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Abstract: In this paper, we provide external image features and use the internal attention mechanism
to solve the VQA problem given a dataset of textual questions and related images. Most previous
models for VQA use a pair of images and questions as input. In addition, the model adopts a
question-oriented attention mechanism to extract the features of the entire image and then perform
feature fusion. However, the shortcoming of these models is that they cannot effectively eliminate the
irrelevant features of the image. In addition, the problem-oriented attention mechanism lacks in the
mining of image features, which will bring in redundant image features. In this paper, we propose a
VQA model based on adversarial learning and bidirectional attention. We exploit external image
features that are not related to the question to form an adversarial mechanism to boost the accuracy
of the model. Target detection is performed on the image—that is, the image-oriented attention
mechanism. The bidirectional attention mechanism is conducive to promoting model attention and
eliminating interference. Experimental results are evaluated on benchmark datasets, and our model
performs better than other models based on attention methods. In addition, the qualitative results
show the attention maps on the images and leads to predicting correct answers.

Keywords: bidirectional attention; adversarial learning; visual question answering; attention
visualization; feature fusion; feature selection; attention mechanism

1. Introduction

Computer vision and natural language processing have developed rapidly for a long
time. As a result, more and more cross fields of machine vision and natural language
processing have emerged. Visual question answering (VQA) is one of the most important
research fields. To better solve the problem of visual question answering, it is necessary to
understand the image that the method focuses on and the deep visual features contained
in the correct area of the image.

The attention mechanism is a human-specific brain signal processing mechanism [1–4].
In a world where we unintentionally or intentionally receive different signals every day,
mainly from sight and hearing, top–down attention mechanisms allow us to quickly notice
important signals in the environment. Although this kind of attention pays attention to
the important signals of the surrounding environment quickly, this kind of unidirectional
attention is still insufficient in efficiency. That is, there is no in-depth mining of features
from the perspective of images. So, we choose a bidirectional attention method, including
bottom–up attention and top–down attention, to make up for this shortcoming [5].

The answer of a good VQA model should be no different from that of humans. The
adversarial learning is motivated by Generative Adversarial Nets (GANs). In the process
of recognizing objects, humans enhance the cognitive ability of objects through contrast.
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Since the adversarial learning was proposed, it has achieved a series of good achievements
in the field of artificial intelligence [6–8]. In this article, we propose using deep learning
features with two different pictures, which match with related questions to infer the best
answer. Through adversarial learning, the model will pay attention to significant parts of
the target image that are distinguished from the adversarial image [9].

In this paper, we propose a bidirectional attention mechanism through adversarial
learning for improving the understanding facility for the fusion of language and visual
representations. The main flow of the model followed is illustrated in Figure 1. Given a
question, a related image, and an unrelated image, we use a bidirectional attention network
to obtain a target attention embedding, which can find the part of the image that is most
relevant to the problem. Meanwhile, by subtracting the target attention embedding and the
adversarial attention embedding, we conduct the adversarial learning to filter out useless
parts of the image and highlight the most meaningful image part for the question.
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Figure 1. As an example, our model fuses features of the target image and the adversarial image
according to the question, predicts the correct answer, and visualizes the attention.

2. Related Work

In this section, we briefly introduce the previous research of VQA, especially the
development in the field of adversarial learning and attention mechanism.

2.1. Attention Mechanism

The attention mechanism has proved to be very effective in many tasks, and visual
question answering is no exception. Several deep neural networks based on an attention
mechanism have been proposed for visual question answering, in which question-oriented
attention combined with image regions are commonly used.

The creation and use of attention maps have aroused great interest. Lu et al. [10]
proposed a co-attention model for visual question answering that figures out image and
question attention. Shih at al. [11] presented a way of learning to answer visual questions
by selecting image areas related to text-based queries. Yang et al. [12] created a stacked
attention network, which generates multiple attention maps on the image in a sequential
manner, in order to increase the reasoning steps and improve the reasoning ability.

Early VQA research started with the attention mechanism concerning the question.
Xu et al. [13] proposed a spatial memory network to apply question-guided spatial atten-
tion on certain parts of the image, which are related to either a single word or the whole
question. Lu et al. produced the co-attention mechanism that creates attention on a certain
area of the image and related question words. Shi et al. [14] suggested Question Type
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Guided Attention (QTA), which takes advantage of information about the question type to
efficiently balance the bottom–up and top–down visual features.

