
sensors

Article

Data Enhancement via Low-Rank Matrix Reconstruction in
Pulsed Thermography for Carbon-Fibre-Reinforced Polymers

Samira Ebrahimi 1,* , Julien R. Fleuret 1 , Matthieu Klein 2 , Louis-Daniel Théroux 3,
Clemente Ibarra-Castanedo 1,2 and Xavier P. V. Maldague 1

����������
�������

Citation: Ebrahimi, S.; Fleuret, J.R.;

Klein, M.; Théroux, L.-D.;

Ibarra-Castanedo, C.; Maldague,

X.P.V. Data Enhancement via

Low-Rank Matrix in Pulsed

Thermography for

Carbon-Fibre-Reinforced Polymers.

Sensors 2021, 21, 7185. https://

doi.org/10.3390/s21217185

Academic Editor: Manuel José Cabral

dos Santos Reis

Received: 30 July 2021

Accepted: 22 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Vision and Systems Laboratory (CVSL), Department of Electrical and Computer Engineering,
Laval University, Quebec, QC G1V 0A6, Canada; julien.fleuret.1@ulaval.ca (J.R.F.);
clemente.ibarra-castanedo@gel.ulaval.ca (C.I.-C.); Xavier.Maldague@gel.ulaval.ca (X.P.V.M.)

2 Visiooimage Inc. Infrared Thermography Testing Systems, Quebec, QC G1W 1A8, Canada;
matthieu.klein@visiooimage.com

3 Centre Technologique et Aérospatial (CTA), Saint-Hubert, QC 3Y 8Y9, Canada;
louis-daniel.theroux@cegepmontpetit.ca

* Correspondence: samira.ebrahimi.1@ulaval.ca

Abstract: Pulsed thermography is a commonly used non-destructive testing method and is increas-
ingly studied for the assessment of advanced materials such as carbon fibre-reinforced polymer
(CFRP). Different processing approaches are proposed to detect and characterize anomalies that may
be generated in structures during the manufacturing cycle or service period. In this study, matrix
decomposition using Robust PCA via Inexact-ALM is investigated as a pre- and post-processing
approach in combination with state-of-the-art approaches (i.e., PCT, PPT and PLST) on pulsed
thermography thermal data. An academic sample with several artificial defects of different types,
i.e., flat-bottom-holes (FBH), pull-outs (PO) and Teflon inserts (TEF), was employed to assess and
compare defect detection and segmentation capabilities of different processing approaches. For this
purpose, the contrast-to-noise ratio (CNR) and similarity coefficient were used as quantitative metrics.
The results show a clear improvement in CNR when Robust PCA is applied as a pre-processing
technique, CNR values for FBH, PO and TEF improve up to 164%, 237% and 80%, respectively, when
compared to principal component thermography (PCT), whilst the CNR improvement with respect to
pulsed phase thermography (PPT) was 77%, 101% and 289%, respectively. In the case of partial least
squares thermography, Robust PCA results improved not only only when used as a pre-processing
technique but also when used as a post-processing technique; however, this improvement is higher
for FBHs and POs after pre-processing. Pre-processing increases CNR scores for FBHs and POs with
a ratio from 0.43% to 115.88% and from 13.48% to 216.63%, respectively. Similarly, post-processing
enhances the FBHs and POs results with a ratio between 9.62% and 296.9% and 16.98% to 92.6%,
respectively. A low-rank matrix computed from Robust PCA as a pre-processing technique on raw
data before using PCT and PPT can enhance the results of 67% of the defects. Using low-rank matrix
decomposition from Robust PCA as a pre- and post-processing technique outperforms PLST results
of 69% and 67% of the defects. These results clearly indicate that pre-processing pulsed thermography
data by Robust PCA can elevate the defect detectability of advanced processing techniques, such as
PCT, PPT and PLST, while post-processing using the same methods, in some cases, can deteriorate
the results.

Keywords: Robust PCA; RPCA; PCP; IALM; noise reduction; pulsed thermography; CFRP

1. Introduction

Due to the unique features of Carbon-fibre-reinforced polymers (CFRP)—low-density
and high-performance physico-chemical properties—the interest in using these lighter
products and thus replacing the conventional materials (Steel, aluminum, etc.) has in-
creased. The increasing demand for CFRP structures in the aerospace industry is leading to
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the development of enhanced more eco-efficient manufacturing [1]. Although composite
materials are sensitive to impact damage during a lifetime (manufacturing, operations, or
maintenance) [2], they are less prone to corrosion and cracks than other materials. Due to
the different types of defects during the manufacturing process or the service life of the
components, it is important to monitor their efficiency and functionality non-invasively.
Among non-destructive testing techniques, infrared thermography, which involves map-
ping the surface temperatures, can characterize the surface and sub-surface anomalies.
Pulsed thermography (PT) is a no-contact and full-field Infrared Non-Destructive Testing
(IRNDT) approach based on thermal heat transfer analysis during the cooling period; after
the thermal impulse, an incident to the sample’s surface becomes a thermal wave due to
conduction and propagates through the material. The temperature decay is recorded by
the infrared camera during the cooling period. Subject to the presence of discontinuity,
depending on its material and thermal properties and depth, defects will be revealed at
different times. The deeper defects appear later with lower thermal contrast. In order
to obtain quantitative information from thermal data, several approaches have been pro-
posed. Manipulating thermal data makes active thermography an attractive and powerful
approach for industrial control and maintenance purposes.

Moreover, effective pre-processing or post-processing can provide favorable condi-
tions to enhance defect information extraction. Most of the pre-processing for thermal
data is limited to removing the first few frames from the beginning of the sequences, crop-
ping the image, and selecting the region of interest (ROI). Fleuret et al. [3], in their study,
proved that using LatLRR (Latent Low-Rank Representation) as a post-processing tool on
the best image of state-of-the-art methods provides significant improvement in detection.
Khodayar et al. [4] have used the thermographic signal reconstruction (TSR) [5] approach
for pre-processing to reduce the noise. They stated that principal component thermography
(PCT) [6] after the noise reduction could enhance the results. Wang et al. [7] used sequence
differential pre-processing, which was combined with cold image subtraction (CIS) [8], to
provide better thermal data for post-processing approaches in laser infrared thermography.
They evaluated the quality of the image after the combination of pre-processing with pulsed
phase thermography (PPT) [9] or PCT and found that pre-processing improved some re-
sults. Ebrahimi et al. [10] showed that the low-rank matrix computed by RPCA-PCP via
Inexact ALM when used with PT data does not provide optimal results; nonetheless, this
method has not been investigated as a pre-processing method nor as a post-processing
method. Several state-of-the-art IRNDT methods, i.e., PPT, PCT and Partial Least Square
Thermography (PLST) [11,12], have been chosen to evaluate the approaches. We chose
these methods due to the large number of studies that use them.

In the remainder of this paper, we review the most recent works involving RPCA
and thermography. Then, we detail the many aspects of our investigations in Section 3.
Section 4 demonstrates the obtained results, which we analyze and discuss in Section 5.
Finally, Section 6 concludes this study.

2. Literature Review

The presence of excessive noise in raw thermal data always urges researchers to
develop new IRNDT processing approaches. Although limited research work has been
done on the improvement of PCA methods to deal with corrupted data, RPCA has been
the most promising approach in recent years. RPCA is widely used in separating dynamic
variations from the static feature of interest, such as video surveillance data analysis to
extract foreground and background [13]. Infrared dim small target detection has been a hot
and difficult research topic in infrared search and tracking systems. Later, Fan et al. [14]
introduced a novel detection algorithm based on RPCA to solve the difficulty of small
target detection.

