
sensors

Communication

Neural Network Analysis for Microplastic Segmentation

Gwanghee Lee and Kyoungson Jhang *

����������
�������

Citation: Lee, G.; Jhang, K. Neural

Network Analysis for Microplastic

Segmentation. Sensors 2021, 21, 7030.

https://doi.org/10.3390/s21217030

Academic Editor: Michele Calì

Received: 17 August 2021

Accepted: 21 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, College of Engineering, Chungnam National University,
Daejeon 34134, Korea; manggu251@gmail.com
* Correspondence: sun@cnu.ac.kr; Tel.: +82-42-821-6653

Abstract: It is necessary to locate microplastic particles mixed with beach sand to be able to separate
them. This paper illustrates a kernel weight histogram-based analytical process to determine an
appropriate neural network to perform tiny object segmentation on photos of sand with a few
microplastic particles. U-net and MultiResUNet are explored as target networks. However, based
on our observation of kernel weight histograms, visualized using TensorBoard, the initial encoder
stages of U-net and MultiResUNet are useful for capturing small features, whereas the later encoder
stages are not useful for capturing small features. Therefore, we derived reduced versions of U-net
and MultiResUNet, such as Half U-net, Half MultiResUNet, and Quarter MultiResUNet. From the
experiment, we observed that Half MultiResUNet displayed the best average recall-weighted F1 score
(40%) and recall-weighted mIoU (26%) and Quarter MultiResUNet the second best average recall-
weighted F1 score and recall-weighted mIoU for our microplastic dataset. They also require 1/5 or less
floating point operations and 1/50 or a smaller number of parameters over U-net and MultiResUNet.

Keywords: microplastic; neural network; segmentation; U-net; MultiResUNet; kernel weight
histogram; tiny object segmentation

1. Introduction

A neural network finding the location of tiny objects in an image can be used in a
variety of fields, including disaster relief work to find victims from drone images taken on
the mountain, commercial work to find cracks in products, military work to determine the
condition of targets with satellites, public interest to find and remove microplastics in beach
sand, etc. Among them, our research aims to solve the problem of finding microplastics in
beach sand.

Microplastic is a plastic piece of 5mm or less [1]. These small pieces of plastic are
mistaken for food and are consumed by coral, plankton, sea urchin, lobster, and fish.
It reduces the reproduction, growth, and regeneration ability of marine life [2,3]. This
problem accelerates and spreads to all ecosystems by the food chain, and humans are
no exception.

Research related to microplastics was mainly aimed at making statistical data by
identifying the types and numbers of microplastics that have been completely separated
from seawater or sand. For example, a study was conducted to accurately identify the
types of microplastics isolated from sand or sea water using precision equipment, such as
microscopes, electron microscopes, etc. [4]. In addition, a machine learning technique was
used to determine the type and number of microplastics isolated from beach sand [5]. In
another paper [6], segmentation was performed on images of microplastics separated from
sand using U-net [7]. In the same paper, VGG16 [8] was used to classify each microplastic
type (fragments, pellets, or lines) in a given microplastic image. This paper introduces
a study to explore a deep learning model that can be used to recognize and separate
microplastics when sand scooped up from the beach is placed on a conveyor belt.

At first, U-net and MultiResUNet were explored as target networks to recognize mi-
croplastic in sand photos. Based on our observation of kernel weight histograms visualized

Sensors 2021, 21, 7030. https://doi.org/10.3390/s21217030 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5659-0503
https://doi.org/10.3390/s21217030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217030
https://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/21/21/7030?type=check_update&version=3

Sensors 2021, 21, 7030 2 of 21

using TensorBoard [9], it can be found that the later encoder stages of the two networks
are not useful for capturing small features. Therefore, we derived reduced versions of
U-net and MultiResUNet, such as Half U-net, Half MultiResUNet, and Quarter MultiRe-
sUNet. With experiments, we observed that Half MultiResUNet displayed the best average
recall-weighted F1 score (r.w. F1 score) and recall-weighted mIoU (r.w. mIoU) and Quarter
MultiResUNet the second best average r.w. F1 score and r.w. mIoU for our microplastic
dataset. They also require very low floating point operations and much lower number of
parameters over U-net and MultiResUNet. The five neural network architectures including
the derived versions are explained in Section 4.

The contribution of this paper can be summarized as follows:

• Kernel weights histogram shows the distribution of weight values of each layer. By
using this histogram, the neural network designer can determine the degree of layer
utilization, and by classifying unnecessary layers according to the layer utilization
degree, the neural network structure can be optimized. This paper demonstrates this
optimization process;

• A neural network suitable for tiny object segmentation was proposed by deriving
from the existing NNs (Neural Networks), and it shows better performance with only
10–20% of the amount of computation over the existing NNs.

The rest of this paper is organized as follows: Section 2 introduces related works and
explains why some models have been employed and other models have not been used
for experiments and analysis. Section 3 briefly describes the structures and characteristics
of the five neural networks, i.e., two existing NNs and the three derived versions of NNs.
Section 4 introduces recall-weighted metrics, such as r.w. F1 score, and r.w. mIoU, and the
experimental settings, as well as the comparison between the segmentation performances
of the five NNs, followed by a few insights that were obtained from the observation of the
weight histogram. We have summarized and concluded the paper in Section 5.

2. Related Works

The task of locating an object in an image can be performed by detection or segmen-
tation. However, the problem of finding the location of microplastics in sand photos is a
problem of finding very small objects. Therefore, segmentation that predicts objects and
backgrounds in units of pixels is more effective than detection that finds a location in the
form of a bounding box because bounding boxes are not accurate at locating microplastics
in pixel level. Segmentation can be divided into two main types of problems. Namely,
semantic segmentation and instance segmentation. Semantic segmentation only needs to
classify the class to which each pixel belongs. Recent semantic segmentation networks
include GALDNet [10] and HANet [11]. However, in instance segmentation, objects be-
longing to the same class must also be distinguished from each other if they belong to
different instances. Recent instance segmentation networks include EfficientPS [12] and
Panoptic-DeepLab [13]. For the problem of finding the location of microplastics, semantic
segmentation is suitable because it is not necessary to distinguish the identity of each
object. However, neural network models for semantic segmentation, such as GALDNet
and HANet, have been studied to recognize mid-large objects by atrous spatial pyramid
pooling (ASPP) [14,15] and pyramid pooling [16]. Since our task is to recognize tiny objects,
we had to search for models suitable for segmentation of small as well as large objects.
Biomedical segmentation [7,17] has similar characteristics in a sense that it often needs to
recognize even small objects. U-net or similar neural networks are employed for biomedi-
cal segmentation, to recognize cell boundaries and cancer regions. U-net appears to be a
candidate NN for microplastic segmentation because it deals with small, as well as large
objects with no regular shape. SegNet [17] is similar to, but simpler than U-net since it has
a structure similar to that of a skip connection in U-net that passes the pooling index to the
appropriate decoder stage. Although we trained the SegNet model using the microplastic
dataset, all prediction results by the model came out as 0, which means that no training
was completed at all. So, we excluded SegNet from our comparative study.