2.2. Glove

In the training or testing phase, the input of each instance is a target image, an
adversarial image, and a question. Spaces and punctuation are used to divide the question
into individual words. Any number is taken as a word. The maximum number of words in
each question is reduced to 15 words, which can keep the semantics of the question and
computational efficiency. Extra words are automatically omitted. Probably only 0.1% of the
questions exceed 15 words. Each word is encoded by the glove embedding algorithm [15],
which is a look-up table with 300-dimensional vectors. The public algorithm we used has
been trained on Wikipedia. Questions less than 15 words are padded zero at the end of the
question. The size of a resulting vector matrix is 15 × 300, and then, it is passed through
the GRU (Gated Recurrent Unit). After processing fifteen words sequentially, we got the
512-dimensional question vectors.

2.3. Faster-RCNN

The same limitation of most models mentioned above is to use a full image to create
global features to represent the visual input. This will feed noise to the model and then
negatively affect the final result. In fact, we make use of Faster-RCNN as a segmentation
method to divide the image into 36 different regions which are 36 different pooled convo-
lutional feature vectors [16,17]. In this way, we can obtain image features directly related
to the question, eliminate noise interference, and facilitate the attention of the model to the
most relevant objects.

2.4. Adversarial Learning

The method of adversarial learning is inspired by human perception mechanisms [18].
In the process of answering questions, the more suitable and reasonable answers are given
out by people comparing the differences between the information to find contradictions
and differences [19–22]. Adversarial learning has made a series of good achievements in
the field of artificial intelligence. Chen et al. [23] take adversarial learning as a segmentation
network to automatically create realistic composite images. Wu et al. [24] presented an
approach of combining Reinforcement Learning and Generative Adversarial Networks
whose advantage is to overcome the relative shortage of training data. Our work is
motivated by the effectiveness of the adversarial learning, but we cautiously extend it to
our application VQA. Through the adversarial network, the model will pay attention to
two parts: one is the area that is most relevant to the question in the target image, and the
other is the part of the adversarial image that is the most different from the question. By
contrast between two images, the mode learned how to find the best answer.

3. Proposed Method

This section is divided into five subheadings, which introduce the internal structure
of the model, the experimental methods, and the experimental procedures in detail.

In this section, we introduce the architecture of our model in Figure 2. As the Figure 2
shows, it demonstrates the combination of adversarial learning and bidirectional attention
mechanism to solve the problem of visual question answering, with bidirectional attentions
over regions of the image. In order to maintain transparency, we will list the exact steps and
specific hyperparameter values in the model in detail, which result in its best performance.

3.1. Finding Adversarial Images

Although few images in the VQA2.0 dataset are somewhat similar, it is necessary
to choose an image that is very different from the target image in order to ensure the
effectiveness of the adversarial learning network.



Sensors 2021, 21, 7164 4 of 12
Sensors 2021, 21, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. Overview of the proposed model. The target image–question pair and the adversarial im-
age–question pair perform feature extraction and feature fusion operations respectively and then 
predict the correct answer through the classification network. 

3.1. Finding Adversarial Images 
Although few images in the VQA2.0 dataset are somewhat similar, it is necessary to 

choose an image that is very different from the target image in order to ensure the effec-
tiveness of the adversarial learning network. 

In our experiment, we use a histogram to compare the similarity of two images and 
select adversarial images. The histogram correlation d is given by [25,26]: 

dሺHଵ, Hଶሻ ൌ ෍ ൫HଵሺIሻ െ Hଵ൯୍ ൫HଶሺIሻ െ Hଶ൯ට∑ ൫HଵሺIሻ െ Hଵ൯ଶ୍ ∑ ൫HଶሺIሻ െ Hଶ൯ଶ୍  (1)

௞ܪ ൌ ଵே∑ ௞௃ܪ . (2)

N is the total number of histogram bins. H1 and H2 represent the histogram of the 
target picture and the histogram of the confrontation picture respectively. ܪ௞	denotes the 
average of the histogram. 

First, we select the target image as the reference image. Second, we randomly pick 
up another image in the dataset. Third, we convert two images into HSV format. Finally, 
we calculate the correlation of two image histograms. The greater the correlation of the 
histogram, the more similar the two images. If the correlation between the two pictures is 
less than 0.2, we select these two images as a set of input. 

3.2. Image Feature Selection 
As a target detection method based on convolutional neural network, Faster-RCNN 

first uses a set of basic layers including convolutional layers, ReLU layers, and pooling 
layers to extract the feature maps of the image [17]. The feature maps are shared for the 
subsequent RPN layer and fully connected layer. 