Substantial progress has been made in moving object detection, for which RPCA has
been demonstrated to be very effective. The RPCA has been used in infrared moving target
tracking [15] and hyper-spectral image processing for anomaly detection [16]. Moreover,
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RPCA has been used for pre-processing in the machine learning method proposed by
Zhu et al. [17]. They utilized RPCA to detect regions of interest (ROIs) in a novel classifica-
tion model based on the CNN model in eddy current testing (ECT), and the percentage
of defects correctly identified have increased to almost 100%. Draganov et al. [18] used
several decomposition techniques, such as RPCA with Go implementation (GoDec), to esti-
mate the wild animal population using videos captured by thermographic cameras. They
reported promising results in terms of accuracy and execution times. Later, they carried
out a comparative analysis of the performance of several tensor decomposition algorithms,
including high-order robust principal component analysis solved by the Singleton model
(HoRPCA-S) [19]. They reported that among the selected methods, HoRPCA-S has a lower
detection rate but high precision. Furthermore, Liang et al. [20] have demonstrated the
feasibility of sparse tensor decomposition theory on an ECPT data sequence, and they
concluded that Tensor RPCA (TRPCA) can extract defects with high accuracy. The same
year, Li et al. [21] introduced the weighted contraction IALM (WIALM) algorithm based
on low-rank matrix recovery for online applications. It has been used for tire inspection on
radiographic images captured by tire X-ray inspection machines. They improved the effi-
ciency of the algorithm by optimizing the incremental multiplier parameter. Wu et al. [22]
proposed a novel hierarchical low-rank and sparse tensor decomposition method to detect
anomalies in the induction thermography stream. This approach can suppress the interfer-
ence of a strong background and sharpens the visual features of defects. Furthermore, it
overcame the over- and under-sparseness problem suffered by similar state-of-the-art meth-
ods. Surface defect detection is important for product quality control. A visual detection
method was based on low-rank and sparse matrices extracted from the RPCA approach for
surface defect detection of the wind turbine blade [23]. This method in terms of robustness
and accuracy outperformed several state-of-the-art methods. Recently, Wang et al. [24]
proposed a methodology based on RPCA that can separate anomalies in a sparse matrix
from a low-rank background for photovoltaic systems using thermography imaging. They
successfully overcame the difficulties arising from real data and built an automatic online
monitoring system for anomaly detection. Ebrahimi et al. [10] proposed the orthogonal
inexact augmented lagrange multiplier (OIALM). This study demonstrates its efficiency
for defect enhancement capabilities over mixed and various types of defects typically
addressed in IRT in composite materials. In addition, Kaur et al. [25] conducted a com-
parative study between PCA and RPCA to evaluate their effectiveness in defect detection.
They demonstrated that although PCA proved to be better in detection capability, the
sparse matrix provides better detectability than the data reconstructed from the low-rank
matrix. In the medical field, for 3D segmentation of lungs, Sun et al. [26] achieved good
segmentation results for lungs with juxta-pleural tumours by the active shape model (ASM)
based on RPCA.

Many research works have reported the applicability of IRNDT approaches, including
PCT, PPT and PLST. The first implementation of the PCT was introduced by Rajic [27]
for defect detection in composite materials. Lara et al. expressed that optical effects,
such as heating non-uniformities, surface reflection and emissivity variations, appear
on the first component, and the thermal effect will be retrieved on one of the secondary
components [28]. Furthermore, the PCA is a linear decomposition function that is sensitive
to over-illumination and non-uniform heating more than other types of noise. In our
previous research, we proved that Robust PCT [10] can improve the detectability of deeper
defects in composites. Moreover, the PLST is sensitive to gradient. Having an approach that
is less sensitive to noise and applicable to other IRNDT approaches in order to improve the
defect detection is always interesting. As indicated from the literature, low-rank matrices
from RPCA have less noise, and in this study, we study the use of this matrix on different
IRNDT approaches.

The following section introduces the methods and materials regarding this study.
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3. Methods and Materials
3.1. Robust Principal Component Analysis (RPCA)

The Robust PCA problem can be solved via convex optimization that minimizes a
combination of the nuclear norm and the `1-norm. The augmented Lagrange multiplier
(ALM) is a method to solve this convex program. Equation (1) introduces the general
method of ALM for solving constrained optimization problems [29]:

min f (X), subject to h(X) = 0 (1)

where f : Rn → R and h : Rn → Rm. Candès et al. [30] used a convex optimization; the
formulation they have used is known as PCP. The observation matrix D is assumed to be a
combination of the low-rank (A) and sparse matrix (E):

D = A + E (2)

To minimize the energy function, `0-norm is used.

min
A,E

rank(A) + λ‖E‖0 (3)

subject to D−A− E = 0

where λ is a positive and arbitrary balanced parameter to determine the contribution of
A and E in minimizing the objective function. Since Equation (3) is an NP-hard problem,
i.e., at least as hard as the hardest problems in non-deterministic polynomial (NP) time,
Candès et al. [30] reformulated this equation into a similar convex optimization problem
as follows:

X = (A, E) , min
A,E

(‖A‖∗ + λ‖E‖1) (4)

subject to D−A− E = 0

where ‖A‖∗, ‖E‖1 are the nuclear norm of A and l1-norm of E, respectively. The balance
parameter λ is defined as:

λ = 1/
√

max(m, n) (5)

The low-rank minimization due to the correlation between the frames provides a framework
for background modelling. Lin et al. [31] solved Equation (4) using a generic ALM method.
The Lagrange function can be defined as:

L(X, Y, µ) = f (X) + 〈Y, h(X)〉+ µ

2
‖h(X)‖2

F (6)

The Lagrange function of Equation (4) is defined as:

L(A, E, Y, µ) = ‖A‖∗ + λ‖E‖1 + 〈Y, D−A− E〉+ µ

2
‖D−A− E‖2

F (7)

where Y is the Lagrange multiplier and the penalty parameter µ is a positive scalar parameter.
The inexact augmented Lagrange multiplier (IALM) method used to solve the RPCA problem
is shown in Algorithm 1. Y0 has been initialized to Y0 = D/J(D) [32], making the objective
function value 〈Y0, D〉 reasonably large. In addition, J(D) = max(‖A‖2, λ−1‖Y‖∞), where
‖.‖∞ is the maximum absolute value of the input matrix.