Sensors 2021, 21, 7030 3 of 21

MultiResUNet [18] is also considered as a NN for microplastic segmentation because
it exhibits better segmentation performance than U-net. MultiResUNet was derived from
U-net, by replacing the skip connection with the residual path, and each encoder/decoder
stage consists of MultiRes blocks with a residual block structure of ResNet [8]. The encoder
stage means an embedding connection in which the width and height of the tensor are
reduced either through pooling or by using a stride greater than 1 in the convolutional
layer. The decoder stage means an expanding connection in which the width and height of
the tensor are enlarged using upsampling or deconvolution.

Although DeepLab [14,19,20] exhibited satisfactory performance for middle- and
large-sized objects because it employs ASPP, we excluded DeepLab because it has not been
used actively in the segmentation of small or tiny objects.

3. Neural Networks for Microplastic Segmentation

This section briefly introduces the two existing NNs and the three derived versions of
NNs used in microplastic segmentation. The first NN is U-net shown in Figure 1a. U-net
consists of encoder stages, which are followed by decoder stages, as shown in Figure 1a.
The dimensions of the output of each encoder stage are scaled down using a max pooling
layer [21]. Each decoder stage accepts the output from the previous stage, which is
upsampled with nearest interpolation [22]. The skip connection is used to maintain the
positional information of the features by connecting the output of the encoder stage with
the corresponding decoder stage. With respect to the aforementioned facts, the former half
of the encoder stages combined with the corresponding decoder stages appear to include
the characteristics required for determining small input features, while the latter half of
the encoder stages include the characteristics required for capturing large input features.
Because this study deals with minuscule objects, such as microplastics, we introduced a
simplified U-net, called Half U-net, that contains the first half of the encoder stages along
with the corresponding decoder stages. As shown in Figure 1b, ‘Linear’ Activation means
that the input X is transferred to output Y as it is. ‘ReLU’ Activation is the same as ‘Linear’
Activation if the input X is greater than or equal to 0, and if the input value is less than 0,
output becomes 0. ‘Sigmoid’ Activation converts the input into the continuous output value
between 0 and 1 based on the exponential function. As shown in Figure 1c, upsampling
expands the input 2 times in horizontal and vertical direction while maxpooling shrinks
the input 1/2 times in both directions.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 22

the appropriate decoder stage. Although we trained the SegNet model using the micro-
plastic dataset, all prediction results by the model came out as 0, which means that no
training was completed at all. So, we excluded SegNet from our comparative study.

MultiResUNet [18] is also considered as a NN for microplastic segmentation because
it exhibits better segmentation performance than U-net. MultiResUNet was derived from
U-net, by replacing the skip connection with the residual path, and each encoder/decoder
stage consists of MultiRes blocks with a residual block structure of ResNet [8]. The en-
coder stage means an embedding connection in which the width and height of the tensor
are reduced either through pooling or by using a stride greater than 1 in the convolutional
layer. The decoder stage means an expanding connection in which the width and height
of the tensor are enlarged using upsampling or deconvolution.

Although DeepLab [14,19,20] exhibited satisfactory performance for middle- and
large-sized objects because it employs ASPP, we excluded DeepLab because it has not
been used actively in the segmentation of small or tiny objects.

3. Neural Networks for Microplastic Segmentation
This section briefly introduces the two existing NNs and the three derived versions

of NNs used in microplastic segmentation. The first NN is U-net shown in Figure 1a. U-
net consists of encoder stages, which are followed by decoder stages, as shown in Figure
1a. The dimensions of the output of each encoder stage are scaled down using a max pool-
ing layer [21]. Each decoder stage accepts the output from the previous stage, which is
upsampled with nearest interpolation [22]. The skip connection is used to maintain the
positional information of the features by connecting the output of the encoder stage with
the corresponding decoder stage. With respect to the aforementioned facts, the former half
of the encoder stages combined with the corresponding decoder stages appear to include
the characteristics required for determining small input features, while the latter half of
the encoder stages include the characteristics required for capturing large input features.
Because this study deals with minuscule objects, such as microplastics, we introduced a
simplified U-net, called Half U-net, that contains the first half of the encoder stages along
with the corresponding decoder stages. As shown in Figure 1b, ‘Linear’ Activation means
that the input X is transferred to output Y as it is. ‘ReLU’ Activation is the same as ‘Linear’
Activation if the input X is greater than or equal to 0, and if the input value is less than 0,
output becomes 0. ‘Sigmoid’ Activation converts the input into the continuous output
value between 0 and 1 based on the exponential function. As shown in Figure 1c, upsam-
pling expands the input 2 times in horizontal and vertical direction while maxpooling
shrinks the input 1/2 times in both directions.

(a)

Figure 1. Cont.

Sensors 2021, 21, 7030 4 of 21Sensors 2021, 21, x FOR PEER REVIEW 4 of 22

(b)

(c)

Figure 1. U-net and operations. (a) The architecture of U-net. (b) Graphs of linear, ReLU, and sig-

moid activation functions. (c) Processes of upsampling and maxpooling.

Equations (1)–(6) are used to describe the functionality of U-net.

