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Abstract: Fault detection in the waste incineration process depends on high-temperature image
observation and the experience of field maintenance personnel, which is inefficient and can easily
cause misjudgment of the fault. In this paper, a fault detection method is proposed by combining
stochastic configuration networks (SCNs) and case-based reasoning (CBR). First, a learning pseudo
metric method based on SCNs (SCN-LPM) is proposed by training SCN learning models using a
training sample set and defined pseudo-metric criteria. Then, the SCN-LPM method is used for
the case retrieval stage in CBR to construct the fault detection model based on SCN-CBR, and the
structure, algorithmic implementation, and algorithmic steps are given. Finally, the performance is
tested using historical data of the MSW incineration process, and the proposed method is compared
with typical classification methods, such as a Back Propagation (BP) neural network, a support vector
machine, and so on. The results show that this method can effectively improve the accuracy of fault
detection and reduce the time complexity of the task and maintain a certain application value.

Keywords: MSW incineration process; fault detection; case-based reasoning; stochastic configuration
networks; learning pseudo-metric

1. Introduction

Municipal solid waste (MSW) incineration has significant advantages in the resource-
fulness, harmlessness, and reduction of MSW; therefore, it has become the first choice
of MSW treatment technology and has been widely used [1,2]. Because of the high tem-
perature environment in the incinerator, the operation state of the incineration process in
the actual industrial site mainly depends on high temperature image observation and the
experience of field maintenance personnel for monitoring and fault identification. This
method is inefficient and can easily cause a false alarm and misjudgment of the fault.
Therefore, it is of great practical significance to develop an accurate and effective fault
detection method.

At present, the fault detection methods of the MSW incineration process are mainly
divided into model-driven methods [3] and data-driven methods. Due to the strong
coupling and non-linearity of the incineration process, it is impossible to obtain an accurate
mathematical model. The data-driven method mainly includes a support vector machine
(SVM) [4], neural networks (NNs) [5], and multivariate statistical analysis [6,7]. NNs,
such as the BP neural network (BPNN) and the radial basis function neural network
(RBFNN) are mainly used in the forecasting field [8]. For example, in [9], a transmission
line icing prediction model based on a generalized regression neural network and a fruit fly
optimization algorithm was proposed, and good prediction results were obtained. In [10],
topographic property of a backpropagation artificial neural network was studied, which
showed that the best model (high accuracy and no overfitting) of a large-scale BPNN
during epochs of training had the lowest local and global efficiency. These results imply
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that after epochs of training, neurons of the BPNN form local, highly intra-connected
functional modules but lack cooperation at a global level. From the above research, we
found that NNs have many advantages, but they also have shortcomings, including slow
convergence speed and how easily they fall into local optimum and experience-dependent
determinations of hidden layers and neuron numbers of networks. In [11], SVM was
used for forecasting global incident solar radiation; the results show that approximately
90% of all errors were in the smallest error bracket. In [12], SVM was used for predicting
the cost of power transformation projects and achieved good accuracy. In [13], SVM was
used for autonomous operation diagnosis of CHP in the microgrid, and a good result
was obtained. From the research mentioned above, although SVM has achieved good
results, we found that SVM also has shortcomings; for example, it is inefficient for training
large scale samples. In multivariate statistical analysis, the variability of the incineration
process is not considered, and the assumptions set in practice would limit its application.
In recent years, case-based reasoning (CBR), a new machine learning method in the field of
artificial intelligence, has attracted wide attention in the field of industrial process fault
detection because of its strong learning ability, high problem-solving efficiency, and has
the advantage of using past experiences to solve current problems [14–16]. However, the
similarity measurement method based on Euclidean distance is adopted in the CBR case
retrieval process which presents the problem of weight assignment and can easily fall into
a distance trap. Therefore, the research of similarity measurement methods has attracted
wide attention.

