ﬁ SCNSors @@

Article
Kohonen Network-Based Adaptation of Non Sequential Data
for Use in Convolutional Neural Networks

Michal Bereta

Department of Computer Science, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakéw, Poland;
michal.bereta@pk.edu.pl

Abstract: Convolutional neural networks have become one of the most powerful computing tools of
artificial intelligence in recent years. They are especially suitable for the analysis of images and other
data that have an inherent sequence structure, such as time series data. In the case of data in the form
of vectors of features, the order of which does not matter, the use of convolutional neural networks is
not justified. This paper presents a new method of representing non-sequential data as images that
can be analyzed by a convolutional network. The well-known Kohonen network was used for this
purpose. After training on non-sequential data, each example is represented by so-called U-image
that can be used as input to a convolutional layer. A hybrid approach was also presented, where
the neural network uses two types of input signals, both U-image representation and the original
features. The results of the proposed method on traditional machine learning databases as well as on
a difficult classification problem originating from the analysis of measurement data from experiments
in particle physics are presented.

check for Keywords: kohonen network; convolutional neural network; multiple input neural networks
updates

Citation: Bereta, M. Kohonen

Network-Based Adaptation of Non

Sequential Data for Use in 1. Introduction

Convolutional Neural Networks. Convolutional neural networks (CNN) have been used successfully to tackle the
Sensors 2021, 2, 17221. https:// complex problems of classifying and processing images, time series, and other sequential
doi.org/10.3390/s21217221 data. They are one of the sources of deep learning success. Sequential data are often
the result of measurements with a variety of sensory devices such as cameras or ECGs.
However, in many situations, the measurement result is described by a feature vector,
which is not sequential. Its components are not related by spatial correlation of their
location in the vector. There is no justification for using the CNN network for such data.
In this work, however, we propose a technique for adapting non-sequential data to such
a form that they can be used as input signals to the convolution layer. For this purpose,
the Kohonen network is trained first based on original data in the form of feature vectors.
Then, each feature vector is described with a special image, called a U-image, which is
generated using a trained Kohonen network. Such an image can be interpreted as an
alternative representation of an object originally described by a feature vector. It can be
used alone as an input to the convolution layer. It can also be utilized in conjunction with
the original feature vector to enrich its representation. In this case, it is possible to use
a multiple-input neural network, which accepts as input both the original features and
the representation with the generated U-image. Both of these approaches are described
in detail and tested in this paper. The performed numerical experiments show that in
many cases, the improvement of the classification model’s quality is possible compared to
the traditional feed-forward neural network architecture applied to data in the form of a
feature vector.

conditions of the Creative Commons Later in this section, we present briefly related work and list the central innovative
Attribution (CC BY) license (https:// id€as proposed in this paper. The second section presents the most important information
creativecommons.org/licenses /by / about Kohonen neural networks and presents the basic learning algorithm. We remind
4.0/). the definition of the U-matrix, as well as introduce the definition of the U-image object.

Academic Editor: Christoph M.
Friedrich

Received: 28 September 2021
Accepted: 27 October 2021
Published: 29 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article

distributed under the terms and

Sensors 2021, 2, 17221. https://doi.org/10.3390/s21217221 https:/ /www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7153-980X
https://doi.org/10.3390/s21217221
https://doi.org/10.3390/s21217221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217221
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217221?type=check_update&version=2

Sensors 2021, 2, 17221

2 0f 23

The method of using U-images as input signals to the convolution layer is described in the
third section. The fourth section presents numerical experiments that confirm the benefits
of using the proposed computational technique. The fifth section concludes the work.

1.1. Related Work

In this work, we propose to combine the functionality of convolutional networks [1]
and Kohonen networks [2]. Each of these networks has played an essential role in the
development of computational intelligence methods. CNN networks are one of the pri-
mary sources of deep learning success. They have been used in image recognition [3-5],
facial analysis [6], speech recognition [7], analysis of ECG records [8,9], analysis of medical
images [10], natural language processing [11], and many other problems of classification of
sequential data, i.e., videos, images and time series. Their key role in computational gener-
ative methods such as autoencoders [12] and generative-adversarial networks (GANSs) [13]
cannot be overlooked either. The use of convolutional filters allows for a significant saving
of memory, which allows the construction of larger models. On the other hand, Kohonen
networks played a significant role in unsupervised learning algorithms in problems of data
analysis and visualization. One of the methods of data visualization using the Kohonen
network, called U-matrix, has been described in [14,15]. It is an inspiration for the U-image
proposed in this work. It is impossible to thoroughly review the techniques involved in
both network types and their wide application to many problems in this work. However,
it is worth emphasizing that they are combined innovatively to enable their even more
comprehensive application in this work.

1.2. Proposed Innovative Solutions

Both Kohonen networks and convolutional networks have been known for years.
An innovative computational technique proposed in this work is their joint use in the
case of classification problems of non-sequential data, i.e., data that should not be directly
used as input signals to the convolutional layer. For this purpose, a definition of a new
U-image object was proposed, which, although defined in a manner similar to the pre-
viously known U-matrix, is a new and important idea in the proposed approach. This
work also shows how to combine the original data and the U-image representation for
building a multi-input network. Based on the available knowledge, it can be stated that the
computational technique proposed in this paper is innovative and has no equivalent in the
published works.

2. Kohonen Networks

Kohonen networks [2], also called Kohonen maps, are neural networks that are used to
prepare a low-dimensional (usually two-dimensional) representation of high-dimensional
data. They are often used in data visualization. Unlike most of the neural networks used
in practice, which are trained using gradient supervised learning, Kohonen networks use
unsupervised, competitive learning. Learning aims to preserve the topological similarity
of high-dimensional input data and reflect it on the so-called map, which is usually a
two-dimensional representation of the original data. Data vectors close to each other in
the original multidimensional space are mapped to Kohonen’s map areas, preserving this
relationship. Maps usually have a one-dimensional or two-dimensional structure. Typically,
a two-dimensional grid of neurons is assumed.

In this work, we consider the Kohonen network in the form of a two-dimensional
neural network. Each neuron has two characteristics, a weight vector and its coordinates
in a two-dimensional network of neurons. The length of the weight vector is equal to the
dimensionality of the original high-dimensional data. The original data space is called the
input space, while the two-dimensional grid of neurons is called the map space.