• Equation (1) is the convolutional layer expression, where 𝑘 and 𝑠 are the kernel

size and the stride of the kernel. In addition, the term 𝑙 means the function applied

to each layer, and the terms 𝑖 and 𝑗 the horizontal and vertical position of an ele-

ment of a layer output. The term 𝐾𝑖𝑗
𝑙 means (𝑖,𝑗)-th kernel matrix of 𝑙 layer, and the

position of matrix element is expressed as [𝑛,𝑚]. The term 𝑏𝑖𝑗
𝑙 means (𝑖,𝑗)-th bias of

𝑙 layer. The term 𝑛 means a row position of a kernel, and the term 𝑚 a column

position of the kernel;

• Equation (2) is an expression of 2x2 MaxPooling. The result of 𝑚𝑎𝑥2(𝑋)𝑖𝑗
𝑙 is the max-

imum value among the 2x2 submatrix with its upper left position (2𝑖, 2𝑗) of the ma-

trix 𝑋𝑙;

• Equation (3) is an expression of 2x2 UpSampling. The result of positions (2𝑖, 2𝑗) to

(2𝑖 + 1,2𝑗 + 1) in the matrix 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒2(𝑋)𝑙 is set to the 𝑋𝑖𝑗
𝑙 value;

• The stages of U-net can be expressed by Equation (4) to (6):

• Equation (4) is the equation of the 0th stage that indicates the application of two con-

volutional layers with kernel size of three on the input 𝐼 and then ReLU(𝑥) activa-

tion function expressed by 𝑚𝑎𝑥(0, 𝑥) is applied. The term 𝐼 means an input tensor

of a model;

• Equation (5) is the encoder stage equation that indicates the application of maxpool-

ing to the previous stage, followed by two convolutional layers and then final ReLU

activation function. The term 𝑚𝑎𝑥2 used in this equation means 2x2 maxpooling;

• Equation (6) is the decoder stage equation. The equation means the concatenation of

the corresponding encoder stage output with the upsampled previous stage output,

followed by two convolutional layers and then the final ReLU activation. The term

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒2 used in Equation (6) means 2x2 upsampling.

𝐶𝑜𝑛𝑣𝑘,𝑠(𝑋)𝑖𝑗
𝑙 = ∑ ∑ 𝑋[𝑖𝑠 + 𝑛, 𝑗𝑠 + 𝑚] ∘ 𝐾𝑖𝑗

𝑙 [𝑛,𝑚] + 𝑏𝑖𝑗
𝑙

𝑘

𝑚=0

𝑘

𝑛=0

 (1)

Figure 1. U-net and operations. (a) The architecture of U-net. (b) Graphs of linear, ReLU, and sigmoid
activation functions. (c) Processes of upsampling and maxpooling.

Equations (1)–(6) are used to describe the functionality of U-net.

• Equation (1) is the convolutional layer expression, where k and s are the kernel size
and the stride of the kernel. In addition, the term l means the function applied to each
layer, and the terms i and j the horizontal and vertical position of an element of a layer
output. The term Kl

ij means (i,j)-th kernel matrix of l layer, and the position of matrix

element is expressed as [n, m]. The term bl
ij means (i,j)-th bias of l layer. The term n

means a row position of a kernel, and the term m a column position of the kernel;
• Equation (2) is an expression of 2x2 MaxPooling. The result of max2(X)l

ij is the
maximum value among the 2x2 submatrix with its upper left position (2i, 2j) of the
matrix Xl ;

• Equation (3) is an expression of 2x2 UpSampling. The result of positions (2i, 2j) to
(2i + 1, 2j + 1) in the matrix upsample2(X)l is set to the Xl

ij value;

• The stages of U-net can be expressed by Equation (4) to (6):
• Equation (4) is the equation of the 0th stage that indicates the application of two

convolutional layers with kernel size of three on the input I and then ReLU(x) activa-
tion function expressed by max(0, x) is applied. The term I means an input tensor of
a model;

• Equation (5) is the encoder stage equation that indicates the application of maxpooling
to the previous stage, followed by two convolutional layers and then final ReLU
activation function. The term max2 used in this equation means 2x2 maxpooling;

• Equation (6) is the decoder stage equation. The equation means the concatenation of
the corresponding encoder stage output with the upsampled previous stage output,
followed by two convolutional layers and then the final ReLU activation. The term
upsample2 used in Equation (6) means 2x2 upsampling.

Convk,s(X)l
ij =

k

∑
n=0

k

∑
m=0

X[is + n, js + m] ◦ Kl
ij[n, m] + bl

ij (1)

Sensors 2021, 21, 7030 5 of 21

max2(X)l
ij = max({{Xl

nm}
2j+1
m=2j}

2i+1

n=2i
) (2)

{{upsample2(X)l
nm}

2j+1
m=2j}

2i+1

n=2i
= Xl

ij (3)

Outstage
0 = max(0, Conv3,1

(
Conv3,1(I)

)
) (4)

Outstage
{1,2,3,4} = max(0, Conv3,1(Conv3,1(max2(Outstage

i−1)))) (5)

Outstage
{5,6,7,8} = max(0, Conv3,1(Conv3,1(concat

(
Outstage

8−i , upsample2(Outstage
i−1)

)
)))) (6)

Next is a derived NN from U-net, called Half U-net, shown in Figure 2. Half U-net is
a simplified version of U-net, and contains only the 0th and 1st encoder stages along with
their corresponding decoder stages. The fourth stage in U-net was also retained in Half
U-net; however, with a reduced number of channels in the convolution layers.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 22

• Equation (6) is the decoder stage equation. The equation means the concatenation of
the corresponding encoder stage output with the upsampled previous stage output,
followed by two convolutional layers and then the final ReLU activation. The term

 used in Equation (6) means 2x2 upsampling.

, () = + , + ∘ , + (1)

() = ({{ } }) (2){{ () } } = (3)= (0, , (, ())) (4)

{ , , , } = (0, , (, (()))) (5)

{ , , , } = (0, , (, (, ())))) (6)

Next is a derived NN from U-net, called Half U-net, shown in Figure 2. Half U-net is
a simplified version of U-net, and contains only the 0th and 1st encoder stages along with
their corresponding decoder stages. The fourth stage in U-net was also retained in Half
U-net; however, with a reduced number of channels in the convolution layers.

Figure 2. Half U-net.

Equations (7)–(9) are used to describe the functionality of Half U-net.
• States of Half U-net can be described in Equations (7)–(9);
• Equations (7)–(9) are defined similarly to Equations (4)–(6) of U-net, respectively.

However, Equation (8) is for the encoder stage corresponding to the 1st or the 2nd
stage and Equation (9) for the decoder stage corresponding to the 3rd and the 4th
stage. = (0, , (, ())) (7)

{ , } = (0, , (, (()))) (8)

{ , } = (0, , (, (, ())))) (9)

Figure 2. Half U-net.

Equations (7)–(9) are used to describe the functionality of Half U-net.

• States of Half U-net can be described in Equations (7)–(9);
• Equations (7)–(9) are defined similarly to Equations (4)–(6) of U-net, respectively.