Traditional similarity measurement methods are mainly based on vectors or dis-
tance [17]; different measurement methods are usually used for different data types. For
qualitative data, vector-based measurements are often used, while for quantitative data,
distance-based measurements are often used. The distance measurement method is widely
used because of its intuitive and convenient computer physics in practical application [18].
However, when using a distance measurement, such as Euclidean distance [19], if the dis-
tance between the solution of the target case and source case is very close, it is considered
logical that the solution of the target case can be obtained by referring to the solution of
the source case. In some cases, this method is effective and may produce good results in
case retrieval [20]. However, in other cases, even if the weight distribution is reasonable
and correct, there may be distance traps in the calculation. In other words, the two closest
cases are not necessarily the most similar [21]. So far, there are many methods of weight
assignment [22–24], such as the subjective weighting method and the objective weight-
ing method [25]. The commonly used subjective weighting methods include the expert
investigation method, the numerical logic method, the adjustable mean method, etc. [26].
Objective weighting methods mainly include the genetic algorithm (GA) [27], entropy
weight (EW) [28], etc. However, the subjective weighting method has much discretionary
subjectivity; the characteristic weight distribution based on GA in the objective weighting
method can easily fall into local optimization, and the EW method is very sensitive to the
variation range of random data. Therefore, it is a challenge to develop an attributive weight
assignment method to accurately measure the importance of each attribute in the process
of problem solving. In this case, if the distance measure is used as the similarity measure
method, the nearest sample cannot be used as the similar sample of the target sample.
Therefore, the concept of pseudo metric is introduced based on the definition of metric
space, pseudo-metric space [29], the concept of equivalence relation, and equivalence
class [30]. Learning pseudo metric (LPM) [31] is when one uses machine learning technol-
ogy, such as neural networks, to get a pseudo metric and then realizes the similarity of any
x and y. It can avoid the problem of distance measurement. Although LPM can effectively
improve the classification accuracy and avoid the difficulty of distance measurement, there
are still some drawbacks. One such drawback is that the BP neural network itself can easily
fall into local minimum and slow convergence. Therefore, it is necessary to further study
the learning pseudo metric.
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Based on the above analysis, we propose a SCN-LPM method, and on this basis, we
propose a fault detection method based on SCN-CBR in this work. Among them, the
SCN-LPM method is obtained by training a SCN model [32], including the construction
of a sample set and the definition of pseudo-metric criteria. The fault detection method
based on SCN-CBR is obtained by replacing the similarity measurement method based
on Euclidean distance with the SCN-LPM method for the case retrieval in CBR, and the
validity of the fault detection method based on SCN-CBR proposed in this paper is verified
by experiments.

The rest of this paper is organized as follows: After briefly introducing the fault
description of the MSW incineration process in Section 2, the SCN-LPM method, the struc-
ture and function of the fault detection model based on SCN-CBR for MSW incineration
process, fault detection algorithms, and algorithmic steps are given in Section 3. Then,
the experiment and result analysis are shown in Section 4. Finally, Section 5 presents our
conclusions and future work.

2. Fault Description of MSW Incineration Process

The MSW incineration treatment system consists of four key systems: the pretreat-
ment system, the incineration system, the waste heat utilization system, and the flue gas
purification system [33,34]. The process flow is shown in Figure 1. After pretreatment,
MSW is sent to the incineration system for full combustion through the cross movement of
grates at all levels, and the ash produced by incineration is treated by the ash treatment
device. The high temperature flue gas generated by incineration is heat recovered through
the waste heat utilization system and heated to a steam-driven turbogenerator. Finally, the
high temperature flue gas is discharged through the tail flue gas treatment system.
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Figure 1. MSW incineration process flow.

The incineration system in Figure 1 is the key to the whole system. As the backbone
equipment of the incineration system, the performance of the waste incinerator directly
affects the stable operation of the whole incineration process. Among them, incinerator
fault-prone areas are the steam-water system, the horizontal flue gas passage, and the
furnace chamber. The types of faults that easily occur in the steam-water system are leakage
in the super-heater and economizer. Among these faults, when the super-heater leaks,
i.e., the dust accumulation or slagging in the flue is serious, the flue gas temperature will
increase, and the flue gas corridor that forms will cause the flue gas flow in the circulation
area to increase, thus accelerating the erosion and wear of the super-heater. When the
economizer leaks, that is, when a large amount of smoke and dust mixed in the flue gas
passes through the flue, it will continuously wear and wash the economizer. Fault types
of horizontal flue gas passage that can occur are horizontal flue ash and slagging. In this
case, the ash particles in the horizontal flue are in a state of high temperature melting, and
the fused slag will cool and condense when it approaches the water wall and eventually
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enters the flue gas passage with high temperature flue gas to form attachments. Horizontal
flue slagging means that the slag adheres to the water wall in a melting state and sticks
together to form a hard-to-remove slag layer. The types of furnace chamber faults that
can occur are coking and producing slag discharge that is not smooth. In the process of
combustion, high-temperature flue gas and ash particles move together. If the furnace
chamber temperature is too high, there will be partially melted or semi-melted ash particles,
which will form coking when adhered to the heating surface. When slag discharging is not
smooth, the large agglomeration of garbage causes a blockage in the discharging outlet.
Characteristic variables affecting steam-water system faults, horizontal flue gas passage
faults, and furnace chamber faults are shown in Tables 1–3, respectively.

