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Abstract: Watching videos online has become part of a relaxed lifestyle. The music in videos has
a sensitive influence on human emotions, perception, and imaginations, which can make people
feel relaxed or sad, and so on. Therefore, it is particularly important for people who make adver-
tising videos to understand the relationship between the physical elements of music and empathy
characteristics. The purpose of this paper is to analyze the music features in an advertising video
and extract the music features that make people empathize. This paper combines both methods of
the power spectrum of MFCC and image RGB analysis to find the audio feature vector. In spectral
analysis, the eigenvectors obtained in the analysis process range from blue (low range) to green
(medium range) to red (high range). The machine learning random forest classifier is used to classify
the data obtained by machine learning, and the trained model is used to monitor the development
of an advertisement empathy system in real time. The result is that the optimal model is obtained
with the training accuracy result of 99.173% and a test accuracy of 86.171%, which can be deemed
as correct by comparing the three models of audio feature value analysis. The contribution of this
study can be summarized as follows: (1) the low-frequency and high-amplitude audio in the video
is more likely to resonate than the high-frequency and high-amplitude audio; (2) it is found that
frequency and audio amplitude are important attributes for describing waveforms by observing the
characteristics of the machine learning classifier; (3) a new audio extraction method is proposed to
induce human empathy. That is, the feature value extracted by the method of spectrogram image
features of audio has the most ability to arouse human empathy.

Keywords: empathy evaluation; audio processing; MFCC; machine learning

1. Introduction

Empathy, a phenomenon of characterizing our understanding and sharing of others’
feelings, is vital to our everyday communication and survival in a social environment [1].
Empathy evaluation has many methods but can be mainly classified into three categories:
subjective size evaluation, image processing, and bio-signals [2]. In image processing, a
four-camera vision system was established to sample a target from different perspectives.
In this system, a global calibration technique was deployed to correlate each individual
system. After that, the local point clouds were extracted, filtered, and stitched [3]. The
subjective evaluation method usually uses a questionnaire but has limitations due to
subjective ambiguity and individual differences. In order to compensate for its limitations,
researchers also use objective methods to evaluate empathy.

Immersive environments can induce emotional changes capable of generating states
of empathy. Considering an immersive environment as a socio-technical system, human
and non-human elements could interact and could also establish strong relationships [4]. In
video content, audio sensitively affects human emotions, perceptions, and imagination [5],
which can relieve tension or create the feeling of sadness. Therefore, it is important for
video creators, such as advertising designers, to understand the relationship between the
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physical elements of audio and humans [6]. Advertisement videos provide information of
products to viewers through various media such as the Internet, on the air, and cable [7].
These videos capture the interest of viewers and increase the purchasing power of products
through this empathy. The video content needs to be considered by determining the
required empathetic response of the viewer to the content of the video [8]. Whether or not
the viewer would empathize with the video content, such as video advertisements, and the
judgment of this empathy depends on individual subjective evaluation. An objective and
scientific approach or evaluation method, which produces an advertisement video that is
highly resonant to viewers, is required for the successful production of an advertisement
video [9].

Content creators actively use video content to gain public empathy. Video provides an
image or audio to the audience. In his book “Audio-visual on the Screen”, Chion proposed
that empathetic music participates in the “feeling of the screen” [10], and the intensity and
rhythm of the music are both participatory. Through the use of music, the protagonist’s
indifference and the character of moving forward alone are shown. He pointed out that
empathetic music often has the effect of “not freezing emotions but enhancing emotions”
because music has surprising power [11].

In the movie ‘Tenet’, scales with the same key are continuously repeated to increase
the tension. Empathetic audio foregrounds are artifices that play a performative role [12].
Empathetic music is frequently linked to noise; for example, “the shower water that
continues to run after Marion’s death in Hitchcock’s Psycho” [13] is discussed as empathetic
in the same way as any music cue because the “sonic process continues” without regard
for the death that has occurred [14,15].

The foundation of an audio analysis system is feature vector extraction. This paper
studies the method of audio signal classification processing. The mainstream method is
used to represent three feature sets of time texture, rhythm content, and pitch content.
Tzanetakis, G, used the performance and relative importance of the proposed features
investigated by training statistical pattern-recognition classifiers using real-world audio
collections [16]. Saunders [17] highlighted the difference between music and speech, which
attracted considerable attention. In the work of Scheirer and Slaney [18] the average zero-
crossing rate and simple threshold of energy characteristics were used, where multiple
features and statistical pattern-recognition classifiers are carefully evaluated. Some meth-
ods use cepstrum coefficients and hidden Markov models (HMM), and audio signals are
divided and classified into “music”, “speech”, “laughter”, and non-speech audio [19].

In addition, the methods of analyzing audio by spectrogram include a gray spectro-
gram and an RGB spectrogram. A grayscale spectrogram is characterized by quantizing
the dynamic range into different regions, and each region is mapped into a monochrome
image. An RGB spectrogram is an extension of the pseudo-color mapping process, in which
gray intensity is quantized into red, green, and blue (RGB) monochromatic components.
These two methods can express the feature mapping of audio as a monochrome image,
which is a non-linear mapping function [20].

The purpose of this paper is to determine the degree of empathy in advertisements
through audio. There are many ways to analyze audio. This paper combines the power
spectrum of MFCC and the application of image RGB to find the audio feature vector for
real-time monitoring of empathy in advertisements. The machine learning SVM classifier,
which developes a real-time monitoring advertising empathy system, uses the model
obtained from the database for classification learning. The feature vector we obtained
during the analysis is blue (low range) to green (mid-range) to yellow (upper range) in
the spectrum.