However, Equation (8) is for the encoder stage corresponding to the 1st or the 2nd
stage and Equation (9) for the decoder stage corresponding to the 3rd and the 4th stage.

Outstage
0 = max(0, Conv3,1

(
Conv3,1(I)

)
) (7)

Outstage
{1,2} = max(0, Conv3,1(Conv3,1(max2(Outstage

i−1)))) (8)

Outstage
{3,4} = max(0, Conv3,1(Conv3,1(concat(Outstage

4−i , upsample2(Outstage
i−1)))))) (9)

The third NN used for the experiment was the MultiResUNet [18], as shown in
Figure 3. Each stage in U-net was replaced with a MultiRes block, and each skip connection
was replaced with a residual path. The MultiRes block and the residual path illustrated in
Figure 4 contain residual connections.

The fourth neural network is a derived NN from MultiResUNet, called Half MultiRe-
sUNet, which is a simplified version of the MultiResUNet. Half MultiResUNet, shown in
Figure 5, only claims the 0th and 1st encoder MultiRes blocks, and the 7th and 8th decoder

Sensors 2021, 21, 7030 6 of 21

MultiRes blocks, along with the 4th MultiRes block equipped with fewer channels than
MultiResUNet. Half MultiResUNet seems to focus on the small features of the objects.

The final NN is another derived NN from MultiResUNet, called Quarter MultiRe-
sUNet with only one encoder decoder block pair, which is the most simplified version
of the MultiResUNet. Quarter MultiResUNet, shown in Figure 6, claims only the 0th
and 8th MultiRes blocks, with the 4th MultiRes block containing fewer channels than
MultiResUNet. Quarter MultiResUNet seems to focus on the segmentation of minuscule
features of objects.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 22

The third NN used for the experiment was the MultiResUNet [18], as shown in Figure
3. Each stage in U-net was replaced with a MultiRes block, and each skip connection was
replaced with a residual path. The MultiRes block and the residual path illustrated in Fig-
ure 4 contain residual connections.

The fourth neural network is a derived NN from MultiResUNet, called Half Multi-
ResUNet, which is a simplified version of the MultiResUNet. Half MultiResUNet, shown
in Figure 5, only claims the 0th and 1st encoder MultiRes blocks, and the 7th and 8th de-
coder MultiRes blocks, along with the 4th MultiRes block equipped with fewer channels
than MultiResUNet. Half MultiResUNet seems to focus on the small features of the ob-
jects.

The final NN is another derived NN from MultiResUNet, called Quarter Multi-
ResUNet with only one encoder decoder block pair, which is the most simplified version
of the MultiResUNet. Quarter MultiResUNet, shown in Figure 6, claims only the 0th and
8th MultiRes blocks, with the 4th MultiRes block containing fewer channels than Multi-
ResUNet. Quarter MultiResUNet seems to focus on the segmentation of minuscule fea-
tures of objects.

Figure 3. MultiResUNet.

Figure 4. MultiRes block and residual path in MultiResUNet.

Figure 3. MultiResUNet.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 22

The third NN used for the experiment was the MultiResUNet [18], as shown in Figure
3. Each stage in U-net was replaced with a MultiRes block, and each skip connection was
replaced with a residual path. The MultiRes block and the residual path illustrated in Fig-
ure 4 contain residual connections.

The fourth neural network is a derived NN from MultiResUNet, called Half Multi-
ResUNet, which is a simplified version of the MultiResUNet. Half MultiResUNet, shown
in Figure 5, only claims the 0th and 1st encoder MultiRes blocks, and the 7th and 8th de-
coder MultiRes blocks, along with the 4th MultiRes block equipped with fewer channels
than MultiResUNet. Half MultiResUNet seems to focus on the small features of the ob-
jects.

The final NN is another derived NN from MultiResUNet, called Quarter Multi-
ResUNet with only one encoder decoder block pair, which is the most simplified version
of the MultiResUNet. Quarter MultiResUNet, shown in Figure 6, claims only the 0th and
8th MultiRes blocks, with the 4th MultiRes block containing fewer channels than Multi-
ResUNet. Quarter MultiResUNet seems to focus on the segmentation of minuscule fea-
tures of objects.

Figure 3. MultiResUNet.

Figure 4. MultiRes block and residual path in MultiResUNet. Figure 4. MultiRes block and residual path in MultiResUNet.

Sensors 2021, 21, 7030 7 of 21Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

Figure 5. Half MultiResUNet.

Figure 6. Quarter MultiResUNet.

Equations (10)–(18) are used to describe the functionality of MultiResUNet.
• Equations (10)–(13) is for the MultiRes Block ();
• The Equations (10)–(12) correspond to the 1st, the 2nd, and the 3rd convolutional

block of the MultiRes Block illustrated in Figure 4. The term in Equations (10)–
(12) means the number of channels in an input ;

• MRB Equation (13) indicates () is equal to the concatenation of the outputs of
Equations (10)–(12) plus the input . Concatenating (10) to (12) is taken as the result
of MultiRes Block;

• The Equations (14)–(15) describe the residual path in Figure 4;
• The basic block of the residual path in Figure 4 described in Equation (14) is com-

posed of the addition of the results of two convolutional layers of kernel sizes of 1
and 3;

• The four times repetition of the basic block of Equation (14) becomes the result of
ResPath() as described in Equation (15);

• Stages of MultiResUNet can be expressed in Equations (16)–(18);
• Equation (16) is for the 0th stage whose result is activated with ReLU after passing

through the ;
• Equation (17) is for the encoder stage (=1,2,3,4), and the max pooled previous

stage is activated with ReLU after passing through ;

Figure 5. Half MultiResUNet.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

Figure 5. Half MultiResUNet.

Figure 6. Quarter MultiResUNet.

Equations (10)–(18) are used to describe the functionality of MultiResUNet.
• Equations (10)–(13) is for the MultiRes Block ();
• The Equations (10)–(12) correspond to the 1st, the 2nd, and the 3rd convolutional

block of the MultiRes Block illustrated in Figure 4. The term in Equations (10)–
(12) means the number of channels in an input ;

• MRB Equation (13) indicates () is equal to the concatenation of the outputs of
Equations (10)–(12) plus the input . Concatenating (10) to (12) is taken as the result
of MultiRes Block;

• The Equations (14)–(15) describe the residual path in Figure 4;
• The basic block of the residual path in Figure 4 described in Equation (14) is com-

posed of the addition of the results of two convolutional layers of kernel sizes of 1
and 3;

• The four times repetition of the basic block of Equation (14) becomes the result of
ResPath() as described in Equation (15);

• Stages of MultiResUNet can be expressed in Equations (16)–(18);
• Equation (16) is for the 0th stage whose result is activated with ReLU after passing

through the ;
• Equation (17) is for the encoder stage (=1,2,3,4), and the max pooled previous

stage is activated with ReLU after passing through ;

Figure 6. Quarter MultiResUNet.

