.39%, 64.73%, and 0.88% for n = (1,3,7), respectively.

Table 3. Accuracy comparison after constraining threshold variation in a range of RMSE stability.

MNDWI n
RMSE RMSE/

RMSE*

RMSE [Ti ≤ T≤ Tf]

Min. Max. Mean CI95% Min. Max. Mean CI95%

Landsat-8
1 0.002 13.783 1.041 [0.027;6.039] 20.8 0.014 2.574 0.794 [0.063;2.392]
3 0.000 14.108 1.043 [0.021;6.427] 1.71 0.041 2.362 0.653 [0.046;2.267]
7 0.012 8.908 0.746 [0.067;2.263] 0.88 0.088 2.290 0.691 [0.100;2.243]

Sentinel-2
1 0.001 4.813 0.422 [0.014;2.392] 19.2 0.023 1.025 0.317 [0.044;0.860]
3 0.001 3.693 0.301 [0.023;0.915] 1.33 0.000 1.257 0.308 [0.038;0.902]
7 0.001 3.067 0.314 [0.023;0.910] 0.99 0.003 1.052 0.309 [0.044;0.902]

Note: RMSE is the non-optimistic error obtained from cross-validation; RMSE* is the mean optimized statistic (Table 2).

Sentinel-2 RMSE statistics improvement is not so elastic compared to Landsat-8. As
illustrated in Table 3, mean RMSE is reduced by 24.88%, and 1.59% for n = (1,7), respectively,
and increases 2.32% for n = (3). The CI95% upper limit is reduced by 64.04%, 1.42% and
0.88% for n = (1,3,7), respectively.

Regarding the threshold variation, Landsat-8 thresholds varied 42.4% in the range of
−0.33 < T < −0.19, and Sentinel-2 thresholds varied 11.1%. This result is superior to the
limit of 10% considered by Herndon [20] as the possible range of optimal threshold value
variation. However, this must be observed with a caveat since the performance metric used
is different, and the study area is very constrained.

As illustrated in Table 4, there is a slightly generalized precision gain for both satellite
dataset imagery. For n = (3) precision is increased for all instances: 0.5 m, 1.0 m, 1.25 m,
and 2.0 m. After restricting the threshold variation for Sentinel-2, ~99% of the errors are
lower than 1 m, and ~100% of RMSE are lower than 1.25 m.

Table 4. RMSE cumulative empirical probability function obtained by mimicked cross-validation.

MNDWI n
P (RMSE < X) × 100 P (RMSE [Ti < T < Tf] < X) × 100

<0.5 m <1.0 m <1.25 m <2.0 m <0.5 m <1.0 m <1.25 m <2.0 m

Landsat-8
1 46.6 75.2 77.0 85.8 38.7 79.3 80.5 88.0
3 59.2 73.0 75.8 85.4 61.1 83.3 84.9 90.5
7 59.6 78.8 79.4 88.0 61.2 81.6 81.6 87.3

Sentinel-2
1 76.0 91.2 93.4 96.0 84.3 99.4 100 100
3 86.4 98.0 99.2 99.6 87.1 98.9 99.7 100
7 96.0 98.8 99.2 99.8 83.4 99.5 100 100

Note: for the images MNDWI Landsat-8 [−0.33 ≤ T ≤ −0.19] and MNDWI Sentinel-2 [−0.36 ≤ T ≤ −0.32].
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3.3. The Non-Optimistic Error

Table 2 illustrates that the mean RMSE* increases as the number of images employed
in threshold optimization grows. This can be explained due to inter-scenes reflectance
variability, making it difficult to adjust a single threshold over a higher image dataset.

By comparing the ratio between mean RMSE (Table 3) and RMSE* (Table 2), it can
be noticed how optimistic the error estimator is in the calibration step, depending on the
number of images employed. Optimization that uses a single image (n = 1) chosen by
chance can produce overfitted thresholds, too specialized in extracting water features from
a specific scene, but when applied in another image, can lead to errors 20.8 times higher
than expected.

Table 3 also shows that using three scenes (n = 3) in the optimization, the ratio
RMSE/RMSE* is significantly reduced, indicating that the calibration and test sample
variability become closer.

Conversely, the ratio RMSE/RMSE* less than 1, when n = (7), illustrated in Table 3,
suggests that the same information employed in threshold calibration is used in test
samples. This is because we did not employ pure cross-validation but a mimicked approach.
Therefore, as the sample size (n) increases, considering the small Landsat-8 and Sentinel-
2 imagery employed in this experiment, the probability of using the same information
also grows.

Our results indicate that using a sample size greater than three (n > 3) to optimize
single thresholds (T*) leads to non-overfitted models and are more suitable for multi-
temporal analysis once it creates a good balance between bias and variance: a desirable
characteristic of predictive models [33].

RMSE [Ti ≤ T ≤ Tf] is the mean square error statistic after subsetting the sample.
Landsat-8 thresholds were subsets to [−0.33 ≤ T ≤ −0.19] and Sentinel-2 thresholds were
subsets to [−0.36 ≤ T ≤ −0.32] limits, derived from Figure 6 analysis.

3.4. Comparison between Otsu and Single Optimized Threshold

By comparing optimized thresholds (Table 2) to OTSU values (Table 5), one can notice
that automated threshold values calculated by the OTSU method are higher than the
optimized ones.