Table 1. Faults and influencing factors of steam-water system.

Serial Number Fault Type Influence Factor

1 Leakage of super-heater
boiler drum water level x1, feed pump outlet total flow x2,
primary and secondary super-heater cooling water flow x3,

boiler outlet main steam flow x4, three-stage super-heater inlet
flue gas temperature x6, three-stage super-heater outlet steam

pressure x7, protective pipe inlet flue gas temperature x8,
evaporator inlet flue gas temperature x9.

2 Leakage of economizer

Table 2. Faults and influencing factors of horizontal flue gas channel.

Serial Number Fault Type Influence Factor

1 Horizontal flue ash deposit boiler outlet main steam flow x4, furnace negative pressure x5,
three-stage super-heater inlet flue gas temperature x6,

protective pipe inlet flue gas temperature x8, evaporator inlet
flue gas temperature x9, flue gas temperature

of economizer import x10.2 Slagging in horizontal flue

Table 3. Furnace faults and influencing factors.

Serial Number Fault Type Influence Factor

1 Furnace coking furnace temperature x11, air flow rate of grate in drying section
x12, air flow rate of grate in combustion section I x13, air flow

rate of grate in combustion section II x14, air flow rate of grate in
burning section x15, secondary air flow x16, exit flue gas

temperature of economizer x17.
2 Slagging discharge is

not smooth

3. Fault Detection Model for MSW Incineration Process

Aiming at the detection of six kinds of faults in the MSW incineration process, a fault
detection model based on SCN-CBR is established in this section. First, a new learning
pseudo-metric method is obtained by training an SCN learning model according to a
training sample set and defined pseudo-metric criteria. Then, a fault detection model
is established based on the problem-solving model of CBR, and the implementation of
the algorithm is introduced. Finally, the main algorithm steps are given. However, the
implementation of the fault detection method proposed in this paper faces many challenges,
such as how to build a SCN-LPM method, how to build a SCN-CBR fault detection model,
etc. Next, we conduct in-depth research on these difficult problems and propose solutions.

3.1. SCN-LPM Method

(1) Constructing sample set. Ck is a subset of sample set C that represents some kinds of
real data. M is an n-dimensional extractor that can map Ck to its characteristic space
Fk. Namely:

Fk =
{

x = M(e) ∈ Rn+1 : e ∈ Ck

}
, k = 1, . . . , p (1)

where x is an element in a point set χ. Sample set D is defined as follows:

D =
{
(x, y) 7→ δij : (x, y) ∈ Fi × Fj, i, j = 1, . . . , p

}
(2)
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where × represents Cartesian product, which can be obtained by combining any two
characteristic attributes Fi and Fj. δi,j(x, y) represents the Dirichlet symbolic function
whose value is 0 when x and y belong to the same category; otherwise it is 1. That
is, when i = j, δij = 0, otherwise δij = 1. According to the definition of Formula (2),
several pairs of sample data can be formed from the sample set and sample set D
can be constructed. Sample set D can be divided into training sample set Dtrain and
testing sample set Dtest [31], which can be used to train and validate the following
network model. The number of sample data pairs formed is p(p − 1)/2.