In the RPN network, in order to achieve the matching of the common feature box in 
the original image with the candidate box of each target [27], it is necessary to use anchor 
boxes to set the target block diagram. Each feature vector in the convolution feature map 
corresponds to a small area in the original image, and the size of the area is determined 
by the convolution kernel. With each point on the feature map as the center, anchor boxes 
of different sizes and different proportions can be generated, corresponding to different 
areas on the original image. As a result of the actual changes in the size of the anchor boxes 
and the size of the target, usually the corresponding area cannot be completely matched 

Figure 2. Overview of the proposed model. The target image–question pair and the adversarial
image–question pair perform feature extraction and feature fusion operations respectively and then
predict the correct answer through the classification network.

In our experiment, we use a histogram to compare the similarity of two images and
select adversarial images. The histogram correlation d is given by [25,26]:

d(H1, H2) =
∑I
(
H1(I) − H1

)(
H2(I) − H2

)√
∑I
(
H1(I) − H1

)2
∑I
(
H2(I) − H2

)2
(1)

Hk =
1
N ∑

J
Hk. (2)

N is the total number of histogram bins. H1 and H2 represent the histogram of the
target picture and the histogram of the confrontation picture respectively. Hk denotes the
average of the histogram.

First, we select the target image as the reference image. Second, we randomly pick
up another image in the dataset. Third, we convert two images into HSV format. Finally,
we calculate the correlation of two image histograms. The greater the correlation of the
histogram, the more similar the two images. If the correlation between the two pictures is
less than 0.2, we select these two images as a set of input.

3.2. Image Feature Selection

As a target detection method based on convolutional neural network, Faster-RCNN
first uses a set of basic layers including convolutional layers, ReLU layers, and pooling
layers to extract the feature maps of the image [17]. The feature maps are shared for the
subsequent RPN layer and fully connected layer.

In the RPN network, in order to achieve the matching of the common feature box in
the original image with the candidate box of each target [27], it is necessary to use anchor
boxes to set the target block diagram. Each feature vector in the convolution feature map
corresponds to a small area in the original image, and the size of the area is determined by
the convolution kernel. With each point on the feature map as the center, anchor boxes of
different sizes and different proportions can be generated, corresponding to different areas
on the original image. As a result of the actual changes in the size of the anchor boxes and
the size of the target, usually the corresponding area cannot be completely matched with
the target frame. This results in the absence of the target in the RPN built-in candidate area.
In order to obtain a more accurate candidate area and complete the area proposal link, it is
necessary to optimize the preset area and generate k frames of different proportions and
different sizes to adapt to the target with each anchor point as the center.
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The pooling layer extracts proposal feature maps after integrating feature maps and
proposals information and sends them to the subsequent fully connected layer to determine
the target category.

The classification layer uses proposal feature maps to distinguish the category of the
proposal and utilizes bounding box regression to obtain the final precise position of the
detection frame [28].

3.3. Bidirectional Attention

The target image is passed through a Faster R-CNN to obtain k × 2048-dimensional
vector representation, where K represents the number of features on an image. Each feature
is a 2048-dimensional vector, which encodes a specific area on the image. The Faster
R-CNN can extract K (K = 36) distinctive objects from the image, which greatly provides
the information related to the problem.

Our model adopts the attention method corresponding to the human question-guided
model, with different features from the model of Anderson et al. [5] that focuses on the
attention mechanism of image features.

The output of the Faster R-CNN (vi) first passes through a Rectified Linear Unit (ReLU)
activation layer [29] to avoid gradient explosion and gradient disappearance, and then, it
passes through a fully connected layer to get a K × 512- dimensional vector mi. wi is a
learned parameter vector

mi = wif(vi). (3)

Each feature vector mi (i = 1 . . . K) and question embedding q are combined with an
element-wise multiplication [30]. The resulting vector g is a fusion of image features and
embedding of the question.

g = mi � q (4)

The fusion vector is normalized over all features with a softmax function.

λ = softmax(g) (5)

Then, the image features mi (i = 1 . . . K) from an entire image are weighted by the
normalized values and summed to obtain a 512-dimensional vector VT.

VT =
K

∑
i=1

λimi (6)

The same processing steps are taken for the adversarial image to get a 512-dimensional
vector VA. Note that this attention mechanism is two-way attention, as opposed to simple
one-way attention and a more complicated attention mechanism.