Table 5. OTSU thresholds statistics.

MNDWI
OTSU Thresholds

Min. Max. Mean Median Q1 Q3

Landsat-8 −0.363 0.074 −0.060 −0.051 −0.094 −0.008
Sentinel-2 −0.215 0.082 −0.116 −0.121 −0.154 −0.094

Note: Q1—first quartile; Q3—third quartile.

Mean RMSE values from OTSU (Table 6) are also higher than optimized ones (Table 3),
however, maximum RMSE values from OTSU are lower than the optimized ones. When
comparing results constrained in the stability region, mean and maximum RMSE values
from optimized thresholds are dramatically superior to OTSU.

Table 6. Accuracy statistics from OTSU method.

MNDWI
OTSU Thresholds

Min. Max. Mean Median Q1 Q3

Landsat-8 0.168 9.924 1.751 1.143 1.046 1.602
Sentinel-2 0.812 1.791 1.197 1.115 0.991 1.352

Note: Q1—first quartile; Q3—third quartile.
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These results follow Ji and Wylie [18] and Herndon [20], that recommend the adjust-
ment on the actual situation and calibrated to the local environment, aiming to
improve performance.

3.5. Ensemble as Alternative to Single Threshold Approach

Our primary objective was to investigate uncertainty concerning the single threshold
method and support its best choice. It was possible to identify a more stable region where
thresholds can vary without impacting accuracy negatively. We investigated how better a
model performs in the stability region and evaluated ways to securely set threshold values
in the stability region using optimized threshold statistics, aiming to provide elements to
support threshold choice.

Nevertheless, as pointed out, single thresholds can also be classified as a machine
learning model, more specifically, a one-level decision tree. This understanding brings
a new insight into results and the applied methodology, helping construct an easy-to-to
alternative to the single threshold.

Usually, the decision tree model is sensitive to trained data [38], tending to produce
unstable results with high variance [33]. Bagging or bootstrap aggregation [39] was one of
the first ensemble technics developed. It combines the prediction of multiple models fitted
over bootstrap samples, which are averaged to result in the bagged model’s prediction [40]

Mainly applied to decision trees, bagging can reduce the variance of unstable models
and give a substantial gain in accuracy, making the final prediction more stable [39,40].
It occurs because averaging reduces variance and keeps bias unchanged [33]. Therefore,
the power of bagging consists of combining models that have different perspectives on
data [38].

As an alternative to the single threshold setting in the stability region, a bootstrap
aggregation model would be constructed by ensembling optimized thresholds (T*) shown
in Table 2 or using the constrained interval.

It is important to highlight the RMSE values shown in Table 3 do not correspond
to bagged prediction accuracy once it was calculated as the mean of 500 RMSE values.
Moreover, bagging averaging prediction must consider the number of models trained in
bootstrap samples (in our experiment N = 20), and WL estimations (Yc) should be averaged
before RMSE calculation.

Another observation is that bagging is suitable for models of high variance. Hence, the
recommendation of employing more than three image scenes in optimization (discussed in
Section 3.3) requires more investigations before constructing the ensemble model.

4. Conclusions

Using a single threshold to extract water features in multitemporal analysis leads to
unavoidable errors that can be minimized by setting values constrained to specific limits,
in which errors remain stable, and threshold values can vary without affect causing loss
of accuracy.

The accuracy stability region can be identified by employing a cross-validation ap-
proach or using the whole imagery dataset. It happens because the limits of the accuracy
stability region do not depend on the sample size employed in optimization. Conversely,
the cross-validation approach is more time-consuming, requires more computational effort,
and is not easy to use. The results also showed that the mean statistics of optimized
thresholds values, even when carried out over singles scenes, can take thresholds close to
the lower limit of the stability region.

This paper also examined the relationship between the number of scenes employed
in single threshold optimization and the non-optimistic error. The results showed that
the number of images plays a critical role in the model accuracy. More than three scenes
randomly selected are always recommended. If a large number of free-of-cloud images is
available, cross-validation (not mimicked) can be employed to provide this information
more precisely.
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The single threshold optimized by field observations was superior to the automated
water extraction by the OTSU method. The performance of Sentinel-2 was superior to
Landsat-8 imagery. Additionally, the OTSU method could not extract the maximum po-
tential of Sentinel-2 imagery compared to the threshold method. Further research aims to
investigate whether these results will be maintained by varying factors, such as spatial res-
olution, water index from different spectral bands, and other surface correction algorithms.

This paper showed that non-optimistic errors involved in applying a single threshold
over MNDWI might not be compatible with the purpose of operational monitoring, even
when employing a high-resolution digital elevation model. Considering that the single
threshold method is a one-level decision tree, better accuracy would be expected by
ensembling multiple optimized thresholds values.

Future research may use high-resolution digital elevation models associated with
observed water levels and their respective contours levels to identify water pixels with
high confidence and use them as training data. Experiments carried out at subpixel scale
by DeVries [32] and Jones [31] indicate that machine learning algorithms and empirical
decision rules, fitted over satellite bands, water, and vegetation spectral indexes, can
aggregate more flexibility, improving water classification.
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