(2) Training SCN. The SCN model is trained with a training sample set. The selection
of SCNs should consider the structure of the network; that is, the number of nodes
in the input layer and output layer as well as the number of neurons in the hidden
layer are determined. Document [32] describes the determination method, which is
described as follows:

Any given 0 < r < 1 and a sequence of nonnegative real numbers {µL}. Let lim
L→+∞

µL = 0,

µL ≤ (1− r). For L = 1,2. . . , Record as:

δL =
m

∑
q=1

δL,q, δL,q = (1− r− µL)‖eL−1, q‖2, q = 1, 2 . . . , m (3)

where m is the number of neurons in the hidden layer; δL,q is the value of the q-th neuron in
the range of any given L hidden layer neurons. ‖.‖ represents the matrix norm and eL−1,q
is the deviation of the q-th neuron in the range of L-1 hidden layer neurons.

When the number of neurons in the hidden layer is selected, the stochastic function
gL needs to satisfy the following inequality:〈

eL−1,q , gL
〉2 ≥ b2

gδL,q , q = 1, 2, . . . , m (4)

where gL is a stochastic function (satisfies
∫
R|gL(t)|2 < ∞ or

∫
R|g
′
L(t)|

2 < ∞); Any bias
bg ∈ R+ (positive real field).

The output weights are evaluated as:

βL,q =

〈
eL−1,q , gL

〉
‖gL‖2 , q = 1, 2, . . . , m (5)

The SCN model randomly assigns input weights and hidden layer node biases under
the constraint of inequality (4) and, finally, obtains output. However, for classification
problems, it is almost impossible to make the output of the model exactly equal to zero or
one when the standard SCN is used. Therefore, the following metrics are used to judge the
performance of the model [31]:

(A1) YNN(x, y) < ε1, When x and y belong to the same category;
(A2) YNN(x, y) ≥ ε2, When x and y belong to different categories;
(A3) |YNN(x, y)−YNN(y, x)|≤ ε3 , For any x and y;
(A4) YNN(x, z) ≤ YNN(x, y) +YNN(y, z), For any z, x and y belong to different categories.

where x, y, z represent eigenvectors; YNN(x, y) is the output of the SCN network model,
representing the similarity degree between x and y; ε1, ε2, ε3 are constants, where ε1 = ε3
usually, where the value is 0.2–0.3, and the value of ε2 is 0.7–0.8.

The termination condition of the model is to satisfy the above metrics (A1–A4) in a
certain proportion of α% (α ∈ (0, 100)). For example, when α is equal to 80, YNN(x, y) can
be used as the output of similarity degree.

3.2. Fault Detection Model Based on SCN-CBR
3.2.1. Model Structure and Function

Figure 2 is a fault detection model based on SCN-CBR, and its main functions are as
follows: First, the characteristic attributes of the source case Ck (k = 1, 2, . . . , p) and target
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cases Xp+1 are normalized and expressed in the form of eigenvector, and the case base
is constructed. Then, the target case Xp+1 is used as an input, and the similarity degree
between the target case and each source case is measured by the case retrieval method
based on SCN-LPM; thus, K similar case solutions are obtained. Next, according to the
KNN rule, the suggested solution Ŷp+1 of the target case is obtained. Finally, the suggested
solution is confirmed and adjusted through revision, and the corresponding target case and
the correct solution Yp+1 is stored in the case base, thus a learning process of reasoning and
solving is completed. When the next case arises, the above process is repeated to realize
the fault detection function of the MSW incineration process.
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3.2.2. Fault Detection Algorithms

The algorithm implementation of each part shown in Figure 2 is described below.

(1) Constructing case base. The problem descriptions and solutions of target case Xp+1
and source case Ck are normalized and expressed as an eigenvector form in binary
tuples to form p source cases, which are stored in the case base. Each source case
is recorded as Ck(k = 1, 2, . . . , p). It can be expressed in the form of binary tuples
as follows:

Ck : 〈Xk; Yk〉, k = 1, 2, · · · p (6)

where p is the total number of source cases, Xk is the set of characteristic attributes
in the k-th source cases, and Yk is the category of characteristic attributes in the k-th
source cases. Assuming that each source case has n characteristic attributes, Xk can be
expressed in the following form:

Xk = (x1,k, · · · , xi,k, · · · , xn,k) (7)

where xi,k is the normalized value of the i-th characteristic attribute in the record of
article k-th.