Equations (10)–(18) are used to describe the functionality of MultiResUNet.

• Equations (10)–(13) is for the MultiRes Block (MRB);
• The Equations (10)–(12) correspond to the 1st, the 2nd, and the 3rd convolutional

block of the MultiRes Block illustrated in Figure 4. The term Xc in Equations (10)–(12)
means the number of channels in an input X;

• MRB Equation (13) indicates MRB(X) is equal to the concatenation of the outputs of
Equations (10)–(12) plus the input X. Concatenating (10) to (12) is taken as the result
of MultiRes Block;

• The Equations (14) and (15) describe the residual path in Figure 4;
• The basic block of the residual path in Figure 4 described in Equation (14) is composed

of the addition of the results of two convolutional layers of kernel sizes of 1 and 3;
• The four times repetition of the basic block of Equation (14) becomes the result of

ResPath(RP) as described in Equation (15);
• Stages of MultiResUNet can be expressed in Equations (16)–(18);
• Equation (16) is for the 0th stage whose result is activated with ReLU after passing

through the MRB;
• Equation (17) is for the encoder stage i (i = 1, 2, 3, 4), and the max pooled previous

stage is activated with ReLU after passing through MRB;
• Equation (18) is for the decoder stage i (i = 5, 6, 7, 8) that concatenates the upsampled

previous stage output with the corresponding encoder stage output at the same

Sensors 2021, 21, 7030 8 of 21

pooling level passed through the RP. The concatenation output is activated with
ReLU after passing through the MRB.

m1(X) = max
(

0, Conv3,1(X)
1
6 Xc

)
(10)

m2(X) = max
(

0, Conv3,1(m1(X))
2
6 Xc

)
(11)

m3(X) = max
(

0, Conv3,1(m2(X))
3
6 Xc

)
(12)

MRB(X) = concat(m1(X), m2(X), m3(X)) + X (13)

f (X) = (max(0, Conv1,1(X)) + max(0, Conv3,1(X))) (14)

RP(X) = f 4(X) (15)

Outstage
0 = max

(
0, MRB

(
Conv3,1(I)

))
(16)

Outstage
{1,2,3,4} = max(0, MRB(max2(Outstage

i−1))) (17)

Outstage
{5,6,7,8} = max(0, MRB(concat

(
RP(Outstage

8−i), upsample2(Outstage
i−1)

)
)) (18)

Equations (19)–(21) are used to describe the functionality of Half MultiResUNet:

• The stages of Half MultiResUNet can be expressed by Equations (19)–(21);
• Equations (19)–(21) are described similarly to Equations (16)–(18) of MultiResUNet.

However, the number of stages is half. Equation (20) is for the encoder stage i (i = 1, 2)
and Equation (21) for the decoder stage i (i = 3, 4).

Outstage
0 = max

(
0, MRB

(
Conv3,1(I)

))
(19)

Outstage
{1,2} = max(0, MRB(max2(Outstage

i−1))) (20)

Outstage
{3,4} = max(0, MRB(concat

(
RP(Outstage

4−i), upsample2(Outstage
i−1)

)
)) (21)

Equations (22)–(24) are used to describe the functionality of MultiResUNet.

• Stages of Quarter MultiResUNet can be represented in Equations (22)–(24);
• Equations (22)–(24) are similarly described as Equations (16)–(18) of MultiResUNet,

but the number of stages is quarter. Equation (23) is for the encoder stage i (i = 1) and
Equation (24) for the decoder stage i (i = 2).

Outstage
0 = max

(
0, MRB

(
Conv3,1(I)

))
(22)

Outstage
1 = max(0, MRB(max2(Outstage

0))) (23)

Outstage
2 = max(0, MRB(concat

(
RP(Outstage

0), upsample2(Outstage
1)

)
)) (24)

In the MultiResUNet, the size of the receptive fields can increase up to 38,000 px
through many poolings and the convolutional layers with kernel size greater than 1, as
shown in Figure 3 and as described in Equations (17) and (18). Considering that most
of the information for accurate prediction is within 50 px, the network has unnecessarily
large receptive fields, which can lead to excessive ineffective operations. However, the
receptive field sizes of Half MultiResUNet and Quarter MultiResUNet are 200 px and 20 px,
respectively. We expected that the receptive field size 200 px would reflect data features
well, and the size 20 px would be a little insufficient for learning features.

Sensors 2021, 21, 7030 9 of 21

4. Experiment
4.1. Dataset

Our dataset consisted of photos of sand, mixed with microplastic particles. The
original size of the photos is 1440 × 1440, as shown in the left photo of Figure 7. However,
the size of the photos in the dataset was 512 × 512. These were generated by cropping the
original photo into 512 × 512 images with 100 pixel boundaries, overlapped with adjacent
photos. The size of a foreground object, that is, microplastic, is usually 3–10 pixels, as
shown in the right photo of Figure 7.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

Our dataset consisted of photos of sand, mixed with microplastic particles. The orig-
inal size of the photos is 1440 × 1440, as shown in the left photo of Figure 7. However, the
size of the photos in the dataset was 512 × 512. These were generated by cropping the
original photo into 512 × 512 images with 100 pixel boundaries, overlapped with adjacent
photos. The size of a foreground object, that is, microplastic, is usually 3–10 pixels, as
shown in the right photo of Figure 7.

Figure 7. Original sand photo and a photo to show the size of microplastics.

As shown in Figure 8, during training, we applied data augmentation, such as 20%
random shifting, 45° random rotation [23], and random flip for the images in the dataset.
The empty space caused by shifting or rotation was filled with the mean pixel value [24]
of all the photos in the dataset.

Figure 8. Photo generated through a 45° random rotation for data augmentation, during training.

4.2. Loss Function
The dataset photos contain only a few minuscule microplastics. Therefore, false or

background pixels in a photo usually occupy more than 99% of the pixels when calculated,

Figure 7. Original sand photo and a photo to show the size of microplastics.

