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Abstract: The upcoming agricultural revolution, known as Agriculture 4.0, integrates cutting-edge
Information and Communication Technologies in existing operations. Various cyber threats related to
the aforementioned integration have attracted increasing interest from security researchers. Network
traffic analysis and classification based on Machine Learning (ML) methodologies can play a vital
role in tackling such threats. Towards this direction, this research work presents and evaluates
different ML classifiers for network traffic classification, i.e., K-Nearest Neighbors (KNN), Support
Vector Classification (SVC), Decision Tree (DT), Random Forest (RF) and Stochastic Gradient Descent
(SGD), as well as a hard voting and a soft voting ensemble model of these classifiers. In the context
of this research work, three variations of the NSL-KDD dataset were utilized, i.e., initial dataset,
undersampled dataset and oversampled dataset. The performance of the individual ML algorithms
was evaluated in all three dataset variations and was compared to the performance of the voting
ensemble methods. In most cases, both the hard and the soft voting models were found to perform
better in terms of accuracy compared to the individual models.

Keywords: machine learning; network traffic classification; voting ensemble; network threats; net-
work security; intrusion detection; active attacks; cybersecurity; Agriculture 4.0; e-Commerce

1. Introduction

Agriculture evolves at a rapid pace nowadays, transitioning into a new era known as
Agriculture 4.0. Considering the challenges of modern agriculture (e.g., climate change,
diseases, excessive use of chemicals and resources, etc.), Agriculture 4.0 aims to engage
new technologies and methods in order to alleviate the existing challenges, reduce the
risks and lead to more efficient and safer production. To this end, it engages a plethora of
advanced Information and Communication Technologies (ICTs) [1].

In addition to this evolution, there is an upward trend in food needs that, as reported
by the United Nations’ Food and Agriculture organization, will reach a 70% increase in 2050
as compared to the current production, so as to cover the needs of the growing population,
which is expected to be around 10 billion in 2050 [2,3]. Considering the ongoing evolution
and the growing food needs, it is expected that the market size of Agriculture 4.0 will
significantly grow in the upcoming years.

In Agriculture 4.0, Wireless Sensor Networks (WSNs) and Internet of Things (IoT)
solutions are extensively used, providing numerous benefits to the farmers (e.g., in mon-
itoring various environmental parameters related to the crops, detecting crop diseases,
estimating the predicted yield, reducing human labor) [4,5]. However, the interconnection
among diverse sensors and network devices, which often contain unpatched or outdated
firmware or software [6], in agriculture can create a breeding ground for various attacks
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(e.g., device attacks, data attacks, privacy attacks, network attacks) [7]. Some examples
of network attacks include: malware injection, hacking, phishing, Denial of Service (DoS)
attacks, SQL injections and Advanced Persistent Threats (APT) [8,9].

In agriculture, safety is a major concern, and any kind of disturbance or distortion may
pose important challenges and lead to dangerous consequences [10,11]. Network traffic
monitoring and classification, which have been of great interest since the very early stages
of the Internet, can play an important role in the protection from network attacks [12].
Network traffic classification for securing IoT systems has been a subject of intense scientific
study. It is a vital component of Intrusion Detection Systems (IDS) and helps to identify
and detect malicious network activity [13].

The use of ensemble methods provides an overall better performance in many in-
stances of problems, as compared to the performance of individual classifiers [14]. Based
on the above, the key contributions of the current research work can be summarized in
three main objectives. The first and foremost is to present and evaluate a hard voting and
a soft voting ensemble model comprised of five different ML classifiers (i.e., KNN, SVC,
DT, RF and SGD), which are suitable for network attack classifications in the context of
Agriculture 4.0 applications. The second objective is to acquire and compare evaluation
results of the individual ML classifiers, as well as results on three different variations of the
NSL-KDD dataset (i.e., initial dataset, under-sampled dataset, oversampled dataset). The
third objective of this paper is to suggest a new line for research works, which evaluates
ensemble models of different sets of ML network traffic classifiers on various datasets
suitable for Agriculture 4.0 applications.