(2) Case retrieval based on SCN-LPM. The input variable of the target case Xp+1 and
the input variable of the source case Xk(k = 1, 2, . . . , p) are composed of p input
pairs, namely:

Dk :
〈

Xp+1; Xk
〉
, k = 1, 2, · · · p (8)

Then, p YNN(Xp+1, Xk) can be obtained according to the SCN-LPM method. According
to A1 of the four metrics in Section 3.1, K source cases similar to the target case Xp+1
can be obtained.
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(3) Case reuse. According to the KNN rule, the number of categories corresponding to
the K source cases retrieved is counted, and the category with a large number is taken
as the suggested category Ŷp+1.

(4) Case revision. When evaluating the suggested category Ŷp+1, if the evaluation is
unsuccessful, the classification results need to be revised to obtain the correct category
Ŷp+1.

(5) Case storage. Target case and corrected category are stored in the case base to form
a new case. So far, the number of source cases has been from p→p+1, and the CBR
problem solving process is completed.

3.3. Algorithmic Steps

In summary, the steps of the SCN-LPM algorithm are as follows:
Step 1: Normalize the characteristic attributes in the sample set and perform the initial-

ization of parameters, setting SCN learning parameters and stochastic parameters, etc.
Step 2: Construct sample set D according to Formula (2) and divide it into training set

Dtrain and testing set Dtest.
Step 3: Determine the structure of the SCN model, then randomly assign input weight

and hidden node bias under the constraint of inequality (4), so as to determine the number
of input and output nodes as well as the number of hidden layer neurons, i.e., determine
the structure of SCNs.

Step 4: Train SCNs with training set Dtrain.
Step 5: Determine whether the SCNs model satisfies the measurement criterion (A1–A4)

in a set proportion of a%. If it satisfies the measurement criterion, continue to Step 6;
otherwise, return to Step 4.

Step 6: Taking the target case as input, the similarity degree between the target case
and each source case is measured through the SCN-LPM method, and the similarity degree
YNN(x, y) is the output. According to A1 of the metrics, K similar case solutions can
be obtained.

4. Experimental Study

For easy viewing, the abbreviations are specified as follows: the support vector
machine algorithm is recorded as SVM, the Euclidean distance similarity measure method
is recorded as E, the BP-based learning pseudo metric is recorded as BP-LPM, the SCN-
based learning pseudo metric method is recorded as SCN-LP, the CBR algorithm based
on the Euclidean distance similarity measure is recorded as ED-CBR, the CBR algorithm
based on BP-LPM is recorded as BP-CBR, and the CBR algorithm based on SCN-LPM is
recorded as SCN-CBR.

4.1. Experimental Parameters

The experiment is programmed in a MATLAB R2016a 9.0.0 environment. The computer
CPU used is Intel (R) Core (TM) i5-4570H CPU@3.20 GHz, and the memory is 8 GB.

The parameters of various methods are as follows: In the SVM algorithm, the penalty
factor is 10, the loss factor is 0.1, and the kernel function is the Gauss radial basis function.
In the BP algorithm, a three-layer network structure is adopted, the number of hidden
layer neurons is 15, the activation function is a Sigmoid function, the training function is
Trainrp, training times are 1200, the value of the target error is 10−5, and the learning rate
and convergence error are 0.1 and 0.01, respectively. In the ED-CBR algorithm, the value of
K is 5. In the BP-CBR algorithm, ε1 = ε3 = 0.3, ε2 = 0.7, and the condition of terminating the
LPM model is to satisfy the proportion of the measurement criterion (A1–A4) in Section 3.2
which is 80%; the other parameters are the same as those of BP algorithm. In the SCN-CBR
algorithm, ε1 = ε3 = 0.3, ε2 = 0.7, the condition of terminating the LPM model is to satisfy
the proportion of the measurement criterion (A1–A4) in Section 3.2 which is 80%, the
three-layer network structure is adopted, the maximum number of hidden layer nodes is
100, the training error limit is 0.01, the range of stochastic weight is (0.5, 1, 5, 10, 30, 50,



Sensors 2021, 21, 7356 8 of 13

and 100), the maximum stochastic configuration time is 100, and the activation function
is a Sigmoid-type function. All parameters are obtained by a grid search method and a
10-fold cross-validation method. That is, the possible values of various parameters are
arranged and combined, and all possible combination results are listed to generate a “grid”.
Then, each combination is used for model training, and the effect is evaluated by a 10-fold
cross-validation. After all the parameter combinations are tried, it returns an appropriate
model and automatically adjusts to the best parameter combination.