An audio image is achieved that can be viewed on a spectrogram. The spectrum is
“the intensity map of short-time Fourier transform (STFT) amplitude”. STFT is just a fast
Fourier transform sequence of windowed data segments, which usually allows windows
to overlap in time [21]. Spectrum is an important representation of audio data.
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By analyzing the obtained feature we determine that feature values are low power,
medium power, and high power in the high-frequency domain and low power, medium
power, and high power in the middle-frequency domain. Moreover, it is low power and
high power in the low frequency that can distinguish empathy.

Six classifiers of machine learning methods were used to learn and classify the collected
feature values for getting the highest accuracy rate: boosting-tree classifier, decision tree
classifier, MLP (multilayer perceptron), random forest classifier, KNN, and SVM. As a
result, the correct training rates of the random forest classifier are 99.173% and 86.171%,
respectively. However, the highest rate is obtained from the RGB spectrogram filtered by
MFCC, a hybrid model of the three feature extraction methods. It can be seen from the
results that the empathy ability also gradually increases as the power increases. However,
the ability to discriminate empathy characteristics gradually weakens as the frequency
domain increases.

The contributions of this study can be summarized as follows: (1) compared with
high-frequency and high-amplitude audios, low-frequency, and high-amplitude audios are
more likely to make people empathize with the video; (2) by observing the characteristics
of the machine learning classifier, it is found that the frequency and amplitude of the
audio are important attributes to describe the wave; (3) a new audio extraction method is
proposed to induce human empathy. That is, feature values extracted by the method of
spectrogram image features of audio has the most ability to arouse human empathy. All
the codes are saved in this link: https://github.com/zjing13cc/audio-processing (accessed
on 13 October 2021).

2. Materials and Methods
2.1. Experiment Procedure

We conducted two experiments for the content of this research, namely experiment
one in which there are 30 subjects watching 24 advertisements and experiment two with
77 subjects and 8 movie clips.

2.1.1. Subject

There are 30 subjects (15 males and 15 females) who are aged 20–30 years in experiment
one, and 77 subjects (38 males and 39 females) aged 20–40 years old in experiment two.
All the subjects were asked to have adequate sleep and no caffeine before the experiment
and were paid $20 for participation in the whole experimental process. The study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Ethics Committee of Sangmyung University, Seoul, Korea (BE2018-35).

2.1.2. Stimuli

To create an emotional stimulus and induce empathy, this study chose a new stimulus
specially designed for this research. According to different emotions, the degree of empathy
may vary. In previous research on empathy, media content that triggers emotions can
cause empathy more than media content that attracts rationality, and storytelling skills
can cause empathy more than enumerating facts or statistical evidence [22–24]. Therefore,
this study collected YouTube video clips that content providers hoped would convey
emotion through advertisements, to induce empathy and content. On the assumption that
the audience’s empathy and the effects of the advertising would be high, the researcher
selected 50 advertisements with high reviews, high ratings, and high actual sales, and
six subjects were investigated in preliminary experiments. Following this, 24 online
videos were screened during the first experiment. Regarding the number of times that
the same product’s advertisement was played at different times, 24 advertisements were
selected from Baxter, Vita 500, Samsung Printer (MLT-D 115), and other products, which
are shown in Figure 1. Videos marked with a red box are empathetic, and vice versa are
non-empathetic.

https://github.com/zjing13cc/audio-processing
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The plots of TV dramas or movies trigger empathy more easily. In order to dig deeper
into empathetic elements, we screened the best 8 TV shows and movie clips with high
scores in subjective appraisals from 20 of them. They came from clips in Korean TV dramas
or movies, as seen in Figure 2. Videos marked with a red box are empathetic videos, and
vice versa are non-empathetic videos.
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2.2. Feature Analysis

This paper used three methods to analyze the emotion of audio: (1) using the MFCC
of the human ear pattern filter to extract feature values; (2) using the spectrogram image
feature method without pre-processing; and (3) method of combining the above two
methods. By comparing the characteristic values extracted by the three methods on
empathetic audio and non-empathetic audio shown in Figure 14, the consistent and optimal
solution was obtained in the result. The highest training accuracy rate was obtained using
machine learning methods.

2.2.1. Mel-Frequency Cepstral Coefficients (MFCCs) Method

The MFCC (mel-frequency cepstral coefficient) is an algorithm that characterizes
voice data. You can think of mel as a value derived from the human cochlea. Humans
perceive audio through the cochlea. Although the cochlea is curled each part of the cochlea
senses different frequencies (frequency) when it is stretched out. Based on the frequency
detected by the cochlea humans perceive audio, hence this frequency is used as a feature.
However, Cochleas have special properties. The frequency change is well detected in the
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lower frequency band compared to the higher frequency band. The part of the cochlea
is thick when detecting the low-frequency band. However, it becomes thinner when it
detects the high-frequency band. Rather than just using the frequency as a feature vector,
it would be a more effective way to select features that match the characteristics of the
cochlea. A standard set of features for music information are described in the retrieval
literature [25,26], including low-level features (RMS level, Bark bands), spectral features
(energy in low/middle/high frequencies, spectral centroid, spectral spread, spectral skew-
ness, spectral kurtosis, spectral roll off, spectral crest, spectral flux, spectral complexity),
timbral features (mel-frequency cepstral coefficients, t ristimulus), and melodic features
(pitch, pitch salience and confidence computed with the YIN algorithm [27], inharmonicity,
dissonance) [28–31] and are shown in Table 1.