The remainder of this paper is structured as follows: Section 2 presents an overview
of related works in the domain of network traffic monitoring and threats classification
for ICTs engaged in Agriculture 4.0; Section 3 demonstrates how a part of the proposed
methodology was implemented in the context of an e-Commerce-related EU-funded project;
In Section 4 details about the implemented methodology are included; Section 5 focuses
on the evaluation results of the models described in Section 4, while Section 6 concludes
the paper.

2. Related Work

Over the last two decades, both academics and researchers have shown an ever-
increasing interest in network traffic monitoring, as depicted in Figure 1. This result was
anticipated as the agriculture domain has been becoming more and more digitized, and
the ICTs have been evolving rapidly during this period. Over the period 2018–2020, more
than 200 new publications appeared in Scopus each year. The same increasing trend is
also noticed in 2021, with 286 new publications in Scopus before the end of September. As
can be noticed, computer science and engineering come first, followed by agricultural and
biological sciences and environmental sciences. The results in Figure 1 were acquired using
a query in the Scopus database that searched if any of the below terms is contained in the
title, abstract and keywords of publications:

• Network traffic analysis
• Network threats
• Network traffic monitoring
• Network security
• Network intrusion detection
• Network traffic classification

The results were filtered to depict the number of publications between 2000 and
2020 [15].

Aiming at improving security in IoT applications, several ML-based network traffic
classification solutions have been proposed. Liu et al. [16] presented a comparative analysis
of different ML methodologies in classifying malicious and benign network traffic. Five
methodologies were tested, namely Support Vector Machine (SVM), K-Nearest Neighbours
(KNN), Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), and RF. The RF
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and XGBoost approaches provided the best results in terms of classification performance.
Bendiab et al. [17] proposed a solution for network traffic classification that makes use of
the visual representation of network traffic data. As a second step, the proposed approach
utilized a Residual Neural Network (ResNet50) to analyze the acquired visual data. This
methodology was compared to other learning algorithms (i.e., Resnet34, Mobilenet, SOINN)
and was found to achieve the best classification performance.

Figure 1. Number of publications in Scopus from 2000 to 2020 [15].

Ullah and Mahmoud [18] presented a two-level flow-based approach for anomaly
detection in IoT networks. The first level was responsible for classifying the traffic as
normal or anomalous. In case an anomaly was detected, the second level was used to
categorize the anomaly. In the context of this model, several ML methodologies were
investigated. For the first level, the Decision Tree (DT) classifier was found to achieve
the best results in terms of prediction, while the second one, the Random Forest (RF)
classifier, was found to yield the best predictive results. In another research work of
Ullah and Mahmoud [19], a Convolutional Neural Network (CNN)-based model for
anomaly detection in IoT networks was proposed. Based on raw network traffic data, the
authors also described a methodology for generating different datasets from an existing
one. Transfer learning methods were utilized to generate binary or multi-class network
traffic classification models. Experimental results of the proposed model indicated high
detection rates in different datasets, combined with a low false alarm rate.

The aforementioned studies mainly refer to IoT network monitoring, as well as to
solutions for detecting anomalies, abnormal/malicious behavior and intrusions. Due to the
fact that IoT solutions are widely adopted in Agriculture 4.0 [4,5], those solutions can also
be relevant and engaged in agricultural IoT networks. A more agriculture-focused study
was performed by Ferrag et al. [20], who proposed an Intrusion Detection System (IDS).
This IDS is based on three different deep learning models (i.e., Recurrent Neural Networks-
RNNs, CNNs and Deep Neural Networks-DNNs), which can be utilized for Distributed
Denial of Service (DDoS) attacks in Agriculture 4.0. The authors compared the performance
of the aforementioned models to other common ML models (i.e., LR, RFs, Naive Bayes, DTs).
Their models were found to perform better than the common ML models, and they even
outperformed other state-of-the-art deep learning IDS methodologies [20]. Yin et al. [21]
proposed a transformation-based approach, which can be utilized for anomaly detection
in agricultural IoT applications. The authors leveraged numerous transformations on
raw data samples to achieve improved anomaly detection in a semi-supervised manner.
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Their experimental results showed that their approach can provide promising results for
network flow classification. Towards the same direction, Asonye et al. [22] proposed a
network traffic classification methodology aiming to secure ZigBee IoT networks against
the HTTP Unbearable Load King (HULK) threat. This methodology can be utilized in
smart agriculture applications and encompasses four ML algorithms, i.e., RF, KNN, Naive
Bayes and SVMs. The experimental results showed the high effectiveness of the proposed
methodology in distinguishing normal traffic from attack traffic [22].