Suppose we have training data in the form of {x;}, where x; € RN. The training of
Kohonen neural network is based on modifying the weights of neurons and is competitive.
Starting with random initial values, neuron weights are updated several times based on

Sensors 2021, 2, 17221

30f23

the training examples. In each epoch, for each training example, BMU (Best Matching
Unit) is found with the weight vector with the minimum Euclidean distance to the feature
vector of the training example. BMU weights are modified as well as the weights of its
neighbors found on the 2D grid. The definition of the neighborhood is not uniquely given.
In the case of a 2D grid, it can be the set of its direct four or eight neighbors. A function
6(i,j, imu, jemu) can also be defined, which will assign each neuron (i, j) the degree of
its neighborhood, depending on its distance from the BMU on the 2D mesh. A common
approach is to decrease the value of the neighborhood function as the distance from the
BMU and the degree of advancement of the training process increase.
The basic training procedure for Kohonen map is given as Algorithm 1.

Algorithm 1: Training of Kohonen network

Input: Training datax;, i =1,..., M, x; € RN, N - the number of features, M - the
number of examples; 2D grid of neurons w;; = [wijb Wi, - - -, wijN]/ for
i=1,...,N¢c,j=1,...,Ng, where Nc and Ny are the numbers of columns
and rows in the 2D grid, respectively; is the learning rate

Output: Wi fori=1,...,Nc,j=1,...,Ng - trained Kohonen map

1. Randomly initialize the weights of Wi fori=1,...,N¢c,j=1,...,Ng

2. while stopping condition not satisfied do

fori=1to M do
a. Find BMU for x;
b. Update weights of BMU and its neighbors according to
wij(t+1) = wi(t) +n(t) - 0, j,ipmu, jemu, t) - (xi — wij(t))
end
end
3. Return Kohonen network Wi fori=1,...,N¢,j=1,...,Np

U-Matrix and U-IMAGE

A trained Kohonen neural network is typically used for data visualization. An example
of such a visualization is presented in Figure 1. Data from the Iris database were used to
train the network. The three classes of iris species are represented by three colors. Each
example is originally described by four features. Therefore, it is not possible to visualize
the data in the original space. However, on the Kohonen map for each iris example, you
can mark its position on the 2D grid by finding the neuron that is its BMU. You can see that
the objects of each class that are close to each other in the original 4D space are grouped
close to each other on a 2D grid, i.e., the learned projection retains topological similarity.

For a trained Kohonen neural network one can define the so-called U-map
(U-matrix) [14,15]. Each neuron presented as a pixel in a 2D image can be assigned a
color depending on the average distance of its weight vector from the weights of its neigh-
boring neurons in a 2D grid. Such visual information can be used to determine which
adjacent neurons on a 2D grid also form groups in a high-dimensional space. In the exam-
ple U-map shown in Figure 1, dark color means that a given neuron has weights similar to
the weights of its neighbors, while light means that despite its proximity in a 2D grid, it is
distant from them in the high-dimensional space. In the example of a network trained on
the Iris data, this allows us to observe the fact that one of the classes is very well separated
from the other two in the original 4D space.

Sensors 2021, 2, 17221

40f23

r2.00

r1.75

-1.50

-1.25

1.00

0.75

0.50

0.25

0 2 4 6 8

Figure 1. U-map for iris data with the examples mapped as green, orange and blue dots.

One of the new ideas proposed in this paper is to define a new object called U-image.
The U-map is defined for the trained Kohonen neural network. We define the U-image for
each example, training or testing, on the basis of a trained Kohonen map. At this point, we
propose, by analogy with the U-map creation process, to define the U-image as follows. For
a given x;, training or test example, prepare a U-image by assigning a value to each neuron
in a 2D network equal to the Euclidean distance of that neuron’s weights from the feature
vector x;. These values, properly scaled, can be used to present x; as a 2D image, without
no matter what the original dimensionality of x; is. The procedure for creating a U-image is
presented as Algorithm 2. Figure 2 shows in each row three examples from a different class
in the iris database, presented as U-images. Clearly, visualization with U-images is able
to capture the similarity of examples from the same class as well as differences between
classes.

Algorithm 2: Calculation of U-image

Input: x - training or testing example; Wi fori=1,...,Nc,j=1,...,Ng - trained
Kohonen map with size (N¢, Ng)
Output: uimage - 2D image representation of x
1. Initialize uimage to be the same size as Kohonen map
2. fori=1to Nc do
for j=1 to N do
Assign the pixel value uimage; ; as the distance of x from the weight vector
Wij
uimage; ; = EuclideanDistance(x, wj;)
end
end
3. Return uimage

Sensors 2021, 2, 17221

50f23

0 0
6 6
? s 2 5
4 4
4 a4
3 3
6 6
2 2
8 1 8 1
o 2 4 6 8 0 2 4 6 8
6 6
5 5
4 a4
3 3
2 2
1 1
o 2 a4 6 8 o 2 4 6 8
E H‘
5
4
3
2
1
0 2 4 6 8

Figure 2. U-images for example iris data. Each row contains three examples from a given class.

0 2 4 6 8 0 2 4 6 8

3. Proposed Method

U-images obtained for examples x; based on a previously trained Kohonen map can
be treated as a new, alternative form of representation of the original data x;. These are
images, so although the original data was not sequential, now the new representation
allows them to be used as input to convolutional layers in a neural network. This idea is
the main novelty presented in this work. This approach will be presented in two versions.
First, U-images can replace the original data x;, which makes it possible to use a traditional
convolutional layer whose input are images. This approach is schematically presented
in Figure 3. The second approach, which can be called hybrid, combines the original x;
representation with a new representation using images. This idea is presented in Figure 4
while the architecture of a hybrid neural network with two types of input data is presented
in Figure 5. Both forms of representation are used as input to the neural network, with
images being processed by convolutional layers and the original x; representation by
ordinary flat layers of neurons.

The proposed method has two components, the use of a Kohonen network and
the use of a convolutional neural network. The computational complexity is greater
compared to using only the neural network with the original attributes. This is due to two
factors. First, the need to train the Kohonen network and use it to compute the U-image
representation. Second, a convolutional network will usually have more parameters than
a traditional feed-forward network. In the case of Kohonen network training, the phase
of calculating the distances between training data and weight vectors in one iteration of
the main training loop has the complexity O(M - N - N¢ - Ng), where M is the number of
training examples, N is the number of original features, Nc and Ny are the number of
columns and rows, respectively, in the Kohonen network. The BMU search step for each
training example has a complexity of O(M - N¢ - Ni). The step of updating the weights
of each neuron for each example has a computational complexity of O(M - N - N¢ - Ng).