In Step 1 of Algorithm 1, ρ is the learning rate, and µ0 is the initialization of the
penalty parameter that influences the convergence speed. In [31], it is proven that the
objective function of the RPCA problem (Equation (4)), which is non-smooth, has an
excellent convergence property. In addition, it has been proven that to converge to an
optimal solution (A∗, E∗) of the RPCA problem, it is necessary for µk to be non-decreasing
and ∑+∞

k=1 µ−1
k = +∞. The proposed algorithm steps are detailed in the following table.
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Algorithm 1: RPCA via IALM method

Input: Data: D ∈ Rm×n, balance parameter λ
Y0 = D

J(D)
; E0 = 0; µ0 > 0; ρ > 1; k = 0;

while not converged do
// Lines 3-4 update A by solving Ak+1 = argmin

A
L(A, Ek, Yk, µk)

(U, S, V) = svd(D− Ek + µ−1
k Yk);

Ak+1 = US
µ−1

k
[S]VT ;

// Line 5 update E by solving Ek+1 = argmin
E

L(Ak+1, E, Yk, µk)

Ek+1 = S
λµ−1

k
[D−Ak+1 + µ−1

k Yk];

Yk+1 = Yk + µk(D−Ak+1 − Ek+1);
Update µk to µk+1;
k← k + 1;

end
Output: (Ak, Ek)

3.2. State-of-the-Art

Pulsed thermography has been extensively investigated as a mean to detect defects
for a wide variety of applications. Several processing techniques have been proposed and
have been thoroughly reported. References [33–35] provide a detailed review of various
methods. Principal component thermography (PCT) [27], pulsed phase thermography
(PPT) [9] and the partial least squares thermography (PLST) [11] are among the most
effective.

In this paper, a computed low-rank matrix was used prior to or after the application
of PCT, PPT and PLST in the PT regime for comparative purposes.

3.2.1. PCT

PCT was introduced by Rajic et al. [6,27] based on the popular multivariate statistical
method, principal component analysis (PCA) [36]. This method constructs a set of empirical
orthogonal functions (EOFs), which are strong representations of complex input signals. In
IRNDT, PCT tends to project data in the orthogonal space that maximizes the variance of
projected data. The EOFs will represent the most critical variability of the data, respectively.
In general, the given sequence can be represented with a few EOFs. Typically, the thermal
sequence of thousands of frames can be replaced by a maximum of ten EOFs.

3.2.2. PPT

Pulsed phase thermography was introduced by Maldague et al. [9]. Each pixel in
the thermal data sequence can be transformed using the one-dimensional discrete Fourier
transform (DFT) to extract amplitude and phase information from PT data. Unlike raw
thermal data, phase transform φ is less sensitive to environmental reflections, emissivity
variations, non-uniform heating, surface geometry and orientation. The most important
characteristic of this method is that it can provide qualitative and quantitative analysis. For
instance, a straightforward formulation of depth estimation (z) using the thermal diffusion
length µ and the blind frequency fb is:

z = C1.µ = C1.
√

α

π. fb
(8)

where fb is the frequency at which a given defect has enough contrast to be detected,
while C1 is the empirical constant and calculated after a series of experiments. It has
been observed that C1 ≈ 1 for amplitude data and a value in the range of 1.5 to 2, with
C1 = 1.82, are typically adopted for research similar to that presented in [37]. Therefore,
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probing deeper defects using the phase makes it more interesting than the amplitude. More
information regarding PPT can be found in [9].

3.2.3. PLST

PLST [12] is based on a statistical correlation method known as partial least squares
regression (PLSR). PLST decomposes predictor X(n×N) and predicted Y(n×M) matrices
into loading (P and Q), score (T and U) vectors and residuals (E and F). The predictor
matrix corresponds to the thermal profile, while Y is defined by the observation time during
which the thermal sequence was acquired. Mathematically, the PLS model is expressed as:

X = TPT + E (9)

Y = UQT + F (10)

In order to select the appropriate number of PLS components, two parameters, i.e., the root
mean square error (RMSE) and the percentage variance explained in the X matrix, must be
taken into consideration.

3.3. Data Acquisition

The experiments were carried out on an academic carbon-fibre-reinforced polymer
(CFRP) plate (30.8 cm× 46 cm× 2.57 mm) with 73 defects of 3 different types, i.e., 23 round
flat-bottom holes (FBH), 25 triangular Teflon inserts, and pullouts. In order to manufacture
the pullout defect, a metallic sheet is removed after polymer curing. Therefore, the pullout
can only be located at the edge of the part (Figure 1c). The Teflon insert is made of Teflon
sheets inserted between plies (Figure 1b). In the case of FBH manufacturing, a hole is drilled
to have a flat reflecting surface at the hole bottom at the backside of the sample (Figure 1a).
One of the important defects in non-destructive inspection is delamination, which occurs
between plies during manufacturing or by fatigue, bearing damage, impact, etc., during the
life-cycle. The academic plate used in this study was prepared to investigate the differences
in the thermal response of different artificial defect types. Strictly speaking, all artificial
defects are at best an approximation of a real delamination. A pull-out seems to be closer
to a real delamination (thermally speaking) but is difficult to produce anywhere other than
on the borders of the specimen (which implies that the sample must have an open border).
Teflon inserts are traditionally employed for other NDT techniques (e.g., ultrasounds) in
thermography. However, Teflon behaves significantly different than a real delamination
(air) does. Lastly, flat-bottom-holes are easier to produce, though they are open on the
rear side of the specimen and possess a much larger volume than a real delamination. The
surface of the specimen possesses a fairly good emissivity, so environmental reflections
were negligible. Non-uniform heating had a greater impact on all techniques, as can be
seen in Section 4.

(a) (b) (c)
Figure 1. Schematic of a defects in the form of (a) flat bottom hole; (b) Teflon insert; and (c) pullouts.

The defects vary in size, depth and thickness and are presented in Table 1, and the
schematic of the plate shows their respective locations in Figure 2a. The thermophysical
properties of CFRP involved in the NDE are: k—thermal conductivity (W/m/K), ρ—
density (kg/m3) and c—specific heat capacity (J/kg/K). The other important thermal
properties are: α = k/ρ/c—thermal diffusivity and e =

√
kρc—thermal effusivity. The

thermophysical information of the CFRP plate is shown in Table 2. The PT experimental
setup, two flash lamps for 5 ms sent a thermal pulse (6.4KJ/flash (Balcar, France)) to
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the specimen; a cooled infrared camera (FLIR Phoenix (FLIR Systems, Inc., Wilsonville,
Oregon, USA), InSb, midwave, 3–5 mm, Stirling Cooling) with a frame rate of 180 Hz was
used to record the temperature profile in the reflection mode (Figure 2b). The technical
camera specifications of the thermal camera are presented in Table 3. The data processing
was performed on a PC with 56 GB memory and an Intel(R) Core(TM) i7-4820K control
processing unit. Infrared images were taken from a distance of 70 cm by the IR camera
without pan nor tilt in a controlled environment.

(a)

(b)
Figure 2. (a) CTA CFRP plate, where Z is the defect depth, and labels are used to identify the location of each defect;
(b) pulsed thermography setup. a, PC; b, IR camera; c1 and c2, left and right flashes; d, CFRP specimen.
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Table 1. Defect specifications for the CFRP Plate, Z is the depth of the defect below the inspected surface. Thickness is the
defect thickness or thickness of the holes in case of the FBH type of defect.