In ML, ensemble classifiers are created by several single estimators (base estimators)
that cooperate with each other based on certain training and classification methodolo-
gies [23]. Various scientific studies have found ensemble classifiers to provide several
advantages over individual classifiers, leading in many cases to more robust classification
metrics [24]. In this light, Imran et al. [25] introduced an IDS based on the ensemble of
prediction and learning mechanisms to improve abnormal detection accuracy in network
environments. Their solution engages a Kalman filter and an Artificial Neural Network
(ANN) in order to combine their results in a single output by using a weighted majority
method. Gao et al. [26] chose some base classifiers (e.g., DT, RF, KNN, DNN) and de-
signed an ensemble adaptive voting algorithm in order to improve the accuracy results.
Their method reached 85.2% accuracy on the NSL-KDD dataset. Rajagopal et al. [27]
presented a stacking ensemble solution for network intrusion detection that engages LR,
KNN, RF classifiers and an SVM as a metaclassifier after the stacking ensemble process of
the aforementioned three with very promising results.

3. Implementation of the Proposed Methodology in the Context of the
ENSURESEC Project

Several solutions from the e-Commerce domain can also be utilized in the agricul-
ture sector [28]. For example, IoT-based applications for safe transportation of sensitive
pharmaceutical products in the context of e-Commerce are relevant to similar solutions for
the transportation of sensitive agricultural goods [29,30]. Other popular examples include
applications that use ML-based network monitoring tools to detect and classify malicious
operations, such as information tampering and DoS attacks. [31,32]. Network traffic classi-
fication solutions for IoT systems can also be adapted to be used in agriculture or other
sectors since network traffic attributes have similarities across different domains [33].

A part of the current research work has also been implemented in the context of the
ENSURESEC project as a subcomponent of a communications monitoring toolset in an e-
Commerce environment. The ENSURESEC project has received funding from the European
Union’s Horizon 2020 research and innovation program. It aims to protect the whole range
of modern e-Commerce by addressing a wide variety of threats. More specifically, it focuses
on a wide variety of products ranging from virtual products and services purchased online
to physical products bought online and delivered to the customers and aims at addressing
numerous threats ranging from e-Commerce web applications attacks to frauds committed
by customers or insiders, delivery issues, etc. [34].

The aforementioned toolset offers advanced monitoring capabilities aiming to ensure
that the communication protocols in use, as well as the underlying communication in-
frastructure, function properly and safely. In this direction, certifiably correct verification
methodologies (e.g., Decision Tree, Random Forest, KNN, Support Vector Machine, Voting
Ensemble) are adopted, and various functionalities are included in the toolset. One of these
functionalities is called Threat and Incident Detection and utilizes parts of the methodol-
ogy described in Section 4. Through this functionality, ENSURESEC users can identify
malicious operations or threats at the network level by analyzing, filtering and matching
semantically low-level events. Furthermore, they can gain insights into the structured
relationships among the various types of items involved.

Advanced threats detection mechanisms are of vital importance for well-designed and
secured e-Commerce systems in order to protect and ensure sensitive data that is being tar-
geted by malicious users. Within this scope, the current study evaluates the performance of
distinct ML algorithms in Section 5 and provides an additional countermeasure component
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(Threat and Incident Detection) by engaging two domains of high interest (i.e., ML and
cybersecurity). This will help to enhance the analysis of threats patterns and learning from
this process in order to detect, prevent and recognize similar types of attacks, enhancing
the capabilities of cybersecurity teams to respond in real or near-real time to active types
of cyber-attacks.

Five more functionalities were included in the so-called “Communication Monitor”
toolset namely:

• A Threat Objects Fusion functionality through which users can fuse different objects
into a unified object

• A Similarity Degree Calculation feature that enables users to execute a character-by-
character complex comparison algorithm among all the types of objects stored in or
retrieved from a specific Knowledge Base, after the execution of certain processes

• An Association Rule Engine that can be used for revealing hidden patterns and
relations while exploring a populated database

• A Visualization functionality that can be used for the interactive representation of
populated ontologies in the form of graphs

• An Advanced Reasoner through which users can apply rule-based logical reasoning
into the existing Knowledge Base

Further analysis of these functionalities is beyond the scope of the current research work.
The Threat and Incident Detection functionality, together with the other functionalities

of the Communication Monitor, are depicted in Figure 2.