Table 1. Summary of the features of audio.

Spectral Spectral centroid, spectral roll off, spectral flux, MFCCs.

Temporal Zero-crossing profile, key clarity, harmonic change, musical mode.

Rhythmic Beat histogram, average tempo (BPM).

The quantitative evaluation method of empathy is to analyze the original data in the
frequency domain by using the extracted audio features. The power spectrum is extracted
from the frequency domain and the frequency components are extracted from a plurality
of frequency bands having different frequencies in the frequency spectrum. A single color
is then applied to the signals from the plurality of bands to convert the signals into RGB
image data; the RGB image data is then stored as learning data, generating a model file,
including weights, trained by learning using the learning data. For comparative voice data
extracted separately from the input video, the convolutional neural network technology is
applied using the training weights of the above model files to compare whether the video is
empathetic or uninteresting. We apply a triangular filter at this stage, extracting frequency
components from multiple bands with different frequencies on the above power spectrum,
and we can apply discrete cosine transform (DCT) to the frequency components of multiple
bands [32]. The flow of an MFCC feature extraction method is shown in Figure 3.
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In the original data phase, the sampling rate of the input audio signal is usually
30 milliseconds. It is shown with the time domain and frequency domain in Figures 4 and 5.
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The pre-emphasis filter is useful in many ways, and it can be applied to the signal x
using the first-order filter in the following equation.

y(t) = x(t) − αx(t − 1). (1)

The previous work has found that typical values of the filter coefficient (α) is 0.95 or
0.97 [33]. The coefficient is selected as 0.97 in this audio processing. Figures 6 and 7 show
the time domain and frequency domain signals after pre-emphasis filtering.
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In the second stage, the fast Fourier transform of the neural network points is per-
formed on each frame to calculate the frequency spectrum, also called short-time Fourier
transform (STFT), in which the neural network is usually 256 or 512 [34]. We set NFFT as
512, and then calculate the power spectrum (periodogram) using the following equation
in the process. When the number of operation points is an integer power of 2, let x(i) be a
finite-length sequence of N points, that is, if there is a value within 0 ≤ n ≤ N − 1, then
define x(i) with N points. The xi is the frame of the x-signal as shown in Figure 8, after
executing this process, the result can be obtained.

P = |FFTxi |
2NP= |FFTxi |

2N (2)
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The last step in calculating the filter bank is to apply a triangular filter to the power
spectrum. The mel scale simulates the perception of non-linear human ears to audio as
audio is more recognizable to human ears at lower frequencies than at higher frequencies.
We can switch between hertz (f) and mel (m) using the following equation. The mel filter
and mel inverse filter are shown in Figure 9.

m = 2595log10 (1 + f700), (3)

f = 700(10 m/2595 − 1). (4)
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The discrete cosine transform modifies the filter bank coefficients and generates a
compressed representation of the filter banks. Typically, the resulting cepstral coefficients
2–13 are retained and the rest are discarded for automatic speech recognition (ASR). Here
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12 values are chosen for num ceps. The mel spectrum after this discrete cosine transform
process is shown in Figure 10.
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In this paper, audio files are extracted from the advertisement, and then the frequency
spectrum of the audio file is obtained using the MFCC. When calculating the power spectral
density on the decibel power scale, the width of the Hamming window is 4.15 s, and the
size of the sliding window is 50 ms. The median size of the audio signal spectrogram is
371 × 501 pixels.

2.2.2. Spectrogram RGB Image Feature Method

Analysis is carried out by transforming the sampling rate in short blocks of audio of
1 s duration and then calculating the RGB images of spectrograms. These images are used
to fine tune the classification of the pre-trained image.

The representation of spectrogram on four different frequency scales, linearity, melody,
equivalent rectangular bandwidth (ERB), and logarithm, allows the effects of high, medium,
and low-frequency characteristics of the audio to be observed separately. The use of red (R),
green (G), or blue (B) components of RGB images showed the importance of high, medium,
and low-amplitude audio components, respectively. The algorithm is shown in Figure 11.

Sensors 2021, 21, 7111 9 of 24 
 

 

The discrete cosine transform modifies the filter bank coefficients and generates a 
compressed representation of the filter banks. Typically, the resulting cepstral coefficients 
2–13 are retained and the rest are discarded for automatic speech recognition (ASR). Here 
12 values are chosen for num ceps. The mel spectrum after this discrete cosine transform 
process is shown in Figure 10. 

 
Figure 10. The mel spectrogram after the DCT process. 

In this paper, audio files are extracted from the advertisement, and then the fre-
quency spectrum of the audio file is obtained using the MFCC. When calculating the 
power spectral density on the decibel power scale, the width of the Hamming window is 
4.15 s, and the size of the sliding window is 50 ms. The median size of the audio signal 
spectrogram is 371 × 501 pixels. 

2.2.2. Spectrogram RGB Image Feature Method 
Analysis is carried out by transforming the sampling rate in short blocks of audio of 

1 s duration and then calculating the RGB images of spectrograms. These images are used 
to fine tune the classification of the pre-trained image. 

The representation of spectrogram on four different frequency scales, linearity, mel-
ody, equivalent rectangular bandwidth (ERB), and logarithm, allows the effects of high, 
medium, and low-frequency characteristics of the audio to be observed separately. The 
use of red (R), green (G), or blue (B) components of RGB images showed the importance 
of high, medium, and low-amplitude audio components, respectively. The algorithm is 
shown in Figure 11. 