Defect
Code

Z
(mm)

Dimensions
(mm)

Thickness
(mm)

Defect
Code

Z
(mm)

Dimensions
(mm)

Thickness
(mm)

Defect
Code

Z
(mm)

Dimensions
(mm)

Thickness
(mm)

Teflon Inserts Pull-Outs FlatBottom Holes

Tef-A 2.43 12.7 × 50.8 0.17 PO15-A 2.43 12.7 × 50.8 0.15 FBH-1J 2.28 12.70 0.29
Tef-B 2.28 12.7 × 50.8 0.17 PO15-B 2.28 12.7 × 50.8 0.15 FBH-2K 2.00 12.70 0.57
Tef-C 2.14 12.7 × 50.8 0.17 PO15-C 2.14 12.7 × 50.8 0.15 FBH-3L 1.71 12.70 0.86
Tef-D 2.00 12.7 × 50.8 0.17 PO15-D 2.00 12.7 × 50.8 0.15 FBH-4M 1.43 12.70 1.14
Tef-E 1.86 12.7 × 50.8 0.17 PO15-E 1.86 12.7 × 50.8 0.15 FBH-5N 1.28 12.70 1.29
Tef-F 1.71 12.7 × 50.8 0.17 PO15-F 1.71 12.7 × 50.8 0.15 FBH-6P 1.00 12.70 1.57
Tef-G 1.57 12.7 × 50.8 0.17 PO15-G 1.57 12.7 × 50.8 0.15 FBH-7Q 0.71 12.70 1.86
Tef-H 1.43 12.7 × 50.8 0.17 PO15-H 1.43 12.7 × 50.8 0.15 FBH-8R 0.57 12.70 2.00
Tef-J 1.28 12.7 × 50.8 0.17 PO15-J 1.28 12.7 × 50.8 0.15 FBH-8S1 0.57 12.70 2.00
Tef-K 1.14 12.7 × 50.8 0.17 PO15-K 1.14 12.7 × 50.8 0.15 FBH-8S2 0.57 12.70 2.00
Tef-L 1.00 12.7 × 50.8 0.17 PO15-L 1.00 12.7 × 50.8 0.15 FBH-8S3 0.57 12.70 2.00
Tef-M 0.86 12.7 × 50.8 0.17 PO15-M 0.86 12.7 × 50.8 0.15 FBH-8S4 0.57 12.70 2.00
Tef-N 0.71 12.7 × 50.8 0.17 PO15-N 0.71 12.7 × 50.8 0.15 FBH-8S5 0.57 12.70 2.00
Tef-P 0.57 12.7 × 50.8 0.17 PO15-P 0.57 12.7 × 50.8 0.15 FBH-3H 1.71 6.35 0.86
Tef-Q 0.43 12.7 × 50.8 0.17 PO15-Q 0.43 12.7 × 50.8 0.15 FBH-4G 1.43 6.35 1.14
Tef-R 0.29 12.7 × 50.8 0.17 PO15-R 0.29 12.7 × 50.8 0.15 FBH-5G 1.28 6.35 1.29
Tef-S 0.14 12.7 × 50.8 0.17 PO15-S 0.14 12.7 × 50.8 0.15 FBH-6F 1.00 6.35 1.57
Tef-B2 2.28 12.7 × 50.8 0.17 PO10-B2 2.28 12.7 × 50.8 0.10 FBH-7E 0.71 6.35 1.86
Tef-D2 2.00 12.7 × 50.8 0.17 PO10-D2 2.00 12.7 × 50.8 0.10 FBH-8E1 0.57 6.35 2.00
Tef-F2 1.71 12.7 × 50.8 0.17 PO10-F2 1.71 12.7 × 50.8 0.10 FBH-8E2 0.57 6.35 2.00
Tef-H2 1.43 12.7 × 50.8 0.17 PO10-H2 1.43 12.7 × 50.8 0.10 FBH-8E3 0.57 6.35 2.00
Tef-J2 1.28 12.7 × 50.8 0.17 PO10-J2 1.28 12.7 × 50.8 0.10 FBH-8E4 0.57 6.35 2.00
Tef-L2 1.00 12.7 × 50.8 0.17 PO10-L2 1.00 12.7 × 50.8 0.10 FBH-8E5 0.57 6.35 2.00
Tef-N2 0.71 12.7 × 50.8 0.17 PO10-N2 0.71 12.7 × 50.8 0.10
Tef-P2 0.57 12.7 × 50.8 0.17 PO10-P2 0.57 12.7 × 50.8 0.10

Table 2. Thermal properties of the CFRP.

Material
Density

ρ (kg/m3)
Specific Heat

c (J/kg◦K)
Conductivity
k (W/(m◦K))

Diffusivity
α (m2/s 10−7)

Effisivity
e (W s0.5/(m2 ◦K))

CFRP (⊥) 1600 1200 0.8 4.167 1239.3

Table 3. Technical specification of Phoenix Thermal Camera from FLIR Systems.

Thermal Camera Specifications

Parameters Values

Detector Indium Antimonide (InSb)
Spectral Range 1.5–5.0 microns
Cold Filter Bandpass 3.0–5.0 µm standard
Resolution 320 × 256 pixels
Detector size 30 × 30 µm
Well Capacity 18 M electrons
Integration Type Snapshot



Sensors 2021, 21, 7185 9 of 23

Table 3. Cont.

Thermal Camera Specifications

Parameters Values

Integration Time
(Electronic shutter speed) 9 µs to full frame time

Sensor Assembly f/# f/2.5 standard, f/4.1 optional

Sensor Cooling Stirling closed cycle cooler;
optional Liquid Nitrogen (LN2)

Lens Mount Bayonet Twist-Lock
Spec Performance
(Thermal resolution) <25 milliKelvin

Dynamic Range 14 bits
Max Frame Rates
with RTIE Electronics

320 × 256: 120 frames per sec in full frame;
13.6 kHZ in smallest window (2 × 64)

Max Frame Rates
with DAS Electronics

320 × 256: 345 frames per sec in full frame;
38 kHZ in smallest window (2 × 128)

3.4. Metrics

In this section, we added two metrics—one to yield a thermal score indicating thermal
anomalies, another to measure the segmentation potential.

3.4.1. Contrast-to-Noise Ratio (CNR)

The signal-to-noise ratio (SNR) is a metric that quantitatively assesses the desired
signal quality by estimating the signal level with respect to the background noise. The
contrast-to-noise ratio (CNR) is similar to SNR, but it measures the image quality based on
the contrast between a defective area and its neighbourhood. Usamentiaga [38] proposed a
definition of SNR, which is more robust against noise and image enhancement operations.
Equation (11) shows this definition, which has been used in this study. For this purpose,
two areas are considered: an area in the defect area (carea) and a region around the defect
region as a reference region (narea).

CNR =
| µcarea − µnarea |√

(σcarea2+σnarea2)
2

(11)

where µcarea and µnarea are the average levels of contrast in carea and narea, respectively;
σcarea and σnarea are the standard deviation of the contrast in carea and narea, respectively.

3.4.2. Jaccard Similarity Coefficient Score

The Jaccard similarity coefficient [39] (also known as Jaccard index or Intersection-
Over-Union (IoU)) is a statistical method that emphasizes the similarity between two finite
datasets (as illustrated in Figure 3):

This approach mathematically represents Equation (12) and is formally defined as the
number of the shared members/pixels between two sets (intersection), divided by the total
number of members in either set (union) and multiplied by 100. J(A, B) provides a value
between 0 (no similarity) and 1 (identical sets). Hence, the higher the value of IoU, the
higher the level of similarities between the two sets (Figure 3b).

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B|

0 ≤ J(A, B) ≤ 1
(12)

For the remainder of this article, we will refer to the low-rank matrix A as low-rank matrix
(LRM).
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A ∩ B

BA

Intersection over Union = 
(IoU)

Ground-truth

Prediction

A U B

(a)

Poor Good Excellent

(b)
Figure 3. (a) Jaccard index similarity definition; (b) similarity between the ground-truth and the detected area.

