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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disease in the
elderly population. Similarly to other neurodegenerative diseases, the early diagnosis of PD is quite
difficult. The current pilot study aimed to explore the differences in brain connectivity between PD
and NOrmal eLDerly (Nold) subjects to evaluate whether connectivity analysis may speed up and
support early diagnosis. A total of 26 resting state EEGs were analyzed from 13 PD patients and 13 age-
matched Nold subjects, applying to cortical reconstructions the graph theory analyses, a mathematical
representation of brain architecture. Results showed that PD patients presented a more ordered
structure at slow-frequency EEG rhythms (lower value of SW) than Nold subjects, particularly in the
theta band, whereas in the high-frequency alpha, PD patients presented more random organization
(higher SW) than Nold subjects. The current results suggest that PD could globally modulate the
cortical connectivity of the brain, modifying the functional network organization and resulting in
motor and non-motor signs. Future studies could validate whether such an approach, based on a
low-cost and non-invasive technique, could be useful for early diagnosis, for the follow-up of PD
progression, as well as for evaluating pharmacological and neurorehabilitation treatments.
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1. Introduction

Parkinson’s disease (PD) is a slowly progressive movement condition and one of
the most common neurodegenerative disorders, affecting worldwide approximately 1–2%
individuals older than 60 years old. Although it is well established that α-Synuclein,
linked genetically and neuropathologically to PD, is one of the main components of Lewy
body deposits in the substantia nigra, leading to dopaminergic dysfunction in the basal
ganglia, the diagnosis of PD is still based on the clinical history and the physical exam-
ination of the patient [1,2]. Indeed, nowadays, there is no standard diagnostic tool for
PD detection, particularly in the early stages of the disease, except for the DAT-SCAN, a
relatively expensive and invasive neuroimaging technique utilizing a radioligand [3]. The
clinical manifestations of PD are predominantly characterized by motor symptoms, such
as bradykinesia, resting tremor, gait disturbance, rigidity and postural instability [4–6].
Moreover, PD is classically distinguished into two motor subtypes, tremor-dominant (TD)
and non-tremor dominant (nTD), the latter mainly characterized by postural instability,
gait difficulty and akinetic–rigid syndrome [7,8]. Furthermore, most PD patients may suffer
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from non-motor-symptoms such as autonomic dysfunction, hyposmia, sleep disorders,
cognitive impairments or psychiatric disturbances [9,10]. These symptoms lead to serious
disability and poor quality of life among patients. Usually, the presence of both cardinal
motor dysfunction (i.e., akinesia, rigidity, postural instability and resting tremor) and
response to levodopa supports the diagnosis of PD [3,11–13].

It may be challenging to distinguish typical PD features from signs of normal aging,
as well as from manifestations of atypical parkinsonism [14]. In fact, PD motor symptoms
may be mistaken for motor impairments resulting from normal aging, i.e., age-related
parkinsonism [4–6,14–16]. The dysfunction of the cortico–striatal–thalamic–cortical loops
seems to lead to the hallmark motor features of PD, including tremor, bradykinesia and
rigor [17,18]. Although the exact mechanism underlying the pathophysiology of PD is
unknown, increasing evidence has suggested that it could be associated with abnormal
cortical–subcortical–cortical connectivity network organization involving a widespread
group of brain regions orchestrated by the basal ganglia [19,20]. Indeed, PD impacts sub-
cortical pathways, leading to dysfunctional automatic movement control, which has been
suggested to be followed by a compensatory shift to an enhanced voluntary cortical con-
trol [21–23]. This degenerative disorder tends to become a serious social burden; therefore,
new approaches to improve PD early detection are required in order to uncover sensitive
and reliable biomarkers and to implement efficient treatment at the appropriate time.