3.4. Adversarial Attention

Based on the adversarial learning, some features of the representation of the target
image VT not related to the question have been removed by subtracting the image features
of the adversarial image VA. So, we get some image features without redundancy. The
representations of the target image VT and of the adversarial image VA are processed by
element-wise subtraction. W1 is a learned parameter vector.

h = w1(VT 	 VA) (7)

3.5. Classifier

In the train set, each question has 10 answers, and these answers constitute the label of
training classification, in which we select the correct answer appearing more than 7 times.
Therefore, we got a total of N = 3129 candidate answers. Improving the efficiency of the
VQA model is actually improving the accuracy of the multi-label classification task. In the
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VQA2.0 training set, each answer is labeled with soft accuracies in the range of 0 to 1. The
score of each answer is different based on the judgment of different people.

The fusion of image features and question embedding h is fed into a ReLU activation
layer, passes through a fully connected layer and a dropout layer, and then finally passes
through a softmax layer [31] to predict a score for each candidate answer.

ŝij = softmax {fd[ws. fs(h)]} (8)

where ws ∈ RN × 512 is a learned weight matrix, fs is a ReLU activation layer, and fd is a
dropout layer (p = 0.5).

The softmax layer normalizes the answer score to (0,1). Then, we use a loss method
similar to binary cross-entropy [32]. This layer can be seen as using logistic regression to
predict the correct answer. The final function is

L = −
M

∑
i

M

∑
i

sij log
(
ŝij
)
−
(
1− sij

)
log
(
1− ŝij

)
(9)

where M and N represent respectively the number of training questions and the number of
candidate answers. S is the soft ground-truth scores of truth answers. Soft scores as targets
maintain more effective target signals than binary labels.

4. Evaluation

In the section, for analyzing our proposed VQA model, we focus on analyzing how the
glove algorithm affects the question embedding and accuracy of the model performance.
In addition, we present additional experiments to prove the superiority of our model by
comparing with other models. Finally, we analyze the specific impact of the bidirectional
and adversarial attention mechanism.

4.1. Dataset

The VQA2.0 dataset [33] is the richest and most extensive dataset, which is the updated
version of VQA1.0 dataset. It increases the diversity of answers to each question to
minimize the impact of dataset priors. The answers to each question are divided into three
categories: yes/no, number, other. Each question includes ten candidate answers. The
VQA2.0 dataset was selected as the official dataset of the VQA Challenge, which includes
443,757 train, 214,354 validation, 447,793 test questions.

4.2. Experimental Setting

Our model adopts single network learning instead of ensemble learning. Each of our
networks is trained based on the VQA2.0 dataset. The model is trained multiple times on
the VQA2.0 training dataset, and the optimal parameters are selected. The highest accuracy
rate on the validation test VQA2.0 is selected as the result. We performed each step of the
experiment four times, each time using different random seeds. In order to evaluate the
performance of the model, the standard VQA metric [34] is used to calculate the accuracy,
which minimizes the accidental noise from the annotators of the ground truth answers.

4.3. Ablation Study

In order to obtain the optimal model, we have done relevant comparative experiments
through the controlled variable method. By changing the model parameters and model
structure, the most suitable architecture and hyperparameter values can be selected. In
addition, we evaluate the sensitivity of each part to the final experimental results.

Image similarity is an important variable that affects the model. Our model uses
adversarial images with similarity less than 0.2, and the control group uses adversarial
images with similarity greater than 0.2. Compared with the control group, it can be seen
from the accuracy rate that almost every item has been improved by almost 1%. This means
that the smaller the similarity between two images, the higher the accuracy of the model.
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Glove word embedding of dimension 300 followed by a one-layer GRU is adopted in
our reference model. Three other word-encoding methods are selected to compare with
our reference model. The performance of the first and third methods is slightly reduced by
about 1%. The second method is the worst of the three.

Our image features are obtained through a combination of a Faster R-CNN framework
and 101-layer ResNet. A fixed threshold is used to limit the number of object detections,
and the number of features K perfectly matches the content of the image. The range of
parameters K is from 0 to 100. In our experiment, we take K = 36 as the parameter. In this
way, we can lower computation and reduce complexity. A 200-layer ResNet as a main
option is used in our comparative experiment. The performance of the ResNet-200 features
downsampled to 7 × 7 (K = 49) dramatically drops to 69.59%. The ResNet-200 global
features (K = 1) are expectedly even worse.

It can be seen from the experimental data on Table 1 that adopting adversarial learning
helps improve the accuracy and robustness of the model. Obviously, the model is not only
sensitive to the correct answer but can also effectively identify the wrong answer.

Table 1. VQA 2.0 validation score.