The experimental data are collected from a DCS-distributed control system of a MSW
incineration power plant in Beijing, sampling every 5 min. The sample size of the steam-
water system is 390, the sample size of horizontal flue gas passage is 345, and the sample
size of the furnace chamber is 409. Sample set D is constructed and divided into training
sample set Dtrain and testing sample set Dtest according to Section 3.1. Among them, nine
pieces are selected as training sets and one piece is selected as a testing set.

4.2. Performance Testing
4.2.1. Stability

In order to evaluate the stability of SCN-CBR model, a stability experiment was carried
out with steam-water system fault data as an example. The specific process is as follows:
First, the dataset was selected as a case base, sample set D was constructed, and 1000, 4000,
8000, 12,000, 16,000, and 20,000 input pairs were randomly selected from training set Dtrain
and testing set Dtest, and were consequently separated from sample set. Then, they were
put into the pseudo-metric model and results were produced. Finally, the satisfaction rate
of the measurement criteria A1-A4 was verified and shown in Table 4. It can be seen from
the table that with the increase of the number of input pairs, the standard deviations of the
training set satisfying the measurement criteria are 0.59, 0.39, 0.37, and 0.45, respectively,
and the standard deviations of the testing set satisfying the measurement criteria are 0.69,
0.46, 0.35, and 0.54, respectively, which indicates that the satisfaction rates of the training
set and the testing set are basically unchanged. The coefficient variation (CV) of the training
set satisfying the measurement criteria are 0.61%, 0.41%, 0.41%, and 0.51%, respectively,
and the coefficient variation (CV) of the testing set satisfying the measurement criteria are
0.72%, 0.52%, 0.37%, and 0.63%, respectively. We can see that all the coefficient variations
(CV) are less than 1%, which indicates that the satisfaction rate has weak variation. That is
to say, the SCN-CBR model can control the dataset within a reasonable accuracy range and
has good stability.

Table 4. Satisfaction rate of measuring criteria for steam-water systems (%).

Input Pairs
Training Set Testing Set

(A1) (A2) (A3) (A4) (A1) (A2) (A3) (A4)

1000 96.57 95.24 91.30 89.34 96.34 89.02 95.23 86.24
4000 97.32 96.02 92.05 89.57 97.48 88.53 95.17 85.49
8000 96.81 95.67 91.84 89.25 96.01 89.74 95.46 86.02

12,000 97.29 95.38 91.79 88.36 96.27 88.36 95.12 87.10
16,000 95.75 96.35 90.96 89.02 95.51 88.68 96.04 86.28
20,000 96.04 95.39 91.38 88.43 97.30 89.12 95.85 86.93

Average value 96.63 95.68 91.55 89.00 96.49 88.91 95.48 86.34
Standard deviation 0.59 0.39 0.37 0.45 0.69 0.46 0.35 0.54

Coefficient variation 0.61% 0.41% 0.41% 0.51% 0.72% 0.52% 0.37% 0.63%

4.2.2. Robustness

In the presence of noise, the robustness of six kinds of faults (fault 1: super-heater
leakage, fault 2: economizer leakage, fault 3: horizontal flue ash accumulation, fault 4:
horizontal flue slagging, fault 5: furnace chamber coking, fault 6: slagging is not smooth)
was tested on the corresponding datasets. First, each fold cross validation experiment
automatically produced a stochastic vector which obeys the uniform distribution of (−1, 1),
i.e., noise noisei. Then, 10 different interference factors λi (i = 1, 2, . . . , 10) were added to
the noise. Thus, the input vectors of the SCN-CBR model became the sum of the input
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vector and noise, i.e., [I + λi × diag(noisei)]s, where λi changes from 1% to 10%. I is a
unit matrix with compatible size and diag(·) is the diagonal matrix. In the presence of
different interference factors and noises, the change curve of classification accuracy of
the fault detection model is shown in Figure 3. The graph shows that the classification
accuracy of the model does not fluctuate obviously after adding different interference
factors, which shows that the fault detection model has a certain anti-interference ability
and good robustness.
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Figure 3. Robustness test.