In recent years, brain dynamics in PD have been studied with magnetic resonance
imaging (MRI), which has been useful in identifying structural lesions associated with other
forms of parkinsonism, vascular pathologies or neoplasms, and to measure the degree
and the distribution of brain atrophy [24]. In particular, resting-state functional magnetic
resonance imaging (rs-fMRI) has investigated functional connectivity of the motor net-
work in PD during rest, showing significantly decreased functional connectivity in the
supplementary motor area, left dorso-lateral prefrontal cortex and left putamen in patients
as compared to healthy controls [25,26]. Despite significant evidence for the relevance
of neuroimaging in assessing parkinsonian patients, none of the currently available neu-
roimaging techniques are specifically recommended for routine use in daily clinical practice
for PD [24]. A potentially useful diagnostic tool for evaluating PD patients could be elec-
troencephalography (EEG) [27], a non-invasive technique able to describe the brain electric
activity with the benefit of high temporal resolution: as compared to fMRI, EEG could
have similar diagnostic accuracy but significantly lower costs [28,29]. Many studies on the
spectral analysis of EEG data have identified numerous pathological brain rhythm alter-
ations in PD patients; indeed, it was shown that the motor symptoms in PD patients were
related to increased activity in the alpha band [30,31]. Resting EEG data analyses showed a
decrease in beta power [32,33] and a remarkable increase in theta and low alpha powers in
PD patients in comparison to controls [34,35]. Furthermore, a number of studies concluded
that the most common abnormality of EEG in PD patients is the generalized slowing of
brain activity. For instance, Serizawa and colleagues [36] showed that PD patients exhibit
a diffuse slowing in quantitative EEG in comparison to normal controls; Bosboom and
coworkers [37] found that PD is characterized by a slowing of resting-state brain activity
involving the theta, beta and gamma bands; Stoffers and others [34] confirmed that the
slowing of oscillatory brain activity is a stable characteristic of PD without dementia.

Another approach used to investigate the brain dynamics and to characterize the
structure and dynamics of relevant networks is graph theory, a mathematical representation
of the brain architecture. In fact, some studies have shown that PD is characterized by
alteration of the loops of cortical–subcortical pathways [21,22]. Thus, an approach based on
EEG brain connectivity architecture analysis could be very helpful in identifying the specific
features of PD patients. Previous evidence has shown how to apply graph theory to the
diagnosis of Alzheimer’s disease [38] and also to the evaluation of vascular dementia [39],
schizophrenia [40] and depression [41]. A recent study investigated the resting-state brain
network topology in PD patients in relation to clinical scales of disease progression using
magnetoencephalography and concepts from graph theory [42]. In particular, the results
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indicated that changes in graph theory parameters are very early promising markers of PD
progression, associated with the deterioration of motor function and cognitive performance.
Utianski and colleagues [43] revealed that network measure alterations are visible in PD
patients, suggesting an abnormal interaction between cortical areas. This contributes to PD
symptoms, demonstrating how graph theory analysis by EEG is a robust form of analysis
for various stages of PD. Despite this bulk of evidence, graph theory has been poorly
applied to the study of brain dynamics in PD patients; in particular, to the best of our
knowledge, no study has previously investigated the parameter of the small world (SW)
organization applied to cortical sources.

Keeping in mind the above evidence, the aim of the present pilot study was to explore
the differences in resting-state brain connectivity between PD patients and NOrmal eLDerly
(Nold) subjects applying graph theory—in particular, SW analysis—to cortical sources.

2. Materials and Methods
2.1. Participants

Thirteen patients diagnosed with PD and thirteen Nold subjects, harmonized for sex
(8 female) and age (61.54 ± 2.47, mean ± standard error), were recruited in the study
groups. The entire experiment was started after receiving the informed consent of each
participant, according to Code of Ethics of the World Medical Association (1997), and all
the procedures met the requirements of the Declaration of Helsinki. The EEG recording
was performed in accordance with safety guidelines. The diagnosis of PD was based on
the medical history, neurological and physical examinations, as well as on the response
to levodopa drugs. The exclusion criteria included atypical parkinsonism, use of neu-
roleptic treatments, antidepressants and dopamine blocking drugs, alcohol abuse, the
presence of other neurological or psychiatric conditions and any other severe illness. In
the Nold group, the subjects were healthy, without symptoms or history of neurological or
psychiatric disorders.