As shown in Figure 8, during training, we applied data augmentation, such as 20%
random shifting, 45◦ random rotation [23], and random flip for the images in the dataset.
The empty space caused by shifting or rotation was filled with the mean pixel value [24] of
all the photos in the dataset.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

Our dataset consisted of photos of sand, mixed with microplastic particles. The orig-
inal size of the photos is 1440 × 1440, as shown in the left photo of Figure 7. However, the
size of the photos in the dataset was 512 × 512. These were generated by cropping the
original photo into 512 × 512 images with 100 pixel boundaries, overlapped with adjacent
photos. The size of a foreground object, that is, microplastic, is usually 3–10 pixels, as
shown in the right photo of Figure 7.

Figure 7. Original sand photo and a photo to show the size of microplastics.

As shown in Figure 8, during training, we applied data augmentation, such as 20%
random shifting, 45° random rotation [23], and random flip for the images in the dataset.
The empty space caused by shifting or rotation was filled with the mean pixel value [24]
of all the photos in the dataset.

Figure 8. Photo generated through a 45° random rotation for data augmentation, during training.

4.2. Loss Function
The dataset photos contain only a few minuscule microplastics. Therefore, false or

background pixels in a photo usually occupy more than 99% of the pixels when calculated,

Figure 8. Photo generated through a 45◦ random rotation for data augmentation, during training.

Sensors 2021, 21, 7030 10 of 21

4.2. Loss Function

The dataset photos contain only a few minuscule microplastics. Therefore, false or
background pixels in a photo usually occupy more than 99% of the pixels when calculated,
that is, it is a highly imbalanced classification problem. Hence, we used the weighted
binary cross entropy [25] loss function.

Equations (25)–(29) are used to describe the weighted binary cross entropy.

• In the Equations (25)–(29), Y is the batch of the ground truth set and Ŷ is the batch
of the data predicted by the neural network. One specific ground truth (prediction)
image in the batch Ŷ is expressed in Ŷi;

• The weights for both classes, true (microplastic) and false (background), assigned to
reflect the class imbalance for the training images with 512 × 512 resolution are shown
in Equations (25) and (26), respectively;

• The original cross-entropy loss formula is given in Equation (27);
• To accommodate the class imbalance, we multiplied the formula ‘WeightMat’ shown

in Equation (28), with the CrossEntropy Equation (27);
• The final loss function with batch size ‘n’ is given by Equation (29).

wT =
512× 512

∑ Yi
(25)

wF =
512× 512

512× 512−∑ Yi
(26)

CrossEntropy
(
Yi, Ŷi

)
= −

(
Yi log Ŷi + (1−Yi) log

(
1− Ŷi

))
(27)

WeightMat = YiwT + (1−Yi)wF (28)

Loss =
1
n

n

∑
i=1

∑
(
CrossEntropy

(
Yi, Ŷi

)
◦WeightMat

)
(29)

4.3. Training and Validation

The Adam [26] optimizer was employed during training. The parameter Beta1 was set
to 0.9, Beta2 to 0.999, and Epsilon to 1e-7. Beta1 and Beta2 are momentum hyper-parameters
used to adjust the gradient decay rate. Epsilon is a value used to avoid the division by
zero during gradient calculation. The exponential decay schedule [27] was applied to the
learning rate. The rate started from 1e-3 and decreased by 4% every 800 steps. Each model
was trained for 150 epochs using the above settings.

Five-fold cross validation was applied to obtain the average recall weighted (r.w.)
F1 score and r.w. mIoU for all five NNs. In k-fold cross validation, the entire dataset is
divided into K partitions, different 1/K partitions are used as test sets, and the remaining
partitions are used as training sets. So, K different combinations of test and training sets
are used. The final segmentation result for each pixel was considered to be true when its
corresponding sigmoid output value was greater than 0.5.

The dataset consisted of 6176 photos. For five-fold cross validation [28], 20% of the
data were used for the test data and the remaining 72% was used as training data with 8%
as the validation data.

4.4. Segmentation Performance Comparison and Analysis

In the process of sorting out microplastics mixed with sand in the real world, it is
important to filter out all possible microplastic. In other words, it is more important for
the neural network model to predict all the truths. A metric satisfying this condition can
be recall, which is a metric representing the percentage of truth restored through model
prediction from the entire truth, and recall can be expressed in Equation (30). The case
shown in Figure 9b is the case where recall is 100%. Although there are results of sand
particles mis-predicted as plastic, all plastics can be found. Conversely, the case as shown

Sensors 2021, 21, 7030 11 of 21

in Figure 9c, is the case where recall is 50%. There were no mis-predicted sand particles as
plastic at all, but only half of the plastic was found.

However, as shown in Figure 9d, if the proportion of sand particles is excessively
higher than that of microplastic, it will be difficult to determine whether they have been
filtered well or not. So, the precision expressed by Equation (31) should also be an important
metric. Therefore, if recall is at a satisfactory level, it can be said that the higher the precision,
the better the model. In other words, if the predicted particles contain all plastics but most
of them are sand particles, it is hard to say that the model is an efficient model. Therefore,
as shown in Figure 9a, if the plastic restoration rate, i.e., recall, is high, the model with a
high plastic composition ratio in the particles predicted as microplastic, i.e., high precision,
has high efficiency.

In the case of Figure 9a, both recall and precision are 100%, and in the case of Figure 9b,
recall is 100%, but precision is 50%. In the case of Figure 9c, recall is 50% and precision is
50%, and in the case of Figure 9d, recall is 100% but precision is less than 10%.

Recall =
TP

TP + FN
(30)

Precision =
TP

TP + FP
(31)

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22

However, as shown in Figure 9d, if the proportion of sand particles is excessively
higher than that of microplastic, it will be difficult to determine whether they have been
filtered well or not. So, the precision expressed by Equation (31) should also be an im-
portant metric. Therefore, if recall is at a satisfactory level, it can be said that the higher
the precision, the better the model. In other words, if the predicted particles contain all
plastics but most of them are sand particles, it is hard to say that the model is an efficient
model. Therefore, as shown in Figure 9a, if the plastic restoration rate, i.e., recall, is high,
the model with a high plastic composition ratio in the particles predicted as microplastic,
i.e., high precision, has high efficiency.