 
Figure 11. The flow chart of the second algorithm. Figure 11. The flow chart of the second algorithm.

The algorithm is a method to analyze the color mapping of three “standard” spectro-
grams in order to find a good representation method of the sample [35]. The first picture is
the default color picture of MFCC, ranging from blue (low range) to green (middle range)



Sensors 2021, 21, 7111 10 of 23

to red (high range), grayscale is a sequential grayscale mapping from black (low range)
to gray (middle range) to white (high range), and finally, Stolar, M.N. et al. [36]. The RGB
pictures are uniform sequential color pictures from blue (d) to green (c) to red (b). They are
divided into the images shown in Figure 12.
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2.2.3. MFCCs and the Spectrogram RGB Image Feature Method

In the first step, we used MFCC to extract the frequency spectrum of the audio file of
the video clip (such as advertisements) with a certain sampling rate. The sampling rate,
Hamming window width, and sliding size are 30 ms, 4.15 s, and 50 ms respectively, and
the output spectral density is calculated from the DB power scale. The median size of the
spectrum is 371 × 501 pixels.

The second step is to balance the frequency spectrum (remove noise). At this stage,
the frequency spectrum is balanced, which means applying pre-emphasizing filters to the
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signal to amplify the high frequencies. The pre-processing filter balances the spectrum
because the high frequency is smaller than the low frequency according to ear recognition.

The third step is the NN-point FFT calculation. NFFT (number of segments of fast
Fourier transform) is 512, and the power spectrum can be calculated by the following
formula: 15 degrees represents the results after executing this process. The five steps of
applying a triangle filter to the power spectrum in the calculation of a filter bank are to
extract the frequency band by applying a triangular mel-scale filter bank (usually 40 filters,
n = 40) to the power spectrum. The mel Scale aims to mimic non-linear human ear
recognition, in which audio becomes more discriminative at lower frequencies than that at
higher frequencies. We can switch between hertz (f) and mel (m) by using the following
formula. Therefore, a discrete cosine transform can be applied to decorate the coefficients
of the filter bank, and the filter bank can be represented comprehensively. The last step is to
transform (calculate) the spectrum with an RGB image. Spectral representations of the three
frequency ranges are converted to RGB images to observe the effects of high-, medium-, and
low-frequency characteristics. For example, the high-frequency band (15,000–22,500 Hz) is
red, the middle-frequency band (7500 Hz) is green, and the low-frequency band (0–7500 Hz)
is blue. Using red (r), green (g), or blue (b) components in RGB images, the importance
of audio components with high, medium, and low amplitude levels, respectively, are
calculated as acoustic characteristics.

In the empathy-evaluation method, using image features according to practical exam-
ples, the above-mentioned audio features may include the following: low power, middle
power, and high power. The above-mentioned video element and audio attributes are used
as learning data. The flow chart of this algorithm is shown in Figure 13.
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2.2.4. Machine Learning Classifier

We tried many classification methods and analyzed their advantages and disadvan-
tages. The classifiers selected here are boosting tree classifier, decision tree classifier, MLP
(multilayer perceptron), random forest classifier, KNN (K-nearest neighbor), and SVM
(support vector machine) [36–41]. We have used 10-fold cross validation and standard
parameters for each algorithm. The parameters used are specified in Section 3.2.2.

The boosting tree model uses an additive model (a linear combination of basic func-
tions) and a forward step-by-step algorithm. At the same time, the basic functions use
a decision tree algorithm, in which a binary classification tree is used for classification
problems, and a binary regression tree is used for regression problems.

Random forest is a meta-estimator, which is suitable for multiple decision tree classi-
fiers on each sub-sample of the data set. It uses the average value to improve prediction
accuracy and control overfitting. The sub-sample size is always the same as the original
input sample size but if bootstrap is true (the default value) replacement will be used
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to draw the sample. The performance (function) measures the quality of the split. The
supported standards are “gini” for Gini impurity and “entropy” for information gain.

Decision tree learning uses a top-down recursive method, and its basic idea is to
construct a tree with the fastest decrease in entropy as a measure of information entropy.
The entropy value of the leaf node is zero and the instances in each leaf node belong to the
same class currently. The most important advantage of the decision tree algorithm is that
it can be self learning. In the learning process, the user need not have much background
knowledge but can only label the training examples in a better way. The key to establishing
the decision tree is to determine which attribute is selected as the classification basis in the
current state. According to different objective functions, there are three main algorithms
for building a decision tree: ID3, C4.5, and CART.

The support vector machine (SVM) is non-linear mapping. It uses the inner product
kernel function to replace the non-linear mapping in the high-dimensional space. The goal
of SVM is to divide the optimal hyperplane of feature space, and the idea of maximizing
the classification margin is the core of the SVM method. The SVM learning problem can
be expressed as a convex optimization problem so that the known effective algorithms
can be used to find the global minimum of the objective function. For this method, the
generalization error rate is low, the classification speed is fast, and the results are easy to
interpret. However, the disadvantage is that the SVM algorithm is difficult to implement
for large-scale training samples as it is sensitive to missing data, selections of parameters,
and kernel functions, and the “dimensional disaster” has to be avoided. However, for
large-scale training samples, the SVM algorithm is very difficult to implement.

The KNN algorithm is a simple and robust classification technology. Test feature
vectors are classified by looking for the k nearest neighbor vectors. The distance between the
training vector and the test vector is calculated by measuring the difference in measurement
technique [42]. Its training time is not very complicated, except that it has very high
precision with no assumption data. The disadvantage is the large amount of calculation,
the non-balanced sample, and that it requires a large amount of memory. The KNN’s
algorithm classifier will be more suitable for the feature data of the spectrogram extracted
from the audio.