3.5. Analysis

The previous section recalls the RPCA we used in our experiments. As described in
Figure 4a,b, we conducted two experiments. The main difference between our experiments
is that: in the first experiment (Figure 4a), the LRM is computed directly from the raw data;
while in the second (Figure 4b), the LRM is computed from the output of the processing
methods. For the remainder of this article, we refer to the first experiment as a pre-
processing experiment and to the second as a post-processing experiment.

Input 
Thermograms

OUTPUT

Methods
(PCT/PPT/PLST)

Sparse matrix

Low-Rank matrix

(a)

Input 
Thermograms

OUTPUT

Methods
(PCT/PPT/PLST)

Sparse matrix

Low-Rank matrix

(b)
Figure 4. (a) Using the method for pre-processing; (b) Using the method for post-processing.

We chose to compare our approach with three state-of-the-art approaches, principal
component thermography (PCT) [6,27], pulsed phase thermography (PPT) [9] and partial
least-squares thermography (PLST) [11,12], due to the popularity and simplicity of these
methods.

The metrics are computed using different protocols. The defective areas were labelled
using LabelMe © [40]. From the border of the defective region, n pixels are considered as a
transient region, and from the boundaries of this area, n pixels are automatically counted
as a non-defective or sound area. Figure 5 illustrates the aforementioned regions so as to
estimate the CNR score. According to Equation (11) and the labelled regions, the average
and standard deviation values are obtained for all data.

Regarding the second metric, Figure 6 depicts the automatic segmentation approach
and Jaccard index calculation. In our segmentation approach, after the image’s contrast
correction, a bilateral filter [41] smoothed the image. Then, after applying local thresholding,
the small artifacts are removed from the image. The obtained mask from the segmentation
step can be compared with the ground truth in order to compute the metric score.
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Figure 5. Examples of reference and defect regions. The boundaries of the reference region are
between the green and red lines, whilst the defective region is inside the blue line area.

Input Data
(PCT / PPT / RPCT)

OUTPUT

Contrast Correction

Local Thresholding

Bilateral Filter

Remove small object

Segmentation

Ground Truth

Jaccard Index

Masks

Figure 6. Segmentation and Jaccard index computation flow graph.

4. Results

The original data acquired by pulsed thermography (raw data) is used as pre- and
post-processing for different processing approaches. Figure 7 shows some representative
results (selected arbitrarily) of the different methods. The first column in Figure 7 results
from different techniques on raw data, where the second column presents RPCA results
as a pre-processing method, and the last column shows the RPCA approach used as a
post-processing method.

Figures 8–10 present the thermal profile across the different lines in images where the
defects are either detectable or non-detectable. The first and last lines in each image (green
and blue) show the pullout defects profile, while the second and fourth lines (lime and teal)
represent the FBHs, and the third line (olive) presents the Teflon inserts profile.

The detailed maximum CNR values of all methods for all defect types are pre-
sented in Tables 4–6. The maximum CNR values between different methods are in bold.
Figures 11–14 present the maximum CNR value in full sequences for different methods.
The CNR values of all defects and all processing techniques were calculated using the
defects and reference areas, such as the ones shown in Figure 5.



Sensors 2021, 21, 7185 12 of 23

Method Pre-processing Post-processing
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Figure 7. (1st row) These images present the 3rd component of PCT data on raw data after using a low-rank matrix for pre-processing
and post-processing, respectively. (2nd row) These images present PPT data at 0.135 Hz on raw data after using a low-rank matrix for
pre-processing and post-processing, respectively. (3rd row) These images present the 3rd component of PLST data on raw data after
using a low-rank matrix for pre-processing and post-processing, respectively.

Figure 8. Profiles across the sample after using different processing techniques.
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Figure 9. Profiles across the sample after using different processing techniques.

Figure 10. Profiles across the sample after using different processing techniques.



Sensors 2021, 21, 7185 14 of 23

0.57 0.71 1.0 1.28 1.43 1.71

5

10

15

20

C
N

R

FlatButtonHole-6.35

pct _ 12.7
pct_rpct
rpct_pct

0.57 0.71 1.0 1.28 1.43 1.71 2.0 2.28

10

20

FlatButtonHole-12.7

pct _ 6.35
pct_rpct
rpct_pct

0.57 0.71 1.0 1.28 1.43 1.71

5

10

15

20

C
N

R

ppt_12.7
ppt_rpct
rpct_ppt

0.57 0.71 1.0 1.28 1.43 1.71 2.0 2.28
0

10

20

ppt_6.35
ppt_rpct
rpct_ppt

0.57 0.71 1.0 1.28 1.43 1.71
Depth (mm)

10

15

20

C
N

R

plst 12.7
plst_rpct
rpct_plst

0.57 0.71 1.0 1.28 1.43 1.71 2.0 2.28
Depth (mm)

0

20

40

plst 6.35
plst_rpct
rpct_plst

Figure 11. Maximum CNR by different FBHs as a function of defect depth for all data sequences.
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Figure 12. Maximum CNR for pullout-10 as a function of defect depth for all data sequences.
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Figure 13. Maximum CNR for pullout-15 as a function of defect depth for all data sequences.
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Figure 14. Maximum CNR for teflon insert as a function of defect depth for all data sequences.
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Table 4. Maximum CNR values for all data regarding Flat bottom holes in different depths and diameters.

PCT PLST PPT

Defect Z Dim. On
Raw data Pre-P. Post-P. Pre-P vs.

PCT
Post-P vs.

PCT
On

Raw Data Pre-P. Post-P. Pre-P. vs.
PLST

Post-P. vs.
PLST

On
Raw data Pre-P. Post-P. Pre-P. vs.

PPT
Post-P. vs.

PPT

FBH-8E1 0.57 6.35 6.22 16.39 5.42 163.56% –12.87% 12.97 20.07 12.72 54.71% –1.91% 12.48 18.50 4.48 48.18% –64.08%
FBH-7E 0.71 6.35 7.98 17.28 4.57 116.38% –42.82% 12.76 16.16 14.84 26.61% 16.27% 13.43 15.82 7.67 17.77% –42.86%
FBH-6F 1 6.35 7.28 19.24 5.07 164.38% –30.36% 12.96 20.13 20.41 55.36% 57.54% 11.65 19.15 5.29 64.32% –54.6%
FBH-5G 1.28 6.35 6.28 8.73 5.08 39.14% –18.99% 9.28 9.75 10.17 5.07% 9.62% 9.07 9.79 3.11 7.88% –65.7%
FBH-4G 1.43 6.35 6 7.86 3.73 31.24% –37.84% 8.42 8.45 8.38 0.43% –0.49% 8.13 8.61 0.98 5.82% –87.99%
FBH-3H 1.71 6.35 5.18 11.28 2.18 117.75% –57.93% 13.99 11.49 13.95 –17.87% –0.24% 12.65 10.56 2.30 –16.52% –81.78%
FBH-8R 0.57 12.7 10.22 9.74 8 –4.67% –21.74% 16.99 12.91 26.08 –24.06% 53.45% 19.49 14.31 9.81 –26.56% –49.67%
FBH-7Q 0.71 12.7 11.43 18.17 6.44 58.91% –43.64% 14.36 17.80 28.17 24% 96.18% 22.82 20.03 5.6 –12.25% –75.47%
FBH-6P 1 12.7 11.01 22.48 4.37 104.14% –60.29% 10.68 23.06 25.76 115.88% 141.17% 15.49 27.44 2.54 77.19% –83.59%
FBH-5N 1.28 12.7 11.17 18.59 4.78 66.38% –57.21% 11.53 20.25 36.35 75.59% 215.16% 13.5 21.99 1.48 62.89% –89.05%
FBH-4M 1.43 12.7 12.35 16.22 4.21 31.35% –65.92% 13.53 16.44 53.71 21.49% 296.9% 14.22 18.05 1.57 26.97% –88.99%
FBH-3L 1.71 12.7 9.08 12.29 4.40 35.39% –51.5% 11.22 12.67 14.37 12.86% 28.04% 10.97 13.01 1.31 18.51% –88.1%
FBH-2K 2 12.7 8.79 11.86 3.18 34.85% –63.88% 8.50 12.99 10.99 52.79% 29.22% 11.3 11.82 0.52 4.58% –95.41%
FBH-1J 2.28 12.7 3.02 4.14 1.76 37.02% –41.88% 2.15 4.56 2.39 112.19% 11.12% 4.06 3.87 0.51 -4.83% –87.4%