In the case of Figure 9a, both recall and precision are 100%, and in the case of Figure
9b, recall is 100%, but precision is 50%. In the case of Figure 9c, recall is 50% and precision
is 50%, and in the case of Figure 9d, recall is 100% but precision is less than 10%. = + (30)

= + (31)

Figure 9. Hypothetical prediction result. (a) The best result. (b) The result showing insufficient
precision. (c) The result showing insufficient recall. (d) The result showing excessively low preci-
sion.

Table 1 shows the performance of each neural network model with two metrics, recall
and precision. For the second case of MultiResUNet, the recall is 94%, it can be seen that
all microplastics are well extracted or predicted. However, when the precision is 1.9%, it

Figure 9. Hypothetical prediction result. (a) The best result. (b) The result showing insufficient
precision. (c) The result showing insufficient recall. (d) The result showing excessively low precision.

Sensors 2021, 21, 7030 12 of 21

Table 1 shows the performance of each neural network model with two metrics, recall
and precision. For the second case of MultiResUNet, the recall is 94%, it can be seen that all
microplastics are well extracted or predicted. However, when the precision is 1.9%, it can
be seen that the FP, which incorrectly predicts sand as microplastic, is too high. In other
words, 94% of all the microplastics are detected as microplastic. However, it is difficult
to say that the model is practical because more than 98% of the particles predicted as
microplastic are sand. Therefore, the measurement of the model performance needs to be
based on the multiplication of recall and precision. The metric F1 score that appears next
may be one of such a metric since it is based on recall x precision.

Table 1. Precision and recall of five neural networks.

Model (150 Eps)
1st Case 2nd Case 3rd Case

Precision Recall Precision Recall Precision Recall

U-net 0 0 0.0692 0.9644 0 0

Half U-net 0.0565 0.9370 0.0437 0.9470 0 0

MultiResUNet 0.1583 0.9386 0.0190 0.9448 0.0329 0.9557

Half MultiResUNet 0.2899 0.9180 0.3175 0.9322 0.2771 0.9404

Quarter MultiResUNet 0.1065 0.9517 0.1451 0.9772 0.1828 0.9624

Model (150 Eps)
4th Case 5th Case Average

Precision Recall Precision Recall Precision Recall

U-net 0.0178 0.8138 0 0 0.0174 0.3556

Half U-net 0.0357 0.8547 0 0 0.0272 0.5478

MultiResUNet 0.0092 0.8813 0.0138 0.8972 0.0466 0.9235

Half MultiResUNet 0.2828 0.9447 0.2219 0.9832 0.2778 0.9437

Quarter MultiResUNet 0.2214 0.9456 0.1316 0.9817 0.1575 0.9637

F1 score [29] and mIoU [30,31] metrics were used for comparing the segmentation per-
formances of the five NNs. Equations (32) and (33) show the formulas for the two metrics.
Recall and precision are both necessary metrics for model evaluation, but either one alone is
not sufficient to evaluate a neural network model. Therefore, we evaluate the performance
of the neural network model through the F1 score, which can consider both recall and
precision, and the mIoU, which considers only TP, FP, and FN, excluding excessively high
TN. F1 score is a harmonic mean of two metrics so that precision and recall can be balanced
in one metric. The metric mIoU can be said to be a form of adding FN to the denominator of
the precision equation or adding FP to the denominator of the recall equation. For example,
even if the recall of a model is 1, if its FP for mispredicting sand as microplastic increases,
its mIoU decreases that much. Therefore, the metric mIoU can increase only when both
precision and recall increase.

When the recall of a model is 1 and its precision is 0.25 or more, all microplastics were
found and the microplastic composition ratio in the particles predicted as microplastic is
1/4. We consider that the model has minimal performance. In other words, for a given
neural network model to have the least practicality, its prediction needs to include 100%
of all microplastics, and more than 25% among those predicted as microplastics should
be microplastics. This is our subjective judgment criterion for a practical model. In that
case, the F1 score of the model is 0.4 that is our minimum criterion for the usefulness of
the neural network model. In addition, the mIoU of a model can also be said to have least
effective performance when the precision of the model is 25% or more and its recall is 1. So,
our minimum performance criterion of a model in the metric mIoU is 0.25.

F1 Score = 2
Precision · Recall
Precision + Recall

(32)

Sensors 2021, 21, 7030 13 of 21

mIoU =
TP

TP + FP + FN
(33)

Table 2 shows the F1 score and mIoU of each network for the five cases of five-fold
cross validation. Quarter MultiResUNet, Half U-net, and MultiResUNet appeared to face
difficulty in converging the weights, that is, in training. We denoted the maximum F1
score and mIoU with bold numbers, among the five cases. As shown in Table 2, Half
MultiResUNet and Quarter MultiResUNet showed relatively low variations in F1 score
and mIoU, among the five cases than the prior three networks.

As shown in Table 2, U-net obtained the lowest average F1 score and mIoU. Half
U-net showcased a slightly better average performance than U-net, whereas MultiRe-
sUNet showed a slightly better average performance than Half U-net. The best average
performance was seen in Half MultiResUNet. Quarter MultiResUNet exhibited a worse
average performance than Half MultiResUNet. According to the experiment using Quarter
MultiResUNet, it appeared that the single encoder MultiRes block and the corresponding
decoder MultiRes block may not be sufficient to achieve better segmentation performance
than Half MultiResUNet.

Table 2. F1 score and mIoU of five neural networks.