Sensors 2021, 2, 17221 6 of 23

Additionally, computing a U-image representation for each example has a complexity
of O(M - N - N¢ - Ng). Some steps can be optimized, for example by using the spatial
indexing method such as R-Tree, the cost of finding the BMU for a single training example
can be reduced to O(log(N¢ - Ng)). Considering that after training the Kohonen network,
only the step of calculating the U-image representation is necessary on the test data, it
can be implemented on low powered devices and sensors. However, the application of
the proposed method on such devices depends on the convolutional architecture of the
neural network used. In many cases, it is necessary to apply appropriate compression of
such a network, for example by using dynamic quantization techniques on different layers.
Examples of such implementations can be found in works [16,17].

—[Training Data }

[Train Kohonen Network] [Testing Data]
[Kohonen Network Testing data as U—Images]

!

—P[Training data as U-Images]

!

[Train CNN

Convolutional Neural Network

Classification model]

Figure 3. Using U-images to train Convolutional Neural Network.

)

Training Data]

[Tram Kohonen Network

] Testing Data]—
[Kohonen Network]—>[Test|ng data as U- Images]

Training data as U—Images]
Train Hybr|d
Neural Network Classification model
Convolutional and ordinary layers

Figure 4. Using both original data and U-images to train hybrid (multi-input) neural network with

convolutional layers.

Sensors 2021, 2, 17221

7 0of 23

N N\
Original features {x;} U-images of {x;}
J
l ~\ A
Ordinary flat layers Convolut|ona| Iayers

Flattening

Ordmary flat Iayers

[Output layer]

Figure 5. Architecture of a hybrid (multi-input) neural network with two types of input data.

4. Numerical Experiments

This section presents the results of a comparative analysis of the different neural archi-
tectures proposed in this work. Known and frequently used datasets from the UCI Machine
Learning Repository were used in the numerical experiments [18]. Sixteen classification
problems with two classes were selected. Table 1 summarizes the data showing the number
of examples, the number of attributes, and the majority class ratio for each dataset. The
datasets represent classification problems of varying degrees of difficulty. Their common
feature is that a set of attribute values represents each example, so they are not described
with sequential data that could be directly used as input to the convolutional network.

4.1. Methodology

We compared the algorithms with 10-fold cross-validation reporting mean test clas-
sification errors as the average of the test errors of the different folds. The divisions into
ten folds were the same for all algorithms. We compared four different neural designs.
First, the traditional feed-forward neural architecture with the original attribute vectors
as input. Second, the proposed architecture, which is a convolutional neural network
accepting U-images as inputs. In this approach, we test the usefulness of hidden con-
volutional layers instead of flat hidden layers. The third architecture is the extension of
the proposed approach, i.e., we use U-images as inputs to CNN. However, we also use
additional flat hidden layers together with convolutional layers. The fourth approach is
based on a multiple-input neural network, which accepts both the original input (vector of
features) and the U-images produced by the Kohonen network. Thus, both convolutional
and traditional flat layers are used in this approach. In each approach, we tested several
architectures by specifying the number of hidden layers of a given type and the number of
neurons in each layer. For each approach and each dataset, we report the best-performing
architecture. The corresponding sections give details about the tested neural networks.
In each neural network we used ReLU activation function, softmax classification layer,
categorical crossentropy as the loss function and Adam optimization algorithm to tune the
weights for 100 epochs.

Sensors 2021, 2, 17221 8 of 23
Table 1. Machine learning test databases used in experiments.
No Database Examples Features Majority Class Ratio
1 breast cancer wisconsin 683 9 0.6501
2 dataset 44 spambase 4601 57 0.6060
3 ILPD 579 10 0.7150
4 ionosphere 351 33 0.6410
5 kel 2109 21 0.8454
6 kc3 458 39 0.9061
7 ozone-level-8hr 2534 72 0.9369
8 parkinsons 195 22 0.7538
9 pima 768 8 0.6510
10 planning-relax 182 12 0.7143
11 QSARbiodeg 1055 41 0.6626
12 sonar 208 60 0.5337
13 SPECTF 267 44 0.7940
14 thoracic-surgery 470 16 0.8511
15 wisconsin diagnostic 569 30 0.6274
16 wisconsin prognostic 194 32 0.7629

4.2. Ordinary Feed-Forward Neural Networks

For each dataset, the following neural architectures of ordinary feed-forward neural
networks were tested: 32, 16-32, 32-32, 16-16-32, 32-16-32, 32-32-32, where the values
represent the numbers of neurons in successive hidden layers. Thus, for example, 32-16-32
describes a neural network with three hidden layers with the number of neurons in each
successive hidden layer 32, 16 and 32, respectively. The input to the networks were vectors
of features. Figure 6 presents such a model configured for parkinsons dataset (22 original
features).

Table 2 presents the mean test errors. For each dataset we report also the architecture
with the best results.

Table 2. Results for ordinary feed-forward neural networks.

No Database Mean Test Error [%] StD [%] Architecture
1 breast cancer wisconsin 2.72 1.88 16-32

2 dataset 44 spambase 5.69 1.35 32

3 ILPD 28.11 9.26 32-32

4 ionosphere 5.85 3.54 16-32

5 kel 13.73 2.08 32-16-32
6 ke3 8.36 3.90 16-16-32
7 ozone-level-8hr 5.62 1.45 16-32

8 parkinsons 13.63 6.82 32-32-32
9 pima 23.34 4.56 32

10 planning-relax 29.37 8.84 32

11 QSARbiodeg 12.19 2.62 16-16-32
12 sonar 13.45 6.02 32-16-32
13 SPECTF 18.93 10.31 32-32-32
14 thoracic-surgery 15.27 5.67 32-32

15 wisconsin diagnostic 2.87 1.44 32-32-32
16 wisconsin prognostic 23.48 13.12 32

Sensors 2021, 2, 17221

9 of 23

input: | [(?, 22)]
output: | [(?, 22)]

InputLayer

input: | (7, 22)
Dense

output: | (?, 32)

input: | (7, 32)
Dense

output: | (?, 16)

input: | (7, 16)
Dense

output: | (?, 32)

input: ?,32)
Dense P (

output: | (?, 2)

Figure 6. Example architecture of an ordinary feed-forward neural network (the question mark
represents the number of examples).