Table 5. Maximum CNR values for all data regarding Teflon inserts in different depths and diameters.

PCT PLST PPT

Defect Z Dim. On
Raw data Pre-P. Post-P. Pre-P vs.

PCT
Post-P vs.

PCT
On

Raw data Pre-P. Post-P. Pre-P. vs.
PLST

Post-P. vs.
PLST

On
Raw data Pre-P. Post-P. Pre-P. vs.

PPT
Post-P. vs.

PPT

Tef-S 0.14 12.7 × 50.8 4.54 3.88 6.17 −14.66% 35.82% 4.75 4.3 8.38 −9.45% 76.38% 5.32 3.93 5.66 −26.07% 6.41%
Tef-R 0.29 12.7 × 50.8 5.85 5.45 5.36 −6.87% −8.39% 8.39 6.72 9.51 −19.92% 13.33% 8.57 6.83 5.88 −20.29% −31.39%
Tef-Q 0.43 12.7 × 50.8 7.95 6.74 3.81 −15.28% −52.04% 5.29 7.64 5.31 44.45% 0.51% 6.29 8.4 3.7 33.43% −41.24%
Tef-P 0.57 12.7 × 50.8 7.67 8.43 3.84 9.83% −50.01% 8.35 10.44 9.36 24.97% 12.14% 9.13 9.58 4.84 4.89% −47.02%
Tef-N 0.71 12.7 × 50.8 7.74 8.24 3.76 6.46% −51.48% 7.64 9.67 9.29 26.58% 21.54% 8.69 9.07 2.99 4.43% −65.56%
Tef-M 0.86 12.7 × 50.8 6.72 8.44 2.85 25.58% −57.58% 8.47 10.67 10.38 26.07% 22.56% 9.27 10.08 3.66 8.72% −60.55%
Tef-L 1 12.7 × 50.8 5.41 6.43 2.69 18.86% −50.32% 6.43 7.77 7.11 20.78% 10.52% 6.63 7.38 2.07 11.26% −68.83%
Tef-K 1.14 12.7 × 50.8 4.98 5.52 2.78 10.87% −44.27% 5.85 6.78 5.85 15.75% −0.15% 5.92 6.2 1.52 4.76% −74.28%
Tef-J 1.28 12.7 × 50.8 5.53 6.55 3.33 18.4% −39.83% 6.58 7.28 6.61 10.72% 0.46% 5.37 6.89 0.81 28.21% -84.99%
Tef-H 1.43 12.7 × 50.8 5.32 5.46 3.72 2.5% −30.19% 6.07 6.68 6.22 10.05% 2.47% 4.91 6.17 0.9 25.65% −81.63%
Tef-G 1.57 12.7 × 50.8 3.78 5.49 3.91 45.37% 3.44% 6.21 6.07 6.21 −2.21% −0.03% 5.28 4.71 0.62 −10.9% −88.29%
Tef-F 1.71 12.7 × 50.8 2.82 4.78 3.06 69.26% 8.54% 4.96 5.32 5 7.16% 0.75% 3.75 4.42 0.62 17.85% −83.54%
Tef-E 1.86 12.7 × 50.8 2.46 3.13 2.6 27.47% 5.98% 3.1 3.1 3.1 −0.26% −0.1% 1.88 3.09 0.28 64.31% −84.92%
Tef-D 2 12.7 × 50.8 1.99 3.19 2.59 60.61% 30.41% 2.07 2.99 2.01 44.54% −2.95% 1.41 2.85 0.46 101.45% −67.82%
Tef-C 2.14 12.7 × 50.8 1.39 2.5 2.2 80.36% 58.63% 1.18 2.09 1.18 77.64% 0% 1.25 2.49 0.55 99.52% −56.02%
Tef-B 2.28 12.7 × 50.8 1.39 2.06 1.8 48.47% 29.82% 1.36 2.16 1.38 59.35% 1.88% 1.85 2.05 0.63 10.86% -65.83%
Tef-A 2.43 12.7 × 50.8 1.21 1.5 1.24 23.56% 2.39% 1.02 1.29 1.35 26.42% 32% 0.97 1.52 0.88 57.56% −8.49%
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Table 6. Maximum CNR values for all data regarding Pullouts in different depths and diameters.

PCT PLST PPT

Defect Z Dim. On
Raw data Pre-P. Post-P. Pre-P vs.

PCT
Post-P vs.

PCT
On

Raw data Pre-P. Post-P. Pre-P. vs.
PLST

Post-P. vs.
PLST

On
Raw data Pre-P. Post-P. Pre-P. vs.

PPT
Post-P. vs.