3. Results
3.1. Statistical Analysis Result
3.1.1. Mel-Frequency Cepstral Coefficients (MFCCs) Result

The assumption we have made is that the extracted audio feature can distinguish
between empathetic and non-empathetic videos. The first method extracted the audio
features in the video that are the independent variables along with its sound features
shown in Figure 14. The mel-frequency cepstral coefficients (MFCCs) of a signal are a small
set of features that concisely describe the overall shape of a spectral envelope. Eigenvalues
were extracted for t-test statistical analysis, which tested the two previous hypotheses and
were carried out by adjusting the α levels of each test by 0.05. Results showed that empathy
and non-empathy were mainly influenced by the healthy body elements (coefficients F1,
F2, F3, F4, F5, F6, F7, F8, F10) between the two groups (p < 0.001). The differences obtained
from the data are shown in Tables 2 and 3.
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Table 2. The average error (coefficients F1, F2, F3, F4, F5, F6, F7, F8, F10) (p < 0.001) of the characteristic values of acoustic
and physical elements is the difference between empathetic and non-empathetic labels in experiment one.

Label F1 F2 F3 F4 F5

Mean Std Mean Std Mean Std Mean Std Mean Std

Non-empathetic 1.11 0.41 −92.85 0.68 44.63 0.89 −153.48 0.98 107.12 1.16

Empathetic −30.97 0.68 −127.33 1.16 71.69 1.49 −172.1 1.75 112.66 1.94

Label F6 F7 F8 F10

Mean Std Mean Std Mean Std Mean Std

Non-empathetic −198.14 1.2 76.23 1.41 −145.67 1.32 −118.32 1.34

Empathetic −240.14 2.12 81.7 2.41 114.56 2.22 −138.58 2.19

Table 3. The average error (coefficients F1, F2, F3, F4, F5, F6, F7, F8, F10) (p < 0.001) of the characteristic values of acoustic
and physical elements is the difference between empathetic and non-empathetic labels in experiment two.

Label F1 F2 F3 F4 F5

Mean Std Mean Std Mean Std Mean Std Mean Std

Empathetic −240.02 1.84 133.42 0.55 −32.75 0.42 16.39 0.27 −12.2 0.32

Non-empathetic −351.08 2.51 121.99 0.78 −13.71 0.91 23.8 0.35 −1.69 0.46

Label F6 F7 F8 F10

Mean Std Mean Std Mean Std Mean Std

Empathetic 11.9 0.23 −8.47 0.18 −2.52 0.17 −1.87 0.16

Non-empathetic 5.28 0.2 −1.73 0.21 1.13 0.13 −2.92 0.16

3.1.2. Spectrogram RGB Image Feature Result

The second method of audio extraction is extracting spectrogram RGB images of
audio features. Audio characteristics obtained by this method are low power, medium
power, high power, low frequency, middle frequency, and high frequency. The results show
that empathy or non-empathy of the two groups were mainly influenced by the healthy
physical characteristics (high power mean, medium power mean, and low power mean)
(p < 0.001). The two differences obtained from the data are shown in Tables 4 and 5.
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Table 4. Average error (p < 0.001) of characteristic values of audio and physical elements (low power, medium power, high
power, low frequency, middle frequency, and high frequency) compared with empathetic and non-empathetic labels in
experiment one.

Label R-High G-High B-High R-Middle

Mean Std Mean Std Mean Std Mean Std

Non-empathetic 48.8 0.1 119.1 0.2 137.6 0.07 61.6 0.45

Empathetic 48.1 0.06 118 0.2 137.9 0.03 59 0.35

Label G-Middle B-Middle R-Low B-Low

Mean Std Mean Std Mean Std Mean Std

Non-empathetic −174.6 0.38 118.7 0.3 98.3 0.4 94.6 0.2

Empathetic −171.6 0.36 120.6 0.2 96.6 0.4 95.5 0.2

Table 5. Average error (p < 0.001) of characteristic values of audio and physical elements (low power, medium power, high
power, low frequency, middle frequency, and high frequency) compared with empathetic and non-empathetic labels in
experiment two.

Label R-High G-High B-High R-Middle

Mean Std Mean Std Mean Std Mean Std

Non-empathetic 67.1 0.78 119.1 0.2 117.7 0.53 68.3 0.76

Empathetic 60.0 0.62 118.0 0.2 122.3 0.43 61.7 0.6

Label G-Middle B-Middle R-Low B-Low

Mean Std Mean Std Mean Std Mean Std

Non-empathetic 168.5 0.63 116.4 0.51 65.7 0.78 116.7 0.53

Empathetic 164.9 0.52 120.6 0.41 58.6 0.63 121.2 0.43

3.1.3. MFCCs and Spectrogram RGB Image Feature Result

Finally, the third method is a combination of the first two methods. The difference
between videos is whether they are the main reason for empathy or not. Using the MFCC
method (with a similar structure of the human ear vortex) and the power spectrum of RGB
extracts with feature values such as low power, middle power, high power, low frequency,
middle frequency, high frequency, the results indicated that empathy or non-empathy of
the two groups of participants was mainly affected by the sound and physical elements
featured (low-power mean, low-power std, middle-power mean, middle-power std, high-
power std) (p < 0.001) deviation) (p < 0.001). The differences obtained from the data are
shown in the Tables 6 and 7.