2.2. Data Recordings and Preprocessing

Resting-state eyes-closed conditions were recorded from EEG for at least 6 min. During
the recordings, participants were placed on a comfortable armchair. The EEG time series
were recorded through 19 electrodes (Fp2, F4, C4, P4, O2, F8, T4, T6, Fp1, P3, C3, P3,
O1, F7, T3, T5, Fz, Cz, Pz) positioned with a montage resulting from the International
10–20 scheme.

Vertical and horizontal electrooculography channels (EOGs) were positioned to check
eye blinking artifacts. The impedance of all electrodes was kept below 5 KΩ. The data
(sampling rate frequency of 256 Hz) were analyzed in Matlab (MathWorks, Natick, MA,
USA) using functions built from EEGLAB toolbox (Swartz Center for Computational
Neurosciences, La Jolla, CA, USA) [44–46].

The EEG data were collected with a band-pass finite impulse response (FIR) filter
from 0.2 to 47 Hz. Then, they were segmented in 2 s duration epochs and main artifacts in
the EEG signal (i.e., eye movements, scalp muscle contraction and cardiac activity) were
removed by an EEG expert and by Infomax ICA algorithm [47,48], which allowed the
separation of independent component sources of the multichannel EEG recordings [49–53],
as implemented in the EEGLAB toolbox. The artifact removal procedure was realized
keeping at least 5 min for each subjects.

2.3. Functional Connectivity of Cortical Sources Analysis

By means of the software of exact Low Resolution Electromagnetic Tomography
(eLORETA) [54], brain connectivity was calculated on Regions of Interest (ROIs) according
to the Brodmann areas (Bas): 42 ROIs for each hemisphere (left and right) (BAs: 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47). The ROI were used to compute the brain
functional connectivity from the estimation of its electric neuronal activity. In particular, the
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intracortical Lagged Linear Connectivity, namely current density time series, was extracted
between all possible pairs of the 84 ROIs using the algorithm of “all nearest voxel” [54,55].
For each subject, the current density estimation was calculated for seven independent
EEG frequency bands, namely delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2
(10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz) and gamma (30–45 Hz) [56].

2.4. Graph Analysis

A network is a mathematical representation of a complex system. In the last decade,
in several studies, the brain was defined by a set of nodes and links, where the first usually
represent brain regions while the second ones represent the functional connections between
nodes. A weighted graph is a mathematical structure of vertices that may be linked to each
other by different and variable weights. In the current study, the values of connectivity
computed between all pairs of ROIs for each frequency band and for each subject were used
as the weight of the graph edges in the following graph analyses (the EEG analysis pipeline
is reported in Figure 1). The nodes were defined as the ROIs, and the links of the network
were weighted by the Lagged Linear Connectivity values [57]. The small world (SW) index
was defined after the calculation of characteristic path length and clustering coefficient,
which represent, respectively, global connectedness and local interconnectedness [58]. SW
was calculated as the ratio of the normalized clustering coefficient and normalized path
length (obtained by dividing the values previously computed by the values obtained by the
mean of each parameter in all the frequency), and it is used to describe a balance between
segregation and integration [49,59].
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2.5. Statistical Evaluation

Data comparisons were analyzed by the statistical analysis of variance (ANOVA)
design for the SW index between the factors Group (PD, Nold) and Band (delta, theta,
alpha 1, alpha 2, beta 1, beta 2, gamma), after the evaluation of the normality of the
data using the Kolmogorov–Smirnov test, confirming that the hypothesis of Gaussianity
could not be rejected. Data were also corrected by the Greenhouse and Geisser correction
for protection against a possible violation of the sphericity assumption in the repeated-
measures ANOVA. In addition, the post-hoc Duncan’s test with a significance level at 0.05
was performed.