All Yes/No Numbers Other

Reference model 72.12 88.12 53.79 62.38

Image similarity

Correlation (p > 0.2) 71.58 87.1 52.7 61.17

Question embedding

100-dimensional glove and forward GRU 71.15 87.23 52.69 61.12

200-dimensional glove and forward GRU 70.98 87.01 51.69 62.01

300-dimensional glove and 2-layer forward GRU 71.34 87.54 52.57 61.88

Image features

ResNet-200 global features (K = 1) 67.12 85.24 51.01 60.98

ResNet-200 features 14 × 14 (K = 196) 68.83 85.84 51.71 61.58

ResNet-200 features downsampled to 7 × 7
(K = 49) 69.59 86.17 51.97 61.93

Attention mechanism

CNN 7 × 7 features 65.59 84.20 50.75 59.76

ResNet-200 7 × 7 features 66.41 85.68 51.91 60.74

Adversarial learning

Without adversarial learning 68.78 86.09 52.84 60.62

4.4. Comparison with Existing Methods

In the section, we will introduce the effectiveness and functions of our proposed
network. In order to ensure the fairness of the comparison process, the published model
we chose does not use additional datasets for training. Table 2 shows the comparison of
the results between the proposed method and the other published methods on VQA2.0.
Obviously, our model outperforms performs better than the published models in the
table by a margin of 0.6% on the test-standard and test-dev dataset. In addition, in three
entries, the performance of our model has improved by about 1% compared to second
place. This shows that in different categories, the model can understand the complex
relationships between question–image pairs. The results indicate that adversarial learning
with a bidirectional attention model outperforms the previous published methods on both
the test-standard and test-dev datasets using Faster R-CNN and glove.
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Table 2. Comparison of the results between the proposed method and the other published methods
on VQA2.0 using similar settings.

Model Test-Dev Test-Standard

Overall Yes/No Number Other Overall

VQA team [35] 57.75 80.5 36.77 43.08 58.16

SMem-VQA [14] 57.99 80.87 37.32 43.12 58.24

SAN [12] 58.7 79.3 36.6 46.1 58.9

FDA [36] 59.24 81.14 36.16 45.77 59.54

HQIC [10] 61.8 79.7 38.7 51.7 62.1

FR-VQA 62.43 77.18 33.52 56.09 -

RAU [37] 63.3 81.9 39 53 63.2

DAN [38] 64.3 83 39.1 53.9 64.2

MLB [39] 65.08 84.14 38.21 54.87 65.07

MFB [30] 65.9 84 39.8 56.2 65.8

DCN [40] 66.89 84.61 42.35 57.31 67.02

Count [41] 68.09 83.14 51.62 58.97 68.41

VisualBERT [42] 71.03 87.39 52.64 61.01 71.19

MCAN+VC [43] 71.5 87.09 53.82 61.97 71.72

ALBA (Ours) 72.12 88.12 53.79 62.38 72.33

4.5. Qualitative Results

In order to understand the internal mechanism of our model, we visualize the attention
maps that ALBA generates for predicting answers. Figure 3 indicates the visualization of
the related questions and predicted answers from our model ALBA. The color of attention
transitions from red to blue, representing the attention weight value from high to low.
The image area most relevant to the problem is highlighted in red. The visualization
of attention maps indicates that the capability of ALBA is to fuse related and irrelevant
image together according to the question to find the correct answers. In addition, we have
conducted comprehensive tests on different types of questions. From the results of the
four different question types above, it can be seen that the model has good robustness and
comprehensive understanding.

The similarity between images is also an important factor that affects the attention
mechanism. From the above data and analysis, it can be seen that the smaller the similarity,
the more accurately the model can improve. It can be seen from Figure 4 that when the
image similarity is greater than 0.2, the model cannot answer the question accurately, and
the focus is on the wall that is not related to the question. When the image similarity is less
than 0.2, the model can effectively integrate the question features and image features, take
advantages of the attention mechanism, and focus on the target.
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5. Conclusions

In this paper, we provide three contributions for solving VQA problems. First, we
propose to use adversarial learning methods to use images that are not related to the
problem to improve the model’s understanding and reasoning ability.

Second, the bidirectional attention mechanism is used to extract the features of the
effective area of the image and then fuse with the question, which reduces the image
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redundancy and the amount of calculation and makes the attention mechanism of the
model more effective.

Third, the VQA accuracy of our model is based on Faster-RCNN and glove, and it
outperforms other proposed algorithms. Furthermore, our model has strong adaptability
and robustness to different types of questions.

Although our model improves the understanding of the problem and thus the accuracy,
it does not have the ability to reason. This will be an optional direction for future model
improvement. We aim to explore the logic and spatial reasoning capabilities of the model.
Although the paper is not a breakthrough in the field, it can give an alternative direction to
solve the VQA problem.
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