Table 6. Average error of characteristic value of audio and physical element features used for
difference comparison between empathetic/non-empathetic labels in experiment one (low-power
average, low-power standard, medium-power average, medium-power standard, and high-power
means high-power standard) (p < 0.001).

Label Low-Power Mean Low-Power Std Middle-Power Mean

Mean Std Mean Std Mean Std

Non-empathetic 2371.9 29.2 9412.2 123.1 74.87 3.47

Empathetic 1587.4 25.8 6086.1 106.4 92.36 4.97
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Table 6. Cont.

Label Middle-Power Std High-Power Mean High-Power Std

Mean Std Mean Std Mean Std

Non-empathetic 213.7 10.8 0.86 0.05 4.31 0.33

Empathetic 227.6 12.8 1.48 0.09 7.61 0.47

Table 7. Average error of characteristic value of audio and physical element features used for
difference comparison between empathetic/non-empathetic labels in experiment two, (low-power
average, low-power standard, medium-power average, medium-power standard, and high-power
means high-power standard) (p < 0.001).

Label Low-Power Mean Low-Power Std Middle-Power Mean

Mean Std Mean Std Mean Std

Non-empathetic 268.5 3.19 7429.3 71.82 0.067 0.003

Empathetic 133.9 12.67 1531 19.19 0.199 0.007

Label Middle-Power Std High-Power Mean High-Power Std

Mean Std Mean Std Mean Std

Non-empathetic 0.33 0.01 36.22 0.56 237 3.37

Empathetic 0.86 0.03 36.77 0.46 237.5 3.94

According to the statistical analysis results of eigenvalues obtained by the three
methods, it is found that in the low-frequency domain it is easier to induce human empathy
as the audio power increases. The average error number of the group without the empathy
label was significantly higher (m = 2371.9, SD = 29.2; p < 0.001) than that of the empathy
group (m = 1587.4, SD = 25.8; p = 0.001) in the system. As the frequency increases, the
ability to induce empathy gradually weakens, such as the value of low power means of
empathy label and high-power means of the empathy label: the average number of errors
in non-empathy label group is significantly higher (m = 1587.4, SD = 25.8; p < 0.001) was
higher than that of empathetic group (m = 1.48, SD = 0.09; p < 0.001). The result of extracting
features in low power and high power was the difference between the empathetic and
non-empathetic label in experiment one. The results of experiment two also have the
same trend as experiment one in the empathetic and non-empathetic labels as shown in
Figure 15.

Sensors 2021, 21, 7111 17 of 24 
 

 

 
Figure 15. The flow chart of three methods for empathy evaluation in audio signal processing. 

3.2. Classification for All Methods Result 

In the mixed model of RGB image scale features and MFCC spectrogram (the RGB 
scale spectrogram and MFCC spectrogram are given in Table 5), the audio feature values 
are extracted respectively, and are statistically analyzed. Finally, the meaningful feature 
value is used for classification by the machine learning classifier. 

3.2.1. Multi-Conditional Training 

The classifiers selected here are boosting tree classifier, decision tree classifier, MLP 
(multilayer perceptron), random forest classifier, KNN (K-NearestNeighbor), and SVM 
(support vector machine). You can see from the results in Table 8 that for the characteris-
tics of the audio signal, the accuracy of the SVM classifier is higher than the other two 
classifiers, which achieved better predictive value. From the accuracy rate, it can be seen 
that the mixed model using the MFCC filter and RGB image processing has the highest 
accuracy rate with 99.173% training data and 86.171% test data, which are better than that 
of other classifiers: AdaBoost classifier (78.092% training data; 78.125% test data), decision 
tree (83.824% training data; 81.196% test data), SVM classifier (75.3% training data; 62.3% 
test data), KNN classifier (71.2% training data; 60.5% test data), and MLP classifier 
(67.823% training data; 67.9% test data). 

Table 8. The feature values obtained by the three audio extraction methods are training accuracy 
and test accuracy after machine learning of the BT, DT, MLP, RF, KNN, and SVM classifiers. 

Classifier Method Training Accuracy Test Accuracy 
Extraction feature of method 

1  

AdaBoost 66.284% 54.212% 
Decision tree 73.244% 64.956% 

Random forest 76.53% 70.791% 
SVM 74% 66.5% 
KNN 65.3% 66.2% 
MLP 55.3% 55.1% 

Figure 15. The flow chart of three methods for empathy evaluation in audio signal processing.



Sensors 2021, 21, 7111 17 of 23

3.2. Classification for All Methods Result

In the mixed model of RGB image scale features and MFCC spectrogram (the RGB
scale spectrogram and MFCC spectrogram are given in Table 5), the audio feature values
are extracted respectively, and are statistically analyzed. Finally, the meaningful feature
value is used for classification by the machine learning classifier.

3.2.1. Multi-Conditional Training

The classifiers selected here are boosting tree classifier, decision tree classifier, MLP
(multilayer perceptron), random forest classifier, KNN (K-NearestNeighbor), and SVM
(support vector machine). You can see from the results in Table 8 that for the characteristics
of the audio signal, the accuracy of the SVM classifier is higher than the other two classifiers,
which achieved better predictive value. From the accuracy rate, it can be seen that the
mixed model using the MFCC filter and RGB image processing has the highest accuracy
rate with 99.173% training data and 86.171% test data, which are better than that of other
classifiers: AdaBoost classifier (78.092% training data; 78.125% test data), decision tree
(83.824% training data; 81.196% test data), SVM classifier (75.3% training data; 62.3% test
data), KNN classifier (71.2% training data; 60.5% test data), and MLP classifier (67.823%
training data; 67.9% test data).