Model (150 Eps)
1st Case 2nd Case 3rd Case

F1 Score mIoU F1 Score mIoU F1 Score mIoU

U-net 0 0 0.1291 0.0690 0 0

Half U-net 0.1067 0.0563 0.0836 0.0436 0 0

MultiResUNet 0.2710 0.1567 0.0372 0.0189 0.0636 0.0328

Half MultiResUNet 0.4407 0.2826 0.4737 0.3103 0.4281 0.2723

Quarter MultiResUNet 0.1916 0.1060 0.2526 0.1446 0.3072 0.1815

Model (150 Eps)
4th Case 5th Case AVERAGE

F1 Score mIoU F1 Score mIoU F1 Score mIoU

U-net 0.0349 0.0178 0 0 0.0328 0.0173

Half U-net 0.0685 0.0355 0 0 0.0517 0.0270

MultiResUNet 0.0181 0.0091 0.0272 0.0138 0.0834 0.0462

Half MultiResUNet 0.4352 0.2782 0.3621 0.2210 0.4279 0.2728

Quarter MultiResUNet 0.3588 0.2186 0.2321 0.1313 0.2685 0.1563

Half MultiResUNet can be said to be a model that satisfies the minimum criteria
presented above. However, it is necessary to further consider whether the F1 score and
mIoU are suitable metrics for our purpose. In fact, for us, detecting all plastics (Recall)
is more important than reducing the proportion of sand in the particles predicted as
microplastics (Precision). However, F1 score and mIoU are metrics that consider recall
and precision in equal weight. For example, recall 100%, precision 25%, and recall 40%,
precision 40% are the same since F1 score of both is the same 40%. However, in the latter
case, since the recall is 40%, i.e., only 40% of the microplastics are detected, and the precision
is also 40%, the performance is very poor from our point of view of the detection and
removal of microplastics. To prevent such problems, we propose to use recall-weighted
(r.w.) F1 score and r.w. mIoU that gives importance to recall. Two metrics are described in
Equations (34) and (35). In terms of r.w. F1 score, the model with recall 100% and precision
25% has 40% r.w. F1 score, but the model with recall 40% and precision 40% has only 16%
of r.w. F1 score.

Since we set the criteria of adequate performance for the minimum practical model
as recall 100% and precision 25%, the minimum performance criteria for r.w. F1 score
and r.w. mIoU should still be at least 40% and 25%, respectively. Table 3 is made based

Sensors 2021, 21, 7030 14 of 21

on our proposed metrics r.w. F1 score and r.w. mIoU. As shown in Table 3, only Half
MultiResUNet satisfies such minimum requirements for the neural network models.

Recall − weighted F1 Score = 2
Precision · Recall
Precision + Recall

∗ Recall (34)

Recall − weighted mIoU =
TP

TP + FP + FN
∗ Recall (35)

Table 3. r.w. F1 score and r.w. mIoU of five neural networks.

Model (150 Eps)
1st Case 2nd Case 3rd Case

r.w. F1 Score r.w. mIoU r.w. F1 Score r.w. mIoU r.w. F1 Score r.w. mIoU

U-net 0 0 0.1245 0.0665 0 0

Half U-net 0.0999 0.0528 0.0792 0.0413 0 0

MultiResUNet 0.2544 0.1471 0.0351 0.0179 0.0608 0.0313

Half MultiResUNet 0.4046 0.2594 0.4416 0.2893 0.4026 0.2561

Quarter MultiResUNet 0.1823 0.1009 0.2468 0.1413 0.2956 0.1747

Model (150 Eps)
4th Case 5th Case Average

r.w. F1 Score r.w. mIoU r.w. F1 Score r.w. mIoU r.w. F1 Score r.w. mIoU

U-net 0.0284 0.0145 0 0 0.0306 0.0162

Half U-net 0.0585 0.0303 0 0 0.0475 0.0249

MultiResUNet 0.0159 0.0080 0.0244 0.0124 0.0781 0.0433

Half MultiResUNet 0.4111 0.2628 0.3560 0.2173 0.4032 0.2570

Quarter MultiResUNet 0.3393 0.2067 0.2279 0.1289 0.2584 0.1505

Table 4 summarizes the required number of floating point operations (FLOPs), and
the number of parameters for the five NNs. The ‘FLOPs’ means the number of floating
additions and multiplications required for the prediction with one input data, and the
‘Parameters’ means the number of weights or variables included in a model. Units “B” and
“M” mean billions and millions, respectively. As shown in Table 4, U-net, Half U-net, and
MultiResUNet need a considerably high number of FLOPs and a number of parameters.
Contrastingly, Half MultiResUNet and Quarter MultiResUNet need a fairly low number
of FLOPs, a small number of parameters, and have better segmentation performance. In
other words, Half MultiResUNet and Quarter MultiResUNet are computationally efficient
as well as efficient in performance.

Table 4. Required FLOPs and the number of parameters for five NNs.

Model (Input Size) FLOPs Parameters

U-net (512 × 512) 329.7 B 21.9776 M

Half U-net (512 × 512) 204.0 B 1.7724 M

MultiResUNet (512 × 512) 204.8 B 13.5469 M

Half MultiResUNet (512 × 512) 42.9 B 0.2149 M

Quarter MultiResUNet (512 × 512) 21.9 B 0.0445 M

Figure 10a is one of the test set images. Figure 10b shows the ground truth image and
the prediction images by the corresponding model given the input image of Figure 10a. As
shown in Figure 10b, all models seem to have found almost all microplastics, i.e., recall
is nearly 1. However, Half MultiResUNet has relatively lower FP over the other models,
i.e., a smaller number of sand particles incorrectly predicted as microplastics, and it can be
applicable to actual problems.

Sensors 2021, 21, 7030 15 of 21
Sensors 2021, 21, x FOR PEER REVIEW 16 of 22

(a)

(b)

Figure 10. Prediction result images by 3 models with source image (a) and ground truth image. (a)
Source Image from one of test dataset. (b) Ground truth and outputs of 3 models from one of test
dataset.

Figure 10. Prediction result images by 3 models with source image (a) and ground truth image.
(a) Source Image from one of test dataset. (b) Ground truth and outputs of 3 models from one of
test dataset.

Sensors 2021, 21, 7030 16 of 21

4.5. Observations on Weight Histograms of U-Net and MultiResUNet

Observations on kernel weight histograms in this section come from the maximum
r.w. F1 score cases in Table 2. We observed that the kernel weight histograms of U-net
visualized using TensorBoard, showed that kernel weights approached zero as the encoder
stage proceeded, as shown in Figure 11. In other words, the latter half of the encoder
stages were not significantly involved in feature learning. Hence, we added Half U-net as
a candidate network.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 22

4.5. Observations on Weight Histograms of U-Net and MultiResUNet
Observations on kernel weight histograms in this section come from the maximum

r.w. F1 score cases in Table 2. We observed that the kernel weight histograms of U-net
visualized using TensorBoard, showed that kernel weights approached zero as the en-
coder stage proceeded, as shown in Figure 11. In other words, the latter half of the encoder
stages were not significantly involved in feature learning. Hence, we added Half U-net as
a candidate network.

(a)

(b)

Figure 11. Kernel weights histograms of several encoder convolutional layers of U-net visualized
using TensorBoard. (a) Weight histograms of specified convolutional layers with colors in U-net. (b)
Overlapped weight histograms of specified convolutional layers.

In the case of MultiResUNet, however, we noticed that although the encoder stage
proceeded, the convergence of kernel weights closes to zero did not