4.3. Kohonen and Convolutional Neural Network

In this section, we present the results of the core idea of this work. The original feature
vectors in each dataset are first used to train Kohonen network. Then, the U-images are
generated and used alone to train the convolutional neural networks. The U-images are
the only type of input for the classification model (CNN) in this set of experiments. It
is worth to mention, that a separate Kohonen network is trained in each iteration of the
10-fold cross-validation. The following architectures of Kohonen-CNN models were tested:
k16 x 16-cnnl6, k20 x 20-cnnl6, k24 x 24-cnnl6, k16 x 16-cnn32-16, k20 x 20-cnn32-16,
k24 x 24-cnn32-16, k30 x 30-cnn32-16, k30 x 30-cnn32-32. In the description, first the
size of the Kohonen network is given (16 x 16, 20 x 20, 24 x 24 or 30 x 30), then the
information about the number of convolutional filters of size 3 X 3 in successive hidden
layers. Max pooling operation of size 2 x 2 was applied after each, but not the last one,
convolutional layer. After the last convolutional layer and before the classification layer, a
flattening operation was applied and one ordinary flat layer of 32 ReLU units was used.
For example, k24 x 24-cnn32-16 describes a model, in which first a Kohonen network of
size 24 x 24 was trained and used to calculate U-images. They were then applied as input

Sensors 2021, 2, 17221

10 of 23

to a CNN with two convolutional layers, first with 32 filters (with max pooling), and the
second with 16 filters. After those, there is a flattening, an additional flat layer of 32 ReLU
units, and the classification layer. Figure 7 presents such a model. Note that Kohonen
network itself is not presented.

In the neural network diagrams shown in Figures 6-9, the sizes of the tensors de-
scribing the input and output of a given layer are shown in parentheses. The question
mark represents the number of training/test examples. In general, it is not known, so
the question mark acts as a placeholder. For example, in Figure 7, the input of the first
convolutional layer is described by a tensor of size (?, 24, 24, 1), which means that the
network input is an image with a size of 24 x 24 pixels and one channel (in this case it is a
U-image obtained from Kohonen’s map with a size of 24 x 24 neurons). Thirty-two feature
maps, each of the size of 22 x 22 pixels, are the output of this layer.

Table 3 presents results for Kohonen-CNN networks. The best performing architec-
tures are reported.

input: | [(?, 24, 24, 1)]
InputLayer
output: | [(?, 24, 24, 1)]
input: ?,24,24, 1
Conv2D P ()

output: | (?, 22, 22, 32)

'

input: | (2, 22, 22, 32)
output: [(2, 11, 11, 32)

'

input: | (2, 11, 11, 32)
output: | (?,9,9, 16)

'

input: | (2,9,9, 16)
output: (2, 1296)

'

MaxPooling2D

Conv2D

Flatten

input: | (2, 1296)
Dense
output: [(?,32)
input: ?,32
Dense P ()

output: | (?,2)

Figure 7. Example architecture of a convolutional neural network with U-images produced by means
of a Kohonen network as input (the question mark represents the number of examples).

Sensors 2021, 2, 17221

11 of 23

Table 3. Results for convolutional neural networks with inputs as U-images from Kohonen map.

No Database Mean Test Error [%] StD [%] Architecture

1 breast cancer wisconsin 2.74 1.88 k20 x 20-cnnl6

2 dataset 44 spambase 6.94 1.06 k30 x 30-cnn32-16
3 ILPD 28.28 7.05 k16 x 16-cnnl6

4 ionosphere 3.80 3.08 k30 x 30-cnn32-32
5 kel 14.29 1.96 k20 x 20-cnn32-16
6 kc3 8.97 4.46 k20 x 20-cnn32-16
7 ozone-level-8hr 5.74 1.51 k16 x 16-cnn32-16
8 parkinsons 8.61 3.70 k30 x 30-cnn32-32
9 pima 22.76 4.60 k16 x 16-cnnl6
10 planning-relax 28.71 9.73 k16 x 16-cnnl6

11 QSARbiodeg 13.97 3.82 k16 x 16-cnn32-16
12 sonar 16.03 5.47 k30 x 30-cnn32-16
13 SPECTF 18.35 7.64 k30 x 30-cnn32-16
14 thoracic-surgery 15.08 6.37 k30 x 30-cnn32-32
15 wisconsin diagnostic 3.16 1.90 k30 x 30-cnn32-32
16 wisconsin prognostic 23.85 12.73 k24 x 24-cnnl6

4.4. Kohonen and Convolutional Neural Network with Additional Flat Hidden Layers

In this section, we test models very similar to those described in the previous section.
The difference is that we experimented with the additional flat hidden layers after the
convolutional layers. For each Kohonen network size (k16 x 16, k20 x 20, k24 x 24
and k30 x 30), we tested the following CNN architectures: cnn16-nn32, cnn16-nn32-32,
cnn32-nn32, cnn32-nn32-32, cnn32-32-nn32, cnn32-32-nn32-32. They should be understood
as first giving the number of filters in the successive convolutional layers (e.g., cnn32-32),
then the number of ReLU units in the flat hidden layers after the flattening operation (e.g.,
nn32-32). Still, there is one flat layer of 32 units and the classification layer at the end of the
network. For example, the description k30 x 30-cnn32-32-nn32-32 states for the model, in
which first the Kohonen network of size 30 x 30 is used to calculate the U-images, which
are then used as input to CNN with two convolutional layers wit 32 filters each, then after
flattening there are two flat layers with 32 units each. The network ends with the usual
layer of 32 units and the classification layer. Figure 8 presents such a model. Note that
Kohonen network itself is not presented.

Table 4 presents results for convolutional neural networks with inputs as U-images
from Kohonen map. Additional hidden flat layers were used.

Table 4. Results for convolutional neural networks with inputs as U-images from Kohonen map.
Additional hidden flat layers were used.

No Database Mean Test Error [%] StD [%] Architecture

1 breast cancer wisconsin ~ 2.76 2.10 k16 x 16-cnn16-nn32

2 dataset 44 spambase 7.00 0.62 k20 x 20-cnn32-32-nn32

3 ILPD 28.12 6.96 k16 x 16-cnn32-32-nn32-32
4 ionosphere 3.36 2.55 k24 x 24-cnn32-32-nn32

5 kel 14.01 2.24 k30 x 30-cnn16-nn32

6 kc3 9.21 4.73 k16 x 16-cnn16-nn32-32

7 ozone-level-8hr 5.56 1.30 k16 x 16-cnn32-nn32

8 parkinsons 9.05 3.08 k30 x 30-cnn32-32-nn32

9 pima 22.98 4.26 k16 x 16-cnn16-nn32

10 planning-relax 29.85 9.51 k16 x 16-cnn16-nn32

11 QSARbiodeg 13.12 2.49 k30 x 30-cnn32-32-nn32-32
12 sonar 14.10 7.29 k16 x 16-cnn32-32-nn32-32
13 SPECTF 16.24 8.47 k20 x 20-cnn16-nn32