Table 8. The feature values obtained by the three audio extraction methods are training accuracy and
test accuracy after machine learning of the BT, DT, MLP, RF, KNN, and SVM classifiers.

Classifier Method Training Accuracy Test Accuracy

Extraction feature of method 1

AdaBoost 66.284% 54.212%

Decision tree 73.244% 64.956%

Random forest 76.53% 70.791%

SVM 74% 66.5%

KNN 65.3% 66.2%

MLP 55.3% 55.1%

Extraction feature of method 2

AdaBoost 72.92% 68.5%

Decision tree 77.842% 72.66%

Random forest 78.732% 72.721%

SVM 61.2% 58.5%

KNN 70.2% 61.7%

MLP 58.5% 50.5%

Extraction feature of method 3

AdaBoost 78.092% 78.125%

Decision tree 83.824% 81.196%

Random forest 99.173% 86.171%

SVM 75.3% 62.3%

KNN 71.2% 60.5%

MLP 67.823% 67.9%.

3.2.2. Classification and Evaluation

The classifiers selected here are boosting tree classifier, decision tree classifier, MLP
(multilayer perceptron), random forest classifier, KNN (K-nearest neighbor), and SVM
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(support vector machine) [36–40]. We have used 10-fold cross validation and standard
parameters for each algorithm. The parameters used are specified in Tables 9–13.

Table 9. The evaluation result of a learning rate of 0.1, 0.4, 0.8 in the AdaBoost model.

Model Label Precision Recall F1-Score Support

Learning rate of 0.1

Non-empathetic 0.70 0.78 0.74 2299

Empathetic 0.75 0.66 0.70 2017

Avg/total 0.73 0.72 0.72 4316

Learning rate of 0.4

Non-empathetic 0.76 0.80 0.78 2299

Empathetic 0.78 0.74 0.76 2017

Avg/total 0.77 0.77 0.77 4316

Learning rate of 0.8

Non-empathetic 0.79 0.77 0.78 2299

Empathetic 0.77 0.79 0.78 2017

Avg/total 0.78 0.78 0.78 4316

AdaBoost uses an additive model to linearly combine weak classifiers. For example,
AdaBoost uses a weighted majority vote to increase the weight of a classifier with a small
error rate and reduce the weight of a classifier with a large error rate. The data of this
experiment found that the maximum training accuracy rate was 78.092% by changing the
learning rate to 0.8 and the test accuracy rate to 78.125%.

Table 10. The evaluation result of the number of trees being 10, 40, 80 in the random forest model.

Model Label Precision Recall F1-Score Support

Number trees of 10

Non-empathetic 0.82 0.88 0.85 2299

Empathetic 0.87 0.81 0.84 2017

Avg/total 0.85 0.84 0.84 4316

Number trees of 40

Non-empathetic 0.85 0.87 0.86 2299

Empathetic 0.87 0.84 0.86 2017

Avg/total 0.86 0.86 0.86 4316

Number trees of 80

Non-empathetic 0.86 0.87 0.86 2299

Empathetic 0.87 0.85 0.86 2017

Avg/total 0.86 0.86 0.86 4316

Each decision tree of a random forest is a classifier (assuming that it is a classification
problem). N trees will have N classification results for an input sample. When the random
forest integrates all the classification voting results, the category with the most votes is
designated as the final output. From the data results of this experiment, when there are
80 trees the maximum training accuracy rate is 99.173% with 86.171% test accuracy rate.

Table 11. The evaluation result of a maximum depth of 10, 50, 100 in the decision tree model.

Model Label Precision Recall F1-Score Support

Maximum depth of 10

Non-empathetic 0.82 0.81 0.81 2299

Empathetic 0.81 0.82 0.81 2017

Avg/total 0.81 0.81 0.81 4316
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Table 11. Cont.

Model Label Precision Recall F1-Score Support

Maximum depth of 50

Non-empathetic 0.81 0.82 0.81 2299

Empathetic 0.81 0.80 0.81 2017

Avg/total 0.81 0.81 0.81 4316

Maximum depth of 100

Non-empathetic 0.81 0.81 0.81 2299

Empathetic 0.81 0.80 0.81 2017

Avg/total 0.81 0.81 0.81 4316

With the maximum depth that the tree is allowed to grow to, the deeper you allow
the more complex the model is. There is a good golden point between too high and too
low. Think of maximum_depth as a hyperparameter and use grid/random search with
cross-validation to find a good value for the maximum_depth. We found that a maximum
depth of 10 is the best training result, when the training accuracy rate is 83.824%, and the
test accuracy rate is 81.196%.

Table 12. The evaluation result of the iteration of ordinal numbers 200, 350, 500 in the MLP model.

Model Label Precision Recall F1-Score Support

Iteration ordinal number 200

Non-empathetic 0.62 0.93 0.75 2299

Empathetic 0.86 0.42 0.56 2017

Avg/total 0.74 0.68 0.65 4316

Iteration ordinal number 350

Non-empathetic 0.62 0.95 0.75 2299

Empathetic 0.88 0.41 0.56 2017

Avg/total 0.75 0.68 0.65 4316

Iteration ordinal number 500

Non-empathetic 0.62 0.95 0.75 2299

Empathetic 0.88 0.41 0.56 2017

Avg/total 0.75 0.68 0.65 4316

For the number of iterations of MLP, the accuracy of the training set and the test set
are also different. We chose to iterate from 200 to 500 every 50 steps. The result obtained
is that when the audio training set is iterated to 350 times using the MLP classifier, the
accuracy rate is no longer obvious. The accuracy rate of the training set and the accuracy
rate of the test set is maintained at 67.823% and 67.9%, respectively.