PPT

PO10-P2 0.57 12.7 × 50.8 3.51 3.71 2.98 5.7% −15.21% 1.58 4.23 1.96 167.02% 23.75% 2.33 4.73 1.391 103.23% −40.17%
PO10-N2 0.71 12.7 × 50.8 3.04 2.18 4.35 −28.38% 42.98% 0.95 3.01 1.66 216.63% 74.21% 1.41 5.5 0.966 288.97% −31.68%
PO10-L2 1 12.7 × 50.8 3.33 3.21 2.57 −3.75% −22.88% 2 3.44 3.38 71.58% 68.78% 2 6.39 0.892 219.71% −55.38%
PO10-J2 1.28 12.7 × 50.8 3.01 3.84 3.4 27.65% 13.18% 3.27 3.92 4.92 19.79% 50.34% 2.65 5.21 0.628 96.57% −76.3%
PO10-H2 1.43 12.7 × 50.8 3 3.63 4.07 21.05% 35.62% 3.49 4 4.74 14.67% 35.79% 2.28 5.65 0.887 147.24% −61.16%
PO10-F2 1.71 12.7 × 50.8 2.33 3.46 4.05 48.24% 73.61% 3.03 3.44 3.54 13.48% 16.58% 2.14 4.47 0.598 108.63% −72.1%
PO10-D2 2 12.7 × 50.8 1.55 2.25 2.48 44.72% 60.05% 1.76 2.13 2.73 21.01% 55.41% 1.41 2.76 0.623 95.19% −55.94%
PO10-B2 2.28 12.7 × 50.8 1.11 1.26 1.26 13.05% 13.59% 0.75 1.33 1.29 78.79% 73.15% 0.49 1.42 0.403 189.57% −17.59%
PO15-S 0.14 12.7 × 50.8 3.6 3.87 1.87 7.62% −47.93% 3.33 3.94 5.75 18.48% 72.78% 3.22 4.76 3.498 47.84% 8.67%
PO15-R 0.29 12.7 × 50.8 5.04 3.19 6.38 −36.62% 26.69% 4.42 5.39 5.88 21.79% 32.96% 4.13 6.12 6.073 48.21% 46.97%
PO15-Q 0.43 12.7 × 50.8 3.3 4.67 4 41.54% 21.42% 3.95 8.25 4.62 108.57% 16.94% 3.85 8.49 4.402 120.52% 14.37%
PO15-P 0.57 12.7 × 50.8 3.72 5.16 3.72 38.69% 0.05% 3.38 6.33 5.53 87.11% 63.41% 3.72 6.87 2.728 84.62% −26.67%
PO15-N 0.71 12.7 × 50.8 3.72 4.86 4.75 30.8% 27.68% 4.01 5.9 6.49 47.19% 61.94% 4.11 7.47 3.462 82.03% −15.68%
PO15-M 0.86 12.7 × 50.8 4.6 5.12 2.72 11.44% −40.94% 5.38 6.35 9.22 18.2% 71.53% 5.39 6.66 3.494 23.54% −35.19%
PO15-L 1 12.7 × 50.8 4.48 5.23 2.35 16.83% −47.53% 5.44 6.55 9.96 20.38% 83.21% 5.11 6.22 3.117 21.72% −38.97%
PO15-K 1.14 12.7 × 50.8 3.49 4.38 2.94 25.31% −15.83% 3.76 5.28 5.14 40.36% 36.63% 3.87 5.04 1.476 30.23% −61.86%
PO15-J 1.28 12.7 × 50.8 3.55 4.56 4.54 28.72% 27.93% 4.12 5.51 6.68 33.88% 62.17% 4.14 5.64 0.895 36.18% −78.38%
PO15-H 1.43 12.7 × 50.8 3.12 4.85 4.69 55.61% 50.38% 4.65 5.69 7.52 22.38% 61.81% 4.18 6.44 0.453 54.13% −89.15%
PO15-G 1.57 12.7 × 50.8 1.5 4.26 3.33 184.84% 122.65% 3.71 5.98 5.39 61.21% 45.45% 3.25 6.8 0.392 109.1% −87.95%
PO15-F 1.71 12.7 × 50.8 1.06 3.59 2.66 237.22% 149.62% 2.86 4.83 3.88 69.32% 35.73% 2.49 5.56 0.925 123.3% −62.84%
PO15-E 1.86 12.7 × 50.8 0.91 2.54 2.07 179.52% 128.19% 2.01 3.77 3.4 87.79% 69.29% 2.07 4.21 1.079 102.84 −47.97
PO15-D 2 12.7 × 50.8 2.25 3.21 2.63 42.41% 16.46% 2.68 3.59 3.63 34.03% 35.67% 2.33 4.01 0.309 72.26 −86.73
PO15-C 2.14 12.7 × 50.8 1.47 3.03 2.17 106.75% 47.78% 1.36 2.88 2.63 111% 92.6% 1.64 2.61 0.752 59.22 −54.09
PO15-B 2.28 12.7 × 50.8 0.75 1.25 0.98 65.25% 30.24% 0.93 1.48 1.38 58.89% 48.18% 0.91 1.41 1.085 55.04 18.97
PO15-A 2.43 12.7 × 50.8 0.7 1 0.98 43.19% 41.03% 0.81 1.01 0.95 25.84% 17.39% 0.84 2 0.802 137.81 −4.64
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Figure 15a,b illustrate the numbers of enhanced defects using pre- and post-processing,
respectively. The numbers inside the columns represent the enhanced defects when using
different techniques, and the number above the columns are the total number of defects in
each case.
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Figure 15. Number of defects that are enhanced for each experiment. (a) Results of the pre-processing experiments.
(b) Results of the post-processing experiments.

The best Jaccard index for all data sequences for different methods is shown in Table 7.

Table 7. Jaccard index values for different methods on segmented data.

Method On Raw Data Pre_Processing Post_Processing

PCT 60.43 64.08 53.94
PPT 61.19 62.82 55
PLST 50.66 55.36 55.35

Figure 7 illustrates selected results from different methods. In this figure, the first
image from each row presents the selected technique on raw data (PCT, PPT or PLST); the
second and third images show the effect of using the LRM as a pre- and post-processing
method.

Our segmentation approach was evaluated by the Jaccard index presented in Table 7.

5. Discussion

Figure 7 implies that although pre-processing can reduce the non-uniform heating
impact, post-processing accentuates this effect. Thermal profiles of different methods across
the different lines are shown in Figures 8–10. As depicted in the graphs, the flat thermal
profiles show the non-defective or sound area, and when the amplitude is increased
or decreased, the available discontinuities can be guaranteed. The application of pre-
processing before PCT and PPT approaches improved the defect detection; also, in the case
of PLST, both pre- and post-processing can increase the detection of anomalies. In addition,
the graphs show similar results with quantitative metrics, which will be explained later.
From Tables 4–6 and Figures 11–14, one can note that the results from the pre-processing
experiments are noticeably better than those obtained from the post-processing experiment.
Note that these results are compared with results obtained without using low-rank matrices
for both experiments. For the PCT method, one can note:

• The pre-processing experiments have led to a clear improvement of the results, re-
gardless of the defect type. For 13 of the 14 FBH defects, one can observe an increase
in the CNR score. The ratio of this improvement varies from 31.24% to 163.56%. The
CNR scores obtained for the PO defects show a higher score in 22 of the 25 defects,
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with a ratio that varies from 0.43% to 115.88%. Similarly, the CNR scores obtained for
the Teflon inserts also show a CNR score increase for 14 of the 17 defects. The ratio of
this improvement varies from 2.5% to 80.36%.

• The results of the post-processing experiments do not show any improvement for the
FBH defects. Nevertheless, for the PO defects, one can note that there is a higher CNR
score for 19 of 25 defects. The ratio of this improvement varies from 0.05% to 149.62%.
For Teflon defects, 8 of the 17 defects have a higher CNR score, with a ratio between
2.39% and 58.63%.

From the PPT method results, one can observe:

• As already observed with the PCT, the results of the pre-processing experiments offer
an improvement for every type of defect. For 10 of the 14 FBH defects, one can observe
that their CNR score increases, with a ratio between 4.58% and 77.19%. The PO defects
show an increase in the CNR score for all of the defects. The ratio of improvement
varies from 21.72% to 288.97%. For Teflon inserts, the number of defects with a higher
CNR is similar to what was observed for the previous method, with 14 of the 17
defects with an improved CNR value. The ratio of improvement varies from 4.43% to
101.45%.

• The results obtained for the post-processing experiment show very little improvement.
No improvement at all was recorded for the FBH. For the PO defects, 4 of the 25
defects had an increased CNR value, with a ratio between 8.67% and 46.97%. Only
one Teflon defect of the 17 defects had its CNR increased by a ratio of 6.41%.

Finally, from the PLST method results, one can note:

• The pre-processing experiments shows a similar trend as the trend observed for the
two other methods. For 12 of the 14 FBH defects, the CNR score increased, with a
ratio from 0.43% to 115.88%. All of the PO defects have their CNR score increased,
with a ratio between 13.48% and 216.63%. Finally, for the Teflon insert, 13 defects of
the 17 obtained an increased CNR score, with a ratio between 7.16% and 77.64%.