14 thoracic-surgery 15.09 6.22 k24 x 24-cnn32-32-nn32
15 wisconsin diagnostic 2.63 1.54 k24 x 24-cnn16-nn32

16 wisconsin prognostic 23.78 11.15 k30 x 30-cnn32-nn32-32

Sensors 2021, 2, 17221 12 of 23

input: | [(?, 30, 30, 1)]
InputLayer
output: | [(?, 30, 30, 1)]
input: ?, 30, 30, 1
Conv2D P ()

output: | (?, 28, 28, 32)

nput: | (7, 28, 28, 32)
output: | (?, 26, 26, 32)

Conv2D

input: | (?, 26, 26, 32)
Flatten
output: (7, 21632)
input: | (?, 21632)
Dense
output: (?,32)
input: | (?, 32)
Dense
output: | (?, 32)
mput: | (7, 32)
Dense
output: | (?, 32)
mnput: | (7, 32)
Dense
output: | (?,2)

Figure 8. Example architecture of a convolutional neural network with U-images as input, together
with additional hidden flat layers (the question mark represents the number of examples).

Sensors 2021, 2, 17221

13 of 23

4.5. Multiple Input Neural Network

In this section, we test the idea of using both types of input, i.e., the original feature
vectors and the U-images produced by Kohonen network are used to train the classification
model. The neural networks in this sections have two branches. The first one is the
series of convolutional layers with U-images as input. The second branch is composed
of the ordinary flat hidden layers (just one in the case of the tests reported here) and
accepts the original feature vectors as input. These two branches, after the necessary
flattening operation, are then merged and processed together by a number of flat layers.
For each Kohonen network size (k16 x 16, k20 x 20, k24 x 24 and k30 x 30), we tested the
following multiple input CNN architectures: 1xconv-1 x 32-1 x 32, 2xconv-1 x 32-1 x 32,
2xconv-1 x 32-2 x 32, 3xconv-1 x 32-2 x 32. The first part of the description gives the
number of convolutional layers (one, two or three as 1xconv, 2xconv or 3xconv) in the first
branch. They are not separated by max pooling in this case. Each convolutional layer has
32 3 x 3 filters. The output of the last convolutional layer is flatten and processed by one
flat layer of 32 ReLU units. This constitutes the output of the first branch. The second
branch accepts the original features and processes them with one hidden layer of 32 ReLU
units (second part in the description, 1 x 32). This constitutes the output of the second
branch. The output of both branches are concatenated and processed by the number of
hidden flat layers given in the third part of the description. For example, 2 x 32 means that
there are two flat layers, each with 32 ReLU units. Given the bigger size of the network, we
add Dropout layer before the classification layer.

Figure 9 presents an example model described as k30 x 30-3xconv-1 x 32-2 x 32
configured for spambase dataset (57 original features). Note, that the Kohonen network
itself is not visualized.

Table 5 presents results for multiple input neural networks.

Table 5. Results for multiple input neural networks.

No Database Mean Test Error [%] StD [%] Architecture

1 breast cancer wisconsin 2.92 1.93 k24 x 24-1xconv-1 x 32-1 x 32
2 dataset 44 spambase 5.26 1.16 k16 x 16-2xconv-1 x 32-1 x 32
3 ILPD 27.43 6.95 k20 x 20-3xconv-1 x 32-2 x 32
4 ijonosphere 3.64 3.45 k30 x 30-2xconv-1 x 32-1 x 32
5 kel 14.36 1.91 k16 x 16-1xconv-1 x 32-1 x 32
6 k3 9.18 4.67 k16 x 16-1xconv-1 x 32-1 x 32
7 ozone-level-8hr 5.93 1.03 k16 x 16-2xconv-1 x 32-2 x 32
8 parkinsons 7.21 4.37 k30 x 30-2xconv-1 x 32-2 x 32
9 pima 24.33 5.36 k20 x 20-2xconv-1 x 32-2 x 32
10 planning-relax 34.20 6.26 k24 x 24-2xconv-1 x 32-1 x 32
11 QSARbiodeg 11.91 2.71 k16 x 16-1xconv-1 x 32-1 x 32
12 sonar 11.28 7.22 k24 x 24-3xconv-1 x 32-2 x 32
13 SPECTF 17.81 5.03 k16 x 16-2xconv-1 x 32-2 x 32
14 thoracic-surgery 15.30 6.10 k16 x 16-1xconv-1 x 32-1 x 32
15 wisconsin diagnostic 2.70 217 k16 x 16-2xconv-1 x 32-1 x 32

16 wisconsin prognostic 23.81 12.28 k24 x 24-1xconv-1 x 32-1 x 32

Sensors 2021, 2, 17221 14 of 23

input: | [(?, 30, 30, 1)]
output: | [(?, 30, 30, 1)]

InputLayer

input: | (?, 30, 30, 1)
Conv2D
output: | (?, 28, 28, 32)
input: 2,28, 28, 32
Conv2D P ()
output: | (?, 26, 26, 32)
input: ?, 26, 26, 32
Conv2D P ()
output: | (?, 24, 24, 32)
input: | (?, 24, 24, 32) input: | [(?, 57)]
Flatten InputLayer
output: (?, 18432) output: | [(?, 57)]
input: | (?, 18432) input: | (?, 57)
Dense Dense
output: (?,32) output: | (?, 32)

N

nput: | [(?,32), (?, 32)]
Concatenate
output: (7, 64)
input: | (?, 64)
Dense
output: | (?, 32)
input: | (?,32)
Dense
output: | (?, 32)
input: | (?, 32)
Dropout
output: | (7, 32)
input: | (?, 32)
Dense P

output: | (2, 2)

Figure 9. Example architecture of a multiple input neural network (the question mark represents the
number of examples).

Sensors 2021, 2, 17221

15 of 23

4.6. Summary of the Results

Table 6 presents the summary of the results. Presented are mean test errors in %. Best
results are underlined.

Table 6. Summary of the results. Presented are mean test errors in %. Best results are underlined.