Figure 2. Communication monitor components.
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4. Dataset and Methodology

This section is divided into two sub-sections; the first sub-section describes the dataset
used for the evaluation of the proposed solution, whilst the second focuses on the descrip-
tion of the proposed methodology, i.e., the algorithms and methods engaged to produce
the desired results.

4.1. Exploring the Used Dataset

For the evaluation needs of this study, the NSL-KDD dataset [35] was used. The
NSL-KDD dataset is an evolution of the KDD Cup 1999, which was used for The Third
International Knowledge Discovery and Data Mining Tools Competition. The main object of
this competition was to create a network intrusion detector model, which could differentiate
normal connections from intrusions or attacks [36].

This very task is directly associated with the aim of the methodology analyzed in the
context of this paper, which is to detect and classify threats in network traffic. Moreover, the
KDD Cup 1999 dataset contains a standard set of data to be audited, which encompasses
a wide variety of intrusions. An optimized set of this data, widely used by security
professionals, is also contained in the NSL-KDD dataset. There are several distinct types of
cyber-attacks; 22 of which are contained in the NSL-KDD training dataset, as presented in
Table 1.

Table 1. Types of attacks in the NSL-KDD dataset [35].

Types of Attacks

neptune satan
ipsweep portsweep

smurf nmap
back teardrop

warezclient pod
guess_passwd buffer_overflow
warezmaster land

imap rootkit
loadmodule ftp_write

multihop phf
perl spy

The top ten types of attacks considering the number of records contained in the
NSL-KDD training dataset are depicted in Figure 3.

Figure 3. Different types of attacks included in the NSL-KDD dataset [35].

As previously mentioned, the training dataset contains 22 types of attack traffic, whilst
the test dataset contains 37 types [35]. The existence of these additional 15 types of attacks
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was designed with an eye on the generalization of the training dataset in order to test the
model’s adjustment capability in unseen types of attacks. The evolution of cyber-attacks
was also taken into consideration since cyber-criminals have been seen advancing their
capabilities, adjusting quickly and targeting more effectively with the passage of time.

The dataset contains different attack types, as described in Figure 4, that correspond
to separate attack categories. The current paper focuses on the utilization of the results
from different types of ML Algorithms to categorize each separate instance into one of the
below five classes [9,37]:

• ‘benign’ for benign behavior
• ‘dos’ for DoS attempts in an online system
• ‘probe’ for brute-force attack probing by malicious actors
• ‘r2l’ for unauthorized attempts of accessing from remote machines
• ‘u2r’ for Privilege escalation attacks in the target machine

All the instances of the NSL-KDD dataset grouped into five different categories are
depicted in Figure 4.

Figure 4. Attack types of NSL-KDD dataset grouped into five different categories [35].

The NSL-KDD dataset optimizations as compared to the original KDD dataset are as
follows [35]:

• There are no duplicated/redundant instances, and thus, the classifiers will not be
biased by these records

• Every difficulty level group contains a number of instances that is inversely propor-
tional to the percentage of instances in the KDD Cup 1999 dataset. This leads to a
wide range of classification rates of the distinct ML methods. Thus, the evaluation of
different ML algorithms can be more accurate

• The size of both the train and the test set is configured in order to offer the ability to
whoever is interested in running their experiments on commercially available PCs.
Therefore, the direct comparison of different research efforts that used the NSL-KDD
dataset is feasible

One important issue detected in the NSL-KDD dataset that can affect the performance
of the suggested classifiers is the unbalanced data, commonly known as a class-imbalance
problem. As Chawla et al. [38] stated, the class imbalance problem constitutes a new major
problem for the data mining community, whereas a large part of the research community is
continuously investigating ways to reduce this. Dealing with the class imbalance problem
is a cutting-edge research topic [39]. Chawla et al. [40], as well as Bowyer et al. [41],
proposed a number of solutions at both the algorithmic and the data levels, including
different oversampling and undersampling methods. In general, undersampling as a
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term is relevant to the reduction of the number of the samples, whilst the oversampling
term refers to the generation of synthetic data instances based on the classes with the
least instances. Many different strategies of data resampling have been considered by the
research community, including [42]:

• Random undersampling of the majority class of the used dataset
• Directed undersampling of the informed class of the used dataset
• Oversampling with replacement of the minority class of the used dataset to generate a

more balanced dataset
• Directed oversampling, where specific dataset information is created and replaced in

a non-random manner
• Adjusting the costs of the various dataset’s classes
• Adjusting the decision threshold
• Adjusting the estimation of the probabilistic factor at the tree leaf, mostly in cases

where decision trees algorithms are involved

To avoid negative side effects stemming from the use of distinct methods, different
types of resampling methods can be combined. For the purposes of the current study, the
“random undersampling” and the “oversampling with replacement of the minority class”
data resampling techniques are adopted. These techniques are applied individually in
each distinct algorithm in order to highlight the differences between the datasets that have
undergone resampling and the initial, raw imbalanced dataset. Table 2 depicts the original
(training) dataset distribution alongside the oversampled and the undersampled results.

Table 2. Records of each category included in the three variations of the dataset [35].

Dataset Name/Classifier Benign dos Probe r2l U2r

Original Dataset 67,343 45,927 11,656 995 52
Undersampled Dataset 25,194 25,194 25,194 25,194 25,194
Oversampled Dataset 67,343 67,343 67,343 67,343 67,343

4.2. Proposed Methodology

In recent years, ensemble learning models are becoming increasingly popular among
researchers [43] in the field of predictive modeling, i.e., regression and classification anal-
ysis. The term voting ensemble is used to describe an ensemble ML model based on the
combination of multivariate ML models, aiming to achieve a better performance compared
to the performance of each individual model, leading to an overall improved classification
performance [44,45]. More specifically, the combination of multiple ML models with similar
performance on a predictive task can eventually lead to models with higher accuracy and
fewer errors.

Two popular voting ensemble methods are (i) hard voting, which is suitable for
models that predict distinct class labels in cases where the outputs of classifiers are not
independent, as well as for binary class problems when the number of included classifiers
is not odd, and (ii) soft voting, which is mostly used in cases where the developed models
predict probabilities for each contained class, as well as when it is clear that a classifier
returns better output results in comparison to the other classifiers included [46]. More
specifically, the hard voting method takes the predictions from each individual classifier as
input and then calculates the votes for each target label. After this calculation, the label
with the majority of the votes is the prediction/result of the hard voting ensemble model.
Assuming we have a binary problem and five classifiers, then considering that four of
them predict/vote for the class labeled “1” and the other classifier votes for a class labeled
“0” then the ensemble model decision is the class labeled “1” supported by the 4/5 of the
votes. As far as the soft voting is concerned, it is a more complex method that takes into
account the probability of predictions by the individual classifiers. For example, assuming
again we have five classifiers and the prediction for a class labeled “1” has probability
80% by classifier 1, 72% by classifier 2, 67% by classifier 3, 63% by classifier 4 and 49% by
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classifier 5, then the average of these probabilities is 66.2% to be class labeled “1”, thus the
soft voting method result is class labeled “1”. Other popular ensemble strategies that can
be found in the scientific literature are described below [47]:

• Boosting (e.g., AdaBoost)
• Bagging
• Stacking or stacked generalization
• Blending

The methodology proposed in this study aims to evaluate hard voting and soft voting
ensemble methods. These two methods encompass five different ML algorithms namely;
KNN, linear SVC, DT, RF and SGD, as shown in Table 3. Each of the five classifiers was
evaluated individually in order to highlight the performance differentiations among the
classifiers, as well as the improvements of the ensemble model in terms of accuracy. A
more detailed description of the steps performed can be found in Figure 5.

Table 3. Hard and soft voting base classifiers ensemble.