The result statistics of the classification accuracy rate of the fault detection model
under the action of different interference factors are shown in Table 5. From the table, we
can see all the coefficient variations (CV) are less than 1%, which indicates the six faults
have weak variation under the action of different disturbance factors. That is to say, the
fault detection model has good anti-interference ability and good robustness.

Table 5. Accuracy rate (%).

Interference Factors
Classification Accuracy Rate

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

1 88.30 81.02 99.89 73.09 85.61 76.41
2 88.01 79.90 99.87 73.11 85.90 76.82
3 87.02 80.49 99.91 72.98 85.99 76.30
4 88.52 80.32 99.74 72.71 86.11 76.41
5 88.41 80.02 99.93 72.52 85.89 76.90
6 87.89 79.77 99.96 72.70 85.78 77.01
7 87.78 80.19 99.81 72.92 85.78 76.52
8 88.01 80.91 99.83 72.65 85.62 76.20
9 86.90 80.43 99.85 72.53 85.81 76.80
10 86.90 80.50 99.87 72.90 85.89 76.89

Average value 87.77 80.36 99.87 72.81 85.84 76.63
Standard deviation 0.62 0.41 0.06 0.22 0.15 0.29

Coefficient variation 0.7% 0.5% 0.06% 0.3% 0.1% 0.4%

4.3. Contrast Experiments

In order to further verify the validity of the fault detection model, the proposed method
was compared with BP, SVM, ED-CBR, and BP-CBR by using fault data, and the accuracy of
fault detection is given. All selected parameters are obtained using the grid search method and
10-fold cross-validation method, which make the models have the best effects. In the case of
best parameters, the comparison experiment of single fault-detection accuracy and multi-fault
detection accuracy are carried; the results are shown in Figures 4 and 5, respectively.
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Figure 4 shows that the classification accuracy of the fault detection model based on
SCN-CBR is the highest in six different faults of three different regions, which indicates
that the single fault-detection accuracy of the proposed method has a strong advantage.

Figure 5 shows that the detection accuracy of the proposed method is higher than
that of other methods in various faults of each region. In summary, the fault detection
method based on SCN-CBR has a better comprehensive performance in the process of
MSW incineration treatment.

As for the running time of different fault detection methods for the steam-water
system, the horizontal flue gas passage, and the furnace chamber, it can be seen from
Figures 6–8 that SCN-CBR has a longer running time than BP, SVM, and ED-CBR, but a
shorter running time than BP-CBR. This shows that SCN-CBR can effectively improve the
BP-CBR model which has a long training time with the increase of sample size. In terms of
the detection accuracy and running time, the comprehensive performance of SCN-CBR is
more advantageous.
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5. Conclusions

In order to obtain a fault detection method in the waste incineration process, a learning
pseudo metric method based on SCN was studied, and a fault detection model based on
SCN-CBR was designed. The experiment was carried out through the historical data of a
waste incineration plant, and the results show that the method proposed in this paper has
higher accuracy in fault detection. The main contents are as follows:

(1) A learning pseudo metric method based on SCN was constructed. First, the sample
set was constructed according to the Cartesian product. Then, the pseudo metric
criterion was defined. Finally, according to the training sample set and the defined
pseudo metric criteria, the SCN learning model was trained, and a new learning
pseudo metric method was obtained.

(2) A fault detection model based on SCN-CBR was constructed. The similarity mea-
surement method based on SCN-LPM was applied to the retrieval stage of CBR,
and a fault detection model of the waste incineration process based on SCN-CBR
was established.

Using the SCN-LPM similarity measurement method instead of distance measurement
could effectively avoid the problems of weight assignment and distance trap, as well as
the fast-learning ability and the universal approximation property of utilized SCNs, which
could effectively improve local minimization and slow convergence speed of BP-LPM,
and could also reduce the detection time complexity. At the same time, the incremental
learning of CBR was also utilized to store the experience of solved problems to improve
the accuracy of subsequent problem solving. However, there are still some limitations. For
example, due to the inherent characteristics of SCNs, the network overfitting phenomenon
may occur, resulting in low generalization ability. Besides, the instability of samples may
lead to inaccurate fault detection. Thus, future work can be carried out from two aspects.
One aspect is how to improve the network structure of SCN and optimize SCN parameters,
and another is how to ensure the stability of sample data.
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