No Database Ordinary NN Kohonen-CNN Hybrid Multiple input
1 breast cancer wisconsin ~ 2.72 2.74 2.76 2.92
2 dataset 44 spambase 5.69 6.94 7.00 526
3 ILPD 28.11 28.28 28.12 27.43
4 ionosphere 5.85 3.80 3.36 3.64
5 kel 13.73 14.29 14.01 14.36
6 kc3 8.36 8.97 9.21 9.18
7 ozone-level-8hr 5.62 5.74 5.56 5.93
8 parkinsons 13.63 8.61 9.05 7.21
9 pima 23.34 22.76 22.98 24.33
10 planning-relax 29.37 28.71 29.85 34.20
11 QSARbiodeg 12.19 13.97 13.12 11.91
12 sonar 13.45 16.03 14.10 11.28
13 SPECTF 18.93 18.35 16.24 17.81
14 thoracic-surgery 15.27 15.08 15.09 15.30
15 wisconsin diagnostic 2.87 3.16 2.63 2.70
16 wisconsin prognostic 23.48 23.85 23.78 23.81

In order to statistically evaluate the results, we took the best results for each classification
problem from both groups of methods, i.e., ordinary neural networks, and neural networks of
any architecture which uses Kohonen-based preprocessing. To test the null hypothesis that
there is no difference in the results, we apply the two-sided Wilcoxon test. The null hypothesis
in this test is that the median of the differences is zero against the alternative that it is different
from zero. The p-value is 0.0229, so we reject the null hypothesis, concluding that there is
a difference in the results between the neural networks which use Kohonen network-based
preprocessing and those which do not. To confirm that the median of the differences can be
assumed to be non-zero in favour of Kohonen-based models, we use one-sided Wilcoxon
test. It gives the p-value of 0.0115. Hence, we conclude that Kohonen-based models give
statistically better results on the tested classification problems.

Based on the values given in Table 6, we can draw interesting conclusions about the
usefulness of the original attributes compared to the proposed U-Image representation.
Models using only the original features (column Ordinary NN) were the best ones in four
classification problems. On the other hand, models using only the U-image representation
as input (columns Kohonen-CNN and Hybrid) obtained the best results in seven cases.
This fact proves in favor of the proposed method. Undoubtedly, combining the original
attributes and the new U-image representation can be an excellent approach to some
classification problems. This worked best in five cases.

We can also count the cases in which the best model utilized the original attributes,
regardless of whether it also used the U-image representation (columns Ordinary NN and
Multiple input). There are nine problems where the best model used the original features. We
can make similar analysis for the U-image representation, i.e., we count the problems in which
the best model utilized this representation, regardless of whether it used the original features
(columns Kohonen-CNN, Hybrid, and Multiple input). There are twelve such problems.
Thus, according to this criterion the presented method is generally worth considering , too.

The presented results show that the proposed method often improves the results com-
pared to the ordinary feed-forward neural network and the use of only original features. It
can be advantageous when searching for a better model by checking different architectures
of the ordinary neural network does not lead to improvement.

The benefit of the proposed method is sometimes higher and sometimes lower.It is
natural to ask how difficult it is to find the correct neural network architecture. A general

Sensors 2021, 2, 17221

16 of 23

answer to this question is impossible, however Figures 10-25 show mean cross-validation
test errors for each neural architecture tested in each group. There were 6, 8, 24 and
16 different configurations of ordinary feed-forward neural networks, Kohonen-CNN,
hybrid (with additional hidden flat layers) and multiple input, respectively. The details
are presented in previous sections. We can observe that the degree of the usefulness of
the proposed technique varies among the classification problems. For the Parkinsons
problem the proposed method brought about the most remarkable improvement compared
to classic networks. In Figure 17, we see that the combination of the original attributes
with the U-image representation worked out especially well in this case. Some U-image-
only networks (Kohonen-CNN and Hybrid) performed better but some performed worse.
Nevertheless, the potential of the proposed method is visible here. Figure 22 shows a
similar plot for the SPECTF problem, in which the proposed method also gave better
results, but the improvement was not as significant as for the Parkinsons problem. The
proposed U-image representation works very well for ionosphere, too (Figure 13). On the
other hand, for dataset 44 spambase (Figure 11) the need of the original features seems to
be obvious. In general, finding the right U-image-based architecture is not straightforward,
but the improvement is possible in many cases. The proposed method allows searching for
additional configurations compared to using only the feed-forward networks.

= . ¢ ¢ Ordinary NN
@ + Kohonen-CNN
S 3.8 ¢ e Hybrid
g o s Multiple input
.
§ 3.6
S t
(] .
=t .
v3.4 . o
o ° H
— . .
el .] .
= . .
R3.2 . .
” . t .
o L]
t . e .
o 3.0 .
= .
) : :
~ L
c
© 2.8
9] . .
= . °
0 1 2 3 4 5

Figure 10. Cross-validation test errors for different architectures for breast cancer wisconsin dataset.

. . e Ordinary NN

[. i
%85 Koho'nen CNN
8 . . * Hybrid
% e Multiple input
a 8.0
v . .
< . o
< . .
@75 . .
- '
© .
S0 . g
X
£6.5
o
E .
o . o
% 6.0 : i
9 .
c H H
8 5.5 .
=7 .

0 1 2 3 4 5

Figure 11. Cross-validation test errors for different architectures for dataset 44 spambase.

Sensors 2021, 2, 17221 17 of 23

34]
. ¢ Ordinary NN
. ¢ Kohonen-CNN
33 e Hybrid
e Multiple input
3 .
332 .
31
—
e
= []
]]
% 30 3 .
3z . .
c]
s H
= 29 . . .
. . .
. . 3]
28 : : A
0 1 2 3 4 5

Figure 12. Cross-validation test errors for different architectures for ILPD dataset.

. e Ordinary NN
7.0 ¢ Kohonen-CNN
° . * Hybrid
0 6.5 . e Multiple input
£
s .
8 6.0 *
c .
k=) .
'a\—o' 5.5 \
2 s H .
S 5.0 ! s
o i '
@ . H
o 4.5 . H
&
C ° .
g) ;
s 4.0 . H .
3.5
0 1 2 3 4 5

Figure 13. Cross-validation test errors for different architectures for ionosphere dataset.

15.50 ¢ ¢ Ordinary NN
’ ¢ ¢ Kohonen-CNN
* Hybrid

15.25 1« Multiple input
kY : .
£ 15.00 ¢ °
—] [] .
X . . .
n 1475 . . s
o . o
E . .
9]
+ 14.50 N .
4 .
+ . .
S .
o 14.25
= B

s
14.00 .
13.75 0
0 1 2 3 4 5

Figure 14. Cross-validation test errors for different architectures for kcl dataset.

Sensors 2021, 2, 17221 18 of 23

. ¢ Ordinary NN
. ¢ Kohonen-CNN
10.5 e Hybrid
. e Multiple input

)
[}
£10.0
< : . .
(9]
B . s s s
c 95
o s . s
-
] .
] ° s
C
3 9.0 .
=

8.5

0 1 2 3 4 5

Figure 15. Cross-validation test errors for different architectures for kc3 dataset.

N

o
.
.