Methodology Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5

Hard voting KNN Linear
SVC Decision Tree Random Forest SGDC

Soft voting KNN Linear
SVC Decision Tree Random Forest SGDC

KNN is one of the most studied supervised ML classifiers. KNN uses distance metrics
(i.e., Euclidean, Manhattan and Minkowski functions) in order to classify each data instance
to its nearest neighborhood [48,49]. For the purposes of this study, the K parameter is equal
to 7. Linear SVC is a variation of the SVM algorithms. SVM is a supervised ML algorithm
that aims to find a hyperplane in an N-dimensional space, where N is the number of
features, so as to classify the data points accordingly. For network threat detection, a linear
SVM can classify the network traffic into benign and threat or abnormal classes [50]. In
this study there is an evaluation of the linear SVC in terms of accuracy. The DT algorithm
is a non-parametric supervised learning method used for classification purposes. It is
characterized by “if-then-else” rules, and its goal is to classify a data instance into the
most suitable class, depending on its attributes. Thus, when a dataset is given as an input
to a DT, the algorithm learns the patterns and the attributes of the given data and can
detect threats and abnormal behavior [51,52]. The RF method can be considered as an
ensemble approach of several DT instances. The RF algorithm inherits some features of
the DT method and is mainly used for classification problems. As is indicated by its name,
RF utilizes the power of the crowd of the separate DTs, and its output is the class or the
category selected by a majority of the trees [53]. Based on the above, RF can be used to
classify network operations in different categories so as to detect threats and possibly
malicious behavior [54]. Finally, the SGD classifier was engaged for the needs of this study.
The SGD algorithm can be considered as an optimization method for linear classifiers, such
as the SVM. More specifically, the SGDC method implements a stochastic gradient descent
routine that is enabled to support different loss functions and penalties. Thus, an SGDC
implementation draws a boundary plane that classifies the data instances [55].
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Figure 5. Methodology steps taken for this study.

5. Results

The algorithms were developed in Python version 3.8, and the sci-kit learn frame-
work [56,57] was utilized for the development of the proposed algorithms together with
the imblearn framework [58], which was used for resampling processes on the imbalanced
dataset. The parameters and their values for each individual classifier, as well as for the
two ensemble models, are depicted in Table 4.
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Table 4. Individual ML classifiers and ensemble models parameters.

Classifier Parameters

Machine Learning
Algorithms

KNN n_neighbors: 7, n_jobs:5, weights:“uniform”,
algorithm:“auto”

Linear SVC
C: 1.0, kernel: ‘linear’, degree:1, gamma: ‘scale’,

class_weight: ‘balanced’, decision_function_shape:
‘ovr’, random_state:42

DT criterion: “gini”, splitter:“best”, random_state:42

RF
n_estimators: 200, criterion: ‘entropy’,

max_features: ‘auto’, class_weight: ‘balanced’,
random_state:42

SGDC loss:“hinge”, penalty:“l2”, alpha:“1e-3”,
max_iter:5, tol:“None”, random_state:42

Ensemble Algorithms

Hard voting voting:“hard”, weights: “None”, n_jobs:5,
flatten_transform:“True”

Soft voting voting:“soft”, weights: “None”, n_jobs:5,
flatten_transform:“True”

Each of the algorithms introduced in Section 4, as well as the ensemble methods (hard
and soft voting), are evaluated using the accuracy metric. The accuracy metric is practically
the number of correct predictions divided by the total number of predictions made, as
shown in Equation (1) [59]. In this study, the accuracy is calculated as the number of the
correctly classified data instances by each algorithm divided by the number of the total
samples contained in the dataset, as described in Section 4.1.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

where

• TP stands for True Positives, i.e., the attack predictions that are actually attacks
• TN stands for True Negatives, i.e., the non-attack predictions that are actually non-

attacks
• FP stands for False Positives, i.e., the attack predictions that are not actually attacks
• FN stands for False Negatives, i.e., the non-attack predictions that are actually attacks

The calculated accuracy results for the three different variations of the dataset (initial
dataset, undersampled dataset and oversampled dataset) for every method used (i.e., five
classifiers and two ensemble methods) are presented in Table 5.

Table 5. Accuracy results for every algorithm and dataset tested.

Dataset ML Method

KNN Linear
SVC

Decision
Tree

Random
Forest SGDC

Hard
Voting

Ensemble

Soft
Voting

Ensemble

Normal sampling 0.78317423 0.76685060 0.78210965 0.75341554 0.71741661 0.79875798 0.82014580

Undersampling 0.78692317 0.77346851 0.76721097 0.76934416 0.78741661 0.82318758 0.82739580

Oversampling 0.78927434 0.77164506 0.76360965 0.75341554 0.76941661 0.80019798 0.78517984

Figures 6–8 depict the accuracy results regarding each variation of the used dataset
(initial dataset, undersampled dataset and oversampled dataset).
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Figure 6. Accuracy results when the initial dataset was used.