• For the post-processing approach, one can note that the results are quite similar to
those obtained during the pre-processing experiments. For 11 of the 17 FBH defects,
an increase in the CNR value was observed, with a ratio from 9.62% to 296.9%. All
of the PO defects show an improvement of their CNR score, ranging from 16.98% to
92.6%. For 13 of the 17 Teflon defects, the CNR score has improved, with a ratio from
0.46% to 76.38%.

Moreover, as indicated in Figures 11–14, regarding the relative depths, in all cases (FBHs,
POs and TEFs), the deeper the defect, the lower the CNR value (as expected). Comparing
the two experiments, one can observe that the pre-processing experiment leads to a larger
number of defective regions for PCT and PPT methods than the post-processing experi-
ments. Nevertheless, this observation is not valid for the PLST method, where the results
are pretty similar in both experiments. For the PO defect, the increase in terms of CNR
score is higher in the pre-processing experiments; the mean ratio of improvement is 2.6
times higher than it is for the post-processing experiments. Similarly, the mean ratio of
improvement for the Teflon defects is 1.7 times higher in the pre-processing experiment
than in the post-processing experiments. Nonetheless, the mean improvement ratio is 2.5
times higher in the post-processing experiment than in the pre-processing experiment. To
conclude, our results show that computing an LRM from the raw data before applying any
state-of-the-art method significantly improves the results of the method. In the particular
case of FBH defects, one can consider computing an LRM before and after the method.

As one can note in Table 7 and see in Figure 15b, using the LRM, prior to the state-of-
the-art processing method, leads to better Jaccard index scores and therefore segmentation
in all cases. One can also note that the Jaccard index score for the PLST method does not
change much between the pre-processing and post-processing experiments. The Jaccard
index score for the PCT and PPT methods decreases noticeably for the segmentation of the
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post-processing experiment results compared with the segmentation of the raw data. This
indicates that the results of the segmentation worsen.

6. Conclusions

The present study investigates the benefits of the low-rank matrices for pulsed ther-
mography. The investigation conducted for this study focuses on enhancing defective
regions located within a reference sample of CFRP. The sample we used had three types of
defects. Two experiments were conducted: during the first experiment, the low-rank ma-
trix was computed from the raw data before applying any processing. During the second
experiment, the low-rank matrix is computed from the output of a method, after it was
applied on raw data. For both experiments, we used PPT [9], PCT [6,27] and PLST [11,12].
Two figures of merit, the contrast-to-noise ratio (CNR) and the Jaccard similarity coefficient,
were used to evaluate the results quantitatively.

Our results conclude that using a low-rank matrix, when used as a pre-processing
method, noticeably improves the results of all of the techniques. The low-rank matrix
reconstruction effectively reduces the noise and non-uniform heating. When used as a post-
processing method, the results vary from one method to another. The results indicate that
pre-processing can improve 67.12% of PCT results more than post-processing, especially
regarding FBHs (the detectability of FBHs, pullouts and Teflon inserts was increased to
92.86%, 88% and 82.35%, respectively). Furthermore, pre-processing has a better effect on
PPT results (67.12% of the defects were detected) than post-processing. For FBHs, pullouts
and Teflon inserts, the detectability of defects reached 71.43%, 100% and 82.35%. The
detectability of pullouts and Teflon insert defects in both pre- and post-processing has
improved, reaching 100% and 76.47%, respectively; however, the detectability is better
after using pre-processing in the PLST method. In addition, when used on the output of
PLST, the low-rank matrix reconstruction still shows better results than the PLST alone.
Nonetheless, this conclusion is not shared for both PPT and PCT. The Jaccard index proved
that pre-processing can improve the segmentation potential in all aforementioned methods.
In the case of PLST, improvements were made for both pre-processing and post-processing.

This study presents very promising results regarding the improvement of anomaly
detection in pulsed thermography in CFRPs. To make the proposed approach more
practical in NDT techniques, future research will be directed towards the application of
pre- and post-processing on a wider range of materials.

Author Contributions: Conceptualization and methodology, S.E., J.R.F., L.-D.T., M.K., C.I.-C. and
X.P.V.M.; data analysis and processing, J.R.F. and S.E., experimental data acquisition, M.K., L.-D.T. and
C.I.-C.; resources, L.-D.T. and X.P.V.M.; writing—original draft preparation, S.E. and J.R.F.; writing—
review and editing, M.K., L.-D.T., C.I.-C. and X.P.V.M.; and supervision, X.P.V.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is funded by NSERC CREATE « oN DuTy!» Initiative, NSERC DG program,
and the Canada Research Chair in Multipolar Infrared Vision (MIVIM). Part of the funding also
comes from LDCOMP collaborative R&D proposal jointly funded by the Ministère de l’Économie
et de l’Innovation - Québec (MEI) (File number: 2018-Pl-1-SQA) and SKYWIN (Wallonie, Belgium,
Convention n° 8188). The authors wish to thank also the following sponsors: XIe Commission mixte
permanente Wallonie-Bruxelles-Québec 2019-2021 (project 11.812).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.



Sensors 2021, 21, 7185 21 of 23

Abbreviations

The following abbreviations are used in this manuscript:

ASM Active Shape Model
ALM Augmented Lagrangian Multiplier
APG Accelerated Proximal Gradient
a.u arbitrary units
CFRP Carbon Fiber Reinforced Plastic
CIS Cold Image Subtraction
CNN Convolutional neural network
CNR Contrast to Noise Ratio
DFT DiscreteFourier Transform
DRPCA Double Robust Principal Component Analysis
EALM Exact Augmented Lagrange Multiplier
ECT Eddy Current Thermography
ECPT Eddy Current Pulsed Thermography
EOF Empirical Orthogonal Functions
ESPCA Edge-Group Sparse Principal Component Analysis
ESPCT Edge-Group Sparse Principal Component Thermography
FBH Flat Bottom Holes
GPGPU General-purpose computing on graphics processing units
IALM Inexact Augmented Lagrange Multiplier
ICA Independent Component Analysis
IoU Intersection over Union
IRNDT Infrared Non-Destructive Testing
IRT InfraRed Thermography
LADMAP Linearized Alternating Direction Method with Adaptive Penalty
LatLRRT Latent Low-Rank Representation Thermography
LN Liquid Nitrogen
LRM Low-Rank Matrix
MWIR Mid-Wave InfraRed
NDT Non Destructive Testing
NMF Non-negative Matrix Factorization
NP Non-Deterministic Polynomial
OIALM Orthogonal Inexact Augmented Lagrange Multiplier
PCA Principal Component Analysis
PCP Principal Component Pursuit
PCT Principal Component Thermography
PLS Partial Least Square
PLSR Partial Least Square Regression
PLST Partial Least Square Thermography
PO pullouts
PPT Pulsed Phase Thermography
PT Pulsed Thermography
RMSE Root Mean Square Error
ROI region of interest
RPCA Robust Principal Component Analysis
RPCT Robust Principal Component Thermography
SNR Signal to Noise Ratio
SPCA Sparse Principal Component Analysis
SPCT Sparse Principal Component Thermography
SVM Support Vector Machine
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Tef Teflon Inserts
TSR Thermographic Signal Reconstruction
TRPCA Tensor RPCA
UT Ultrasound Testing
WIALM Weighted contraction IALM
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