The advantage of the SVM classifier lies in that it is a kernel function. Generally it
uses ‘RBF’, ‘linear’, ‘poly’, etc. As shown in Figure 16, it is found that the function model
works best when using ‘RBF’ parameters. Another important parameter is that a larger C is
equivalent to punishing the slack variable. It is hoped that the slack variable will be close to
0 and that the penalty for misclassification will increase, which tends to be the case of fully
splitting the training set. It is why the generalization ability is weak with a high accuracy of
training set. The value of C is small, which reduces the penalty for misclassification, allows
fault tolerance, is regarded as noise points, and has strong generalization ability [43,44].
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In the machine learning model, the parameters that need to be selected manually
are called hyperparameters. The name of ‘GridSearchCV’ can be divided into two parts,
‘GridSearch’ and CV, namely grid search and cross-validation. Both names are very easy to
understand. Grid search, searches for parameters within the specified parameter range,
adjusts the parameters in sequence according to the step length, uses the adjusted pa-
rameters to train the learner, and finds the parameter with the highest accuracy on the
verification set from all the parameters. This is a process of training and comparison.
GridSearchCV can guarantee to find the most accurate parameter within the specified
parameter range, but this is also the flaw of grid search. It requires traversing all possible
parameter combinations, which is very time consuming in the face of large data sets and
multiple parameters. In this analysis SVM is used for classification, evaluation, and to
establish a software-obsolete evaluation model. Firstly, the GridSearchCV class is used to
select the optimal gamma C and gamma of the SVM, and the typical C and gamma are
selected for the svm.SVC model [44]. The results of the SVM model evaluation are shown
in Table 6. From the results of NuSVC, SVC, and LinearSVC in the SVM model, SVC is the
best choice in this model. The kernel function of svm.SVC (gamma:1; learning rate: 0.001)
is more suitable for audio processing when using the SVM classifier shown in Table 6.

Table 13. The evaluation result of NuSVC, SVC, and LinearSVC in the SVM model.

Model Precision Recall F1-Score Support

svm.NuSVC

0 0.61 0.73 0.67 2299

1 0.64 0.51 0.57 2017

Avg/total 0.58 0.52 0.47 4316

svm.SVC

0 0.77 0.77 0.72 2299

1 0.71 0.75 0.67 2017

Avg/total 0.74 0.76 0.69 4316

svm.LinearSVC 0 0.66 0.69 0.68 2299

1 0.66 0.63 0.64 2017

Avg/total 0.58 0.66 0.66 4316
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4. Conclusions

In this paper, 24 advertisement videos on YouTube and 8 drama video clips are
selected as stimuli. The subjects watched the videos and made a subjective assessment on
empathy levels. In this paper, the audio signal in the advertisement was mainly used for
analysis. There were three analysis methods used: MFCC, RGB spectrogram, and filtered
RGB spectrogram of mixed model MFCC. When using the statistical t-test, there were
differences in audio feature values between the empathy tags and non-empathy tags. We
then used six classifiers with higher recognition of machine learning methods to learn and
classify the collected feature values, and calculate with of the obtained accuracy rates is
the highest: boosting tree classifier, decision tree classifier, MLP (multilayer perceptron),
random forest classifier, KNN, and SVM. The correct training rate of the random forest
classifier is 99.173% and the test rate of the random forest classifier with 86.171%. The
training accuracy and test accuracy of RGB spectrogram filtered by MFCC, a hybrid model
of the three feature extraction methods, is the highest.

The method used in statistics is to compare the power in the low frequency domain.
As the audio power increases, it is more likely to cause empathetic resonance. As the
frequency increases, the result of the ability to induce empathy is discovered. In a word,
the contributions of this study are as follows. First, for those who make commercial video,
music, and music with low frequency and high amplitude are more likely to resonate
with video than audio with high frequency and high amplitude. Secondly, by observing
the features of the machine learning classifier, it can be found that frequency and audio
amplitude are important attributes to describe waves. Thirdly, a new audio extraction
method is proposed to induce human empathy. That is, the feature value extracted by
the method of the spectrogram image features of audio has the most ability to arouse
human empathy.

5. Discussion

The conclusion is that increasing the strength of audio in advertising production
enhances the viewers’ empathy in this system. The experiments presented here have
demonstrated clear advantages of the proposed methodology by comparing them to
traditional methods utilizing arrays of spectrogram magnitudes [45–47]. This agrees with
Andrei C. Miu, who has said that positive emotions trigger empathy more than negative
emotions [48], and Jing Z, etc. the power of positive emotion audio is higher than the power
of negative emotion audio [23]. Yoo, S. et al. who thought the effect of a co-viewer may
only impact on empathetic responses when participants felt higher emotional intensity [32].
Therefore, it can be concluded that the ability of inducing human empathy would increase
with an increase in frequency, e.g., the value of low-power mean of the non-empathetic
label and the empathetic label where the average number of errors is significantly higher
in the group of non-empathetic labels than those with empathetic labels. As the frequency
increases, the ability to induce empathy gradually weakens, e.g., the value of low-power
and high-power means of the empathetic label where the average number of errors was
significantly higher in the group with the non-empathetic labels than those in the group of
empathetic labels.

In the future, the image feature value and the audio feature value in the advertisement
would be combined in order to achieve a greater effect on the empathy stimulation of
the advertisement.
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