3. Results

The ANOVA for the evaluation of the SW index showed a statistically significant
interaction (F(6, 144) = 2.1213, p < 0.05) between both factors, Group (PD, Nold) and Band
(delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), as reported in Figure 2. The post-hoc
Duncan’s test showed statistical differences in theta (p < 0.05) and alpha 2 (p < 0.05). In
particular, the SW index in Parkinson’s showed lower values (more structured network)
in theta and higher (less organized network) in alpha 2 compared to controls. All values
(mean, standard error and p values for each band) are reported in Table 1.
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Figure 2. Small world trend in the two groups of subjects. Statistically significant interactions
(F(6, 144) = 2.1213, p < 0.05) between SW, Group (PD, Nold) and Band (delta, theta, alpha 1, alpha 2,
beta 1, beta 2, gamma) are reported. In particular, the post-hoc test showed statistical differences in
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Table 1. Small world values in the two groups of subjects described by means of mean ± standard
error (SE). Duncan’s post-hoc test confirmed the statistical differences in the theta (p < 0.05) and alpha
2 (p < 0.05) bands. NS = not significant.

Delta Theta Alpha 1 Alpha 2 Beta 1 Beta 2 Gamma

PD
Mean 1.002604 1.004257 0.998959 1.006675 1.006256 1.001777 0.987933

SE 0.005757 0.00366 0.003947 0.002724 0.003999 0.003196 0.007649
Nold
Mean 1.013802 1.017418 0.994609 0.992857 1.012101 1.002637 0.991665

SE 0.002409 0.002255 0.004055 0.002825 0.002271 0.004642 0.006738
p value NS p < 0.05 NS p < 0.05 NS NS NS

4. Discussion

Parkinson’s disease is a neurodegenerative disorder characterized by typical motor as
well as non-motor symptoms. The motor symptoms include bradykinesia, muscular rigid-
ity, rest tremor and postural impairment. Non-motor impairments include hyposmia, sleep
disorders, cognitive impairment, psychiatric symptoms and autonomic dysfunction [4,60].
As PD is caused by the prominent death of dopaminergic neurons in the substantia nigra
pars compacta, and several neuroimaging studies suggest that striatal dopamine reduction
causes disorders affecting brain circuits governed and orchestrated by the basal ganglia,
various mathematical approaches have been applied in order to identify and visualize
abnormal connectivity in brain networks in PD [61–64]. Among these, network science and
graph theory through EEG data have been widely used to investigate the organization of
human brain networks, simplifying the brain as a graph composed of nodes (representing
regions) and edges (representing functional connectivity among the nodes) [65–68]. In fact,
it has been demonstrated that graph theory is able to evaluate the dynamic consequences
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in large cortical networks [69] and can significantly contribute to explaining neurological
brain function and dysfunction [38,63]. Within this theoretical framework, the present
pilot study aimed to investigate the functional brain connectivity differences between PD
and age-matched healthy subjects—in particular, by means of small world (SW) network
analysis in closed-eyes resting-state EEG recordings. The main goal of the current study
was to demonstrate that the processes of cerebral integration and segregation undergo
variations in the resting-state EEG, revealing changes in the brain during pathological
conditions as compared to physiological ones.

The results showed that PD patients presented a more ordered low-frequency EEG
rhythm structure (lower value of SW) than age-matched healthy subjects, particularly in
the theta band (4–8 Hz). Conversely, in the high-frequency alpha band (10.5–13 Hz), PD
patients presented more random organization (higher value of SW) than age-matched
healthy subjects (Table 1, Figure 2).

The observed result of SW reduction in the theta frequency band in the PD group could
be interpreted both as a loss of efficiency of the network communication flow among brain
regions [65,70] and as a reflection of the abnormal motor activity. In fact, the tremor—a
typical symptom of PD—is associated with neuronal oscillations in the ventral intermediate
(Vim) nucleus of the thalamus and in the subthalamic nucleus (STN) circuit exactly in the
theta frequencies (4–7 Hz) [71,72]. Several studies indicate that atypical neuronal activity
of the STN plays a pivotal role in the pathophysiology of parkinsonian motor symptoms;
indeed, either lesioning or deep brain stimulation (DBS) of the Vim and STN, respectively,
significantly reduce tremors [73,74]. Furthermore, previous studies have demonstrated that
EEG spectral analysis in the resting state in PD patients increased in slower- and decreased
in faster-frequency bands, suggesting a slowing of PD patients’ cortical activity [29,37,75].

Others [76] have revealed that the EEG cortical sources in the theta frequencies are
associated with a pathological synchronization of the brain motor systems related to
tremor or sensorimotor integration. Moreover, a magnetoencephalography (MEG) study—
in which the authors computed the coherence between tremor and several oscillatory
rhythms [77]—has revealed that the tremor diffusely influences the MEG signal, modifying
the power, especially in the theta band.

For the higher-frequency bands, the SW increase in the alpha 2 band in PD patients
could be interpreted as a possible biomarker of a cognitive decline in the early phase of
PD. High alpha rhythm (10.5–13 Hz) reflects the physiological modalities of the thalamo–
cortical and cortico–cortical loops, which facilitate and inhibit the transmission of impulses
and the processing of sensorimotor information flow [78–81].

Several studies have demonstrated that a decrease in alpha power is correlated with
reduced brain region synchronization and integration, namely a more randomized network,
which reflects cognitive dysfunction [43,82,83]. In general, the alpha band constitutes an
important characteristic of normal EEG activity at rest; a disruption of these rhythms might
be interpreted as an EEG marker of altered cortical functioning and impaired information
processing. Vecchio and colleagues [84] have revealed that an increase in the alpha SW
parameter, derived from EEG data, can distinguish between a neurodegenerative status,
as Alzheimer’s disease, and a healthy elderly brain condition. In fact, they observed that
the SW index in the alpha band increased in the pathological condition rather than the
physiological one. In other studies [2,85], the EEG recordings of PD patients were analyzed
through several indexes of graph theory, demonstrating evidence of network breakdown
that correlates with decreased cognitive performance.

As motor impairments are particularly relevant in PD, we made further considerations
towards the alpha 2 band. Indeed, numerous studies have revealed that alpha and beta
band-related networks may be linked to attentional deficits and motor impairments. In
fact, a correlation between alpha and movement organization—namely a PD motor and
rigidity subscale—was found [86,87]. In the current study, an increase in terms of SW in
alpha 2, which means more random network organization, might be an early sign of motor
dysfunction in PD patients. In line with our results and hypothesis, Olde Dubbelink and
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collaborators [42] showed a decrease in the path length parameter in the alpha 2 band in
PD patients compared to healthy subjects, which could be associated with a more random
network organization.

Therefore, according to our findings, a lower SW value in the theta band and a higher
value in the alpha band represent functional disconnections that could be interpreted as
biomarkers of motor impairments typical of PD and a reduction in the performance of
cortical networks.

In conclusion, as Parkinson’s disease represents a leading public health challenge
in the older population, an early diagnosis stage has become an important goal of the
current clinical pharmacological and rehabilitation treatments. To this aim, it appears
that graph theory applied to EEG data, a relatively simple, non-invasive, low-cost and
widely available diagnostic tool, has proved very useful in identifying differences in brain
network behaviors in subjects with PD-related symptoms. Future studies will indicate
whether graph theory applied to EEG analysis actually represents an innovative biomarker
to support PD diagnosis in the early stages and to define the pharmacological and rehabili-
tation strategy that is most suitable for the cognitive and functional recovery of patients
with Parkinson’s disease. Further studies may investigate the EEG connectivity patterns,
through graph theory, in different populations of patients with PD. This may contribute
to understanding whether different PD forms, such as tremor-dominant and non-tremor
dominant, also differ in brain network behaviors as a prerequisite for the determination of
severity and progression.

5. Conclusions

The results of the present pilot study show that resting brain networks exhibit a
different “small world” organization between Parkinson’s patients and control subjects.
The results suggest that Parkinson’s disease globally modulates the cortical connectivity
of the brain, modifying the underlying functional organization, and that this modulation
could be linked to changes in the synaptic efficiency of the motor network and related areas
of the brain. Future studies could verify whether the SW modulations are also observable
in younger subjects compared to elderly ones or pathological patients. Evaluating this
parameter could be helpful for the early diagnosis and treatment of PD, for following the
progression of the disease and for planning neurorehabilitation treatments.
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69. Bočková, M.; Rektor, I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG
studies: A viewpoint. Clin. Neurophysiol. 2019, 130, 239–247. [CrossRef]

70. Vecchio, F.; Miraglia, F.; Bramanti, P.; Rossini, P.M. Human brain networks in physiological aging: A graph theoretical analysis of
cortical connectivity from EEG data. J. Alzheimers Dis. 2014, 41, 1239–1249. [CrossRef]

71. Contarino, M.F.; Bour, L.J.; Bot, M.; van den Munckhof, P.; Speelman, J.D.; Schuurman, P.R.; de Bie, R.M. Tremor-specific neuronal
oscillation pattern in dorsal subthalamic nucleus of parkinsonian patients. Brain Stimul. 2012, 5, 305–314. [CrossRef]

72. Vaillancourt, D.E.; Sturman, M.M.; Verhagen Metman, L.; Bakay, R.A.; Corcos, D.M. Deep brain stimulation of the VIM thalamic
nucleus modifies several features of essential tremor. Neurology 2003, 61, 919–925. [CrossRef]

73. Steigerwald, F.; Timmermann, L.; Kühn, A.; Schnitzler, A.; Reich, M.M.; Kirsch, A.D.; Barbe, M.T.; Visser-Vandewalle, V.; Hübl, J.;
van Riesen, C.; et al. Pulse duration settings in subthalamic stimulation for Parkinson’s disease. Mov. Disord. 2018, 33, 165–169.
[CrossRef] [PubMed]

74. Yin, Z.; Zhu, G.; Zhao, B.; Bai, Y.; Jiang, Y.; Neumann, W.J.; Kühn, A.A.; Zhang, J. Local field potentials in Parkinson’s disease: A
frequency-based review. Neurobiol. Dis. 2021, 155, 105372. [CrossRef]

75. Cakir, Y. Computational neuronal correlation with enhanced synchronized activity in the basal ganglia and the slowing of
thalamic theta and alpha rhythms in Parkinson’s disease. Eur. J. Neurosci. 2021, 54, 5203–5223. [CrossRef]

76. Babiloni, C.; De Pandis, M.F.; Vecchio, F.; Buffo, P.; Sorpresi, F.; Frisoni, G.B.; Rossini, P.M. Cortical sources of resting state
electroencephalographic rhythms in Parkinson’s disease related dementia and Alzheimer’s disease. Clin. Neurophysiol. 2011, 122,
2355–2364. [CrossRef]

77. Timmermann, L.; Gross, J.; Dirks, M.; Volkmann, J.; Freund, H.J.; Schnitzler, A. The cerebral oscillatory network of parkinsonian
resting tremor. Brain 2003, 126, 199–212. [CrossRef]

78. Steriade, M.; Llinas, R.R. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 1988, 68,
649–742. [CrossRef] [PubMed]

79. Brunia, C.H. Neural aspects of anticipatory behavior. Acta Psychol. 1999, 101, 213–242. [CrossRef]
80. Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res.

Brain Res. Rev. 1999, 29, 169–195. [CrossRef]
81. Vecchio, F.; Miraglia, F.; Alù, F.; Judica, E.; Cotelli, M.; Pellicciari, M.C.; Rossini, P.M. Human brain networks in physiological and

pathological aging: Reproducibility of EEG graph theoretical analysis in cortical connectivity. Brain Connect. 2021. [CrossRef]
[PubMed]

82. Geraedts, V.J.; Boon, L.I.; Marinus, J.; Gouw, A.A.; van Hilten, J.J.; Stam, C.J.; Tannemaat, M.R.; Contarino, M.F. Clinical correlates
of quantitative EEG in Parkinson disease: A systematic review. Neurology 2018, 91, 871–883. [CrossRef]

83. Rossini, P.; Miraglia, F.; Alù, F.; Cotelli, M.; Ferreri, F.; Di Iorio, R.; Iodice, F.; Vecchio, F. Neurophysiological Hallmarks of
Neurodegenerative Cognitive Decline: The Study of Brain Connectivity as A Biomarker of Early Dementia. J. Pers. Med. 2020,
10, 34. [CrossRef]

84. Vecchio, F.; Miraglia, F.; Iberite, F.; Lacidogna, G.; Guglielmi, V.; Marra, C.; Pasqualetti, P.; Tiziano, F.D.; Rossini, P.M. Sustainable
method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph
theory combined with apolipoprotein E. Ann. Neurol. 2018, 84, 302–314. [CrossRef] [PubMed]

http://doi.org/10.1016/j.neuroimage.2009.10.003
http://doi.org/10.1038/nrneurol.2011.189
http://doi.org/10.1016/S1474-4422(12)70152-7
http://doi.org/10.1007/s11910-017-0794-2
http://doi.org/10.1016/j.clinph.2020.03.031
http://doi.org/10.3233/JPD-191844
http://doi.org/10.1016/j.clinph.2015.07.040
http://doi.org/10.1016/j.cnp.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/30214997
http://doi.org/10.1007/s11682-016-9528-3
http://www.ncbi.nlm.nih.gov/pubmed/26960946
http://doi.org/10.1080/00207454.2020.1733559
http://www.ncbi.nlm.nih.gov/pubmed/32124666
http://doi.org/10.1016/j.clinph.2018.11.013
http://doi.org/10.3233/JAD-140090
http://doi.org/10.1016/j.brs.2011.03.011
http://doi.org/10.1212/01.WNL.0000086371.78447.D2
http://doi.org/10.1002/mds.27238
http://www.ncbi.nlm.nih.gov/pubmed/29165837
http://doi.org/10.1016/j.nbd.2021.105372
http://doi.org/10.1111/ejn.15374
http://doi.org/10.1016/j.clinph.2011.03.029
http://doi.org/10.1093/brain/awg022
http://doi.org/10.1152/physrev.1988.68.3.649
http://www.ncbi.nlm.nih.gov/pubmed/2839857
http://doi.org/10.1016/S0001-6918(99)00006-2
http://doi.org/10.1016/S0165-0173(98)00056-3
http://doi.org/10.1089/brain.2020.0824
http://www.ncbi.nlm.nih.gov/pubmed/33797981
http://doi.org/10.1212/WNL.0000000000006473
http://doi.org/10.3390/jpm10020034
http://doi.org/10.1002/ana.25289
http://www.ncbi.nlm.nih.gov/pubmed/30014515


Sensors 2021, 21, 7266 11 of 11

85. Peláez Suárez, A.A.; Berrillo Batista, S.; Pedroso Ibáñez, I.; Casabona Fernández, E.; Fuentes Campos, M.; Chacón, L.M. EEG-
Derived Functional Connectivity Patterns Associated with Mild Cognitive Impairment in Parkinson’s Disease. Behav. Sci. 2021,
11, 40. [CrossRef] [PubMed]

86. Melgari, J.M.; Zappasodi, F.; Porcaro, C.; Tomasevic, L.; Cassetta, E.; Rossini, P.M.; Tecchio, F. Movement-induced uncoupling of
primary sensory and motor areas in focal task-specific hand dystonia. Neuroscience 2013, 250, 434–445. [CrossRef]

87. Olde Dubbelink, K.T.; Hillebrand, A.; Twisk, J.W.; Deijen, J.B.; Stoffers, D.; Schmand, B.A.; Stam, C.J.; Berendse, H.W. Predicting
dementia in Parkinson disease by combining neurophysiologic and cognitive markers. Neurology 2014, 82, 263–270. [CrossRef]
[PubMed]

http://doi.org/10.3390/bs11030040
http://www.ncbi.nlm.nih.gov/pubmed/33806841
http://doi.org/10.1016/j.neuroscience.2013.07.027
http://doi.org/10.1212/WNL.0000000000000034
http://www.ncbi.nlm.nih.gov/pubmed/24353335

	Introduction 
	Materials and Methods 
	Participants 
	Data Recordings and Preprocessing 
	Functional Connectivity of Cortical Sources Analysis 
	Graph Analysis 
	Statistical Evaluation 

	Results 
	Discussion 
	Conclusions 
	References