Ordinary NN
¢ Kohonen-CNN
6.8 * Hybrid

¢ Multiple input

o o
a o
.

o
N
* mee
°oe

o
o
.

Mean test errors [%] (ozone-level-8hr)
u
[o0)

u

o
.

oon

Figure 16. Cross-validation test errors for different architectures for ozone-level-8hr dataset.

18 . e Ordinary NN
¢ Kohonen-CNN
‘ . « Hybrid

g o * e Multiple input
o 16 s
(%]
£] : .
< .
o
© .
14 . : .
n . H .
g12 . .
] .
— o .
n .
4 .
Ead . °
c 10 :
8 : :
s .

8 $

0 1 2 3 4 5

Figure 17. Cross-validation test errors for different architectures for Parkinsons dataset.

Sensors 2021, 2, 17221 19 of 23
29 . Ordinary NN
Kohonen-CNN
. Hybrid
28 Multiple input
‘© .
£ . .
527 . .
.
S .
n ° s ;
=§ 26 : :
¢ : .
- . . .
n .
825 . . ;
c
© N .
9] H . .
=5, . . .
23 .
1 2 3 4 5
Figure 18. Cross-validation test errors for different architectures for pima dataset.
42 . Ordinary NN
Kohonen-CNN
X 40 . Hybr-id .
o . Multiple input
g .
(o)) . M
£ 38 . .
£ :
o . :
Q. .
=36 . :
S : .
— .] .
o : .
o 34 °]
=
[0}
- . °
n . .
832
c
s .
[.
=5 .
1 2 3 4 5
Figure 19. Cross-validation test errors for different architectures for planning-relax dataset.
16 . Ordinary NN
Kohonen-CNN
- : Hybrid
S’ Multiple input
‘g H
£15 . .
o .
< .
(%)
e !
— . H
S 14 : : 3
u : ’
e : :
5 : : :
-
n . . .
L3 .
c
© .
o H
= .
12 .
1 2 3 4 5

Figure 20. Cross-validation test errors for different architectures for QSARbiodeg dataset.

Sensors 2021, 2, 17221 20 of 23

24 . « Ordinary NN
¢ Kohonen-CNN
e Hybrid

22 e Multiple input
= .
©
o .
20 :
S ' :
v 18 *
S . . 3
ful . [
E . »
[0} (] M
ﬁ 16 . : N
g ' I
< H
3 s
=14 * 0

12

0 1 2 3 4 5

Figure 21. Cross-validation test errors for different architectures for sonar dataset.

24 . e Ordinary NN
¢ Kohonen-CNN
23 e Hybrid
— ¢ Multiple input
= ’)
022 .
et .
a s .
2
§ 21 : g .
0 . ')
S 20 : .
E .
9} . .
L e .
219 . . i
L
c . H .
318 .
s H
17 .
16
0 1 2 3 4 5

Figure 22. Cross-validation test errors for different architectures for SPECTF dataset.

H e Ordinary NN
. ¢ Kohonen-CNN
* Hybrid

17.0 e Multiple input

16.5

16.0

Mean test errors [%] (thoracic-surgery)

15.5 . ! .
: t . .
15.0
0 i 2 3 4 5

Figure 23. Cross-validation test errors for different architectures for thoracic-surgery dataset.

Sensors 2021, 2, 17221

21 0f23

7 . e Ordinary NN
o e Kohonen-CNN
g * Hybrid
% e Multiple input
5 6
c
@

c

<]

O

w

25

S

o ; !

o .

5 ; :

) ° . ! .

i :

< : ' : :

© ° : .

3 H

= ¢ .]
. .

0 1 2 3 4 5

Figure 24. Cross-validation test errors for different architectures for wisconsin diagnostic dataset.

. e Ordinary NN

E 32 ¢ Kohonen-CNN
g * Hybrid
% ¢ Multiple input
E'30
C .
)
e
5]
O
0
228
o]
S :
E
o 26 . .
—
(%] .
s . ! ' .
s 24 L 0 H

0 1 2 3 4 5

Figure 25. Cross-validation test errors for different architectures for wisconsin prognostic dataset.

4.7. Preliminary Results for Particle Data and Directions of Future Work

In addition to the numerical experiments presented in the previous section, we con-
ducted additional preliminary attempts to develop a classifier for another complex problem
presented in [19]. This classification problem concerns collisions at high-energy particle
colliders. It is defined by the need to solve difficult signal-versus-background classification.
There are 21 features which are kinematic properties measured by the particle detectors
in the accelerator and seven features (derived by physicists) which are functions of the
first 21 features. Features in this problem are an example of sensory measurements, which
cannot be directly applied to convolutional layers. These data are available in the UCI
repository. The total number of samples available in this collection is 11,000,000.

Given the large size of the data, we only conducted preliminary numerical experiments.
We only considered a subset of the available data, i.e., the first 100,000 examples as training
data. We used all 500,000 test examples as recommended in the original study. Cross-
validation was not used. As in the original study, the AUC value was the metric we
used to compare the models. The Kohonen network sizes used were 30 x 30, 40 x 40,
and 50 x 50. Only a multiple-input network architecture was used. By checking several
architectures, the best results were obtained for a network with three convolutional layers
with 32 filters in the first branch and one hidden layer with 32 ReLU neurons in the second
branch. The mean AUC of the ten runs was 0.7221, with the highest of 0.7278. Compared

Sensors 2021, 2, 17221

22 0f 23

References

1.

2.

to these results, a regular three-layer neural network with 32 ReLU neurons in each layer
gave an average AUC value of 0.7211 and the highest 0.7264 (several architectures were
tested, here we report the best results). Thus, we see that the results have improved after
applying the Kohonen network and convolutional layers. The improvement, however, is
slight and points to the need for further improvements to the method. The results are also
worse than in the original publication, which may be due to the use of only a subset of the
available data. Therefore, further work will adapt the algorithm to handle large data sets
and parallelize the calculations.

It is also worth noting that only one Kohonen network of a given size was always used
in the solution presented in this paper. This means that the input of the first convolutional
layer is always an image with one channel of size equal to the size of the Kohonen network.
The next stage in developing the presented method will be the use of many Kohonen
networks, each of which will provide one mapping, i.e., one image channel constituting the
input for the convolution layer. This is justified, as after starting from random weight values,
each Kohonen network training process ends with a different mapping of multidimensional
data to 2D space. The variety of individual channels can also be obtained by changing the
parameters of the Kohonen network training algorithm, neighborhood definition, or even
other training algorithms not presented in this paper. Various mappings can help present
non-sequential but multidimensional and complex data as images with different channels.
It will further facilitate the convolutional network discovering complex relationships in
the data.

It is also worth mentioning the phenomenon of dead neurons in the Kohonen network
and the resulting restriction on the size of the network. A dead neuron is one that is not a
BMU for any training example. Such a phenomenon will undoubtedly occur if the number
of training examples is smaller than the number of neurons in the Kohonen network. For
example, in a 30 x 30 Kohonen network, we have 900 neurons. In this case, theoretically,
the minimum number of training examples should be at least also equal to 900, but in
practice, it should be much larger. It follows that only for large training sets, the proposed
method can provide input images with higher resolutions.

5. Conclusions

This work presents a new way of using the computational capabilities of convolutional
neural networks. These networks have been used many times with success in problems in
which data are sequential (time series) or are strongly spatially correlated (images, movies).
For data that do not have these properties, the use of the CNN network is not justified. In
this work, it was proposed to use the Kohonen network and the newly proposed U-image
object in order to transform the feature vectors into an image accepted as the input signal of
the convolution layer. On the example of selected machine learning problems, it was shown
that the proposed method leads to better results. The possibilities for further development
of the proposed approach were also indicated. Considering how successful the application
of the CNN in image processing problems was, the proposed method may prove to be an
interesting alternative when building classification models for non-sequential data.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: https:/ /archive.ics.uci.edu/ (accessed on 1 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86,2278-2324. [CrossRef]

Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59-69. [CrossRef]

https://archive.ics.uci.edu/
http://doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/BF00337288

Sensors 2021, 2, 17221 23 of 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Won, C.S. Multi-Scale CNN for Fine-Grained Image Recognition. IEEE Access 2020, 8, 116663-116674. [CrossRef]

Hao, W,; Bie, R.; Guo, J.; Meng, X.; Wang, S. Optimized CNN Based Image Recognition Through Target Region Selection. Optik
2018, 156, 772-777. [CrossRef]

Khan, A.; Chefranov, A.; Demirel, H. Image scene geometry recognition using low-level features fusion at multi-layer deep CNN.
Neurocomputing 2021, 440, 111-126. [CrossRef]

Hu, M.; Wang, H.; Wang, X.; Yang, J.; Wang, R. Video facial emotion recognition based on local enhanced motion history image
and CNN-CTSLSTM networks. |. Vis. Commun. Image Represent. 2019, 59, 176-185. [CrossRef]

Yousefi, M.; Hansen,].H.L. Block-Based High Performance CNN Architectures for Frame-Level Overlapping Speech Detection.
IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 28-40. [CrossRef]

Huang, J.; Chen, B.; Yao, B.; He, W. ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural
Network. IEEE Access 2019, 7, 92871-92880. [CrossRef]

Xu, X;; Jeong, S.; Li, J. Interpretation of Electrocardiogram (ECG) Rhythm by Combined CNN and BiLSTM. IEEE Access 2020,
8, 125380-125388. [CrossRef]

Shin, H.C.; Roth, H.R.; Gao, M; Lu, L.; Xu, Z.; Nogues, I; Yao, J.; Mollura, D.; Summers, RM. Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med.
Imaging 2016, 35, 1285-1298. [CrossRef] [PubMed]

Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing [Review
Article]. IEEE Comput. Intell. Mag. 2018, 13, 55-75. [CrossRef]

Kingma, D.P; Welling, M. An Introduction to Variational Autoencoders. Found. Trends® Mach. Learn. 2019, 12, 307-392.
[CrossRef]

Goodfellow, L].; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8-13 December 2014; pp. 2672-2680.

Ultsch, A.; Siemon, H.P. Kohonen'’s Self Organizing Feature Maps for Exploratory Data Analysis. In Proceedings of the International
Neural Network Conference (INNC-90), Paris, France, 9-13 July 1990; Widrow, B., Angeniol, B., Eds.; Kluwer Academic Press:
Dordrecht, The Netherlands, 1990; Volume 1, pp. 305-308.

Ultsch, A. U *-Matrix : A Tool to Visualize Clusters in High Dimensional Data. 2004. Available online: https://www.researchgate.
net/publication/228530835_UMatrix_a_Tool_to_visualize_Clusters_in_high dimensional Data (accessed on 1 September 2021).
Al Koutayni, M.R; Rybalkin, V.; Malik, J.; Elhayek, A.; Weis, C.; Reis, G.; Wehn, N.; Stricker, D. Real-Time Energy Efficient Hand
Pose Estimation: A Case Study. Sensors 2020, 20, 2828. [CrossRef] [PubMed]

Eggimann, M.; Erb, J.; Mayer, P.; Magno, M.; Benini, L. Low Power Embedded Gesture Recognition Using Novel Short-Range
Radar Sensors. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27-30 October 2019; pp. 1-4. [CrossRef]
Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/ (accessed on 1
September 2021).

Baldi, P; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 2014,
5,4308. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ACCESS.2020.3005150
http://dx.doi.org/10.1016/j.ijleo.2017.11.153
http://dx.doi.org/10.1016/j.neucom.2021.01.085
http://dx.doi.org/10.1016/j.jvcir.2018.12.039
http://dx.doi.org/10.1109/TASLP.2020.3036237
http://dx.doi.org/10.1109/ACCESS.2019.2928017
http://dx.doi.org/10.1109/ACCESS.2020.3006707
http://dx.doi.org/10.1109/TMI.2016.2528162
http://www.ncbi.nlm.nih.gov/pubmed/26886976
http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.1561/2200000056
https://www.researchgate.net/publication/228530835_UMatrix_a_Tool_to_visualize_Clusters_in_high_dimensional_Data
https://www.researchgate.net/publication/228530835_UMatrix_a_Tool_to_visualize_Clusters_in_high_dimensional_Data
http://dx.doi.org/10.3390/s20102828
http://www.ncbi.nlm.nih.gov/pubmed/32429341
http://dx.doi.org/10.1109/SENSORS43011.2019.8956617
https://archive.ics.uci.edu/
http://dx.doi.org/10.1038/ncomms5308
http://www.ncbi.nlm.nih.gov/pubmed/24986233

	Introduction
	Related Work
	Proposed Innovative Solutions

	Kohonen Networks
	Proposed Method
	Numerical Experiments
	Methodology
	Ordinary Feed-Forward Neural Networks
	Kohonen and Convolutional Neural Network
	Kohonen and Convolutional Neural Network with Additional Flat Hidden Layers
	Multiple Input Neural Network
	Summary of the Results
	Preliminary Results for Particle Data and Directions of Future Work

	Conclusions
	References