Figure 7. Accuracy results when the undersampled dataset was used.

Figure 8. Accuracy results when the oversampled dataset was used.
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The overall accuracy results are presented in Figure 9 (bar plot) and Figure 10 (linear
plot) below.

Figure 9. Overall accuracy results.

Figure 10. Linear plot for the accuracy results.

Figure 10 includes a linear plot for the accuracy of all the methods and datasets that
were evaluated.

Based on the results presented in the above figures, as well as in Table 5, useful
conclusions can be drawn. The accuracy metrics of the performed ensemble algorithms are
quite promising compared to the accuracy of each individual classifier. More specifically,
the hard voting model was found to achieve better accuracy in all three dataset variations
used (initial dataset, oversampled dataset and undersampled dataset) compared to the
accuracy of the individual classifiers on the same datasets. The soft voting model achieved
better accuracy than the individual classifiers in both the initial and the undersampled
datasets. It also yielded better accuracy results than the hard voting model in these two
dataset variations. Using the initial dataset, which had not undergone any resampling
process, the highest accuracy was achieved by the soft voting ensemble model, and the
lowest was achieved by the SGDC algorithm. Using the undersampled dataset, the highest
accuracy was achieved by the soft voting ensemble model, and the lowest was achieved by
the DT algorithm. Finally, when the oversampled dataset was used, the highest accuracy
was achieved by the hard voting ensemble model, whilst the lowest was achieved by the
RF algorithm implementation.

It is worth mentioning that the model with the highest accuracy, among all the algo-
rithms and datasets (normal or resampled) combinations, was the soft voting ensemble
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model using an undersampled dataset, while the SGDC algorithm, using the initial dataset
had the lowest accuracy.

Another interesting remark based on the aforementioned results is the increased
accuracy that was noticed by adopting the selected dataset resampling methods. Except
for the DT algorithm, where the normal sampling was found to achieve higher accuracy
compared to the two resampling methods, in the rest of the six algorithm implementations,
datasets that had undergone resampling achieved better classification performance.

6. Conclusions

The goal of this study was to present a comparative analysis of the performance of five
different ML classifiers when they are applied individually, as well as when they are part
of hard and soft voting ensemble methods. For the evaluation of these methods, the NSL-
KDD dataset was utilized in three variations (i.e., initial/normal dataset, undersampled
dataset and oversampled dataset). Hard voting and soft voting ensemble models were
found to achieve a better overall accuracy than the individual classifiers in most cases.

The analyzed solutions can be used for network traffic classification in the context
of Agriculture 4.0. To this end, this paper includes a related works section where several
studies about network traffic monitoring and classification were presented. These studies
refer to contemporary solutions that are directly connected with the agriculture domain
or the ICT technologies that are engaged in it. In the agriculture sector, cyber-security
is of utmost importance, so the engagement of new tools and technologies, including
ensembles of ML methods, can contribute to a safer and more robust network infrastructure
encompassing a plethora of devices.

Details were also provided about how the analyzed methodology was implemented
in the context of a communications monitoring toolset in an e-Commerce related EU-
funded project.

The use of ensemble ML models is an expanding research topic, and new possibili-
ties are explored in order to enhance the capabilities and the performance of single ML
classifiers in this domain. The results presented in this study seem to be very promising
concerning the utilization of ensemble methods in network traffic classification. A future
step of this analysis would be to integrate it in an application where historical and near
real-time analyses for network attacks classification are required so as to detect threats
and abnormal traffic in order to isolate such traffic and/or provide alerts. Furthermore,
we propose that the evaluation of the performance and efficiency of such models is also
performed in other datasets and domains. We also suggest the examination of different
ensemble models other than hard and soft voting. Another useful approach would be to
engage different ML classifiers and combine various solutions in order to investigate the
best option. Furthermore, the engagement of such methods may be expanded in different
domains other than agriculture and e-Commerce in order to discover new possibilities and
restrictions imposed by different kinds of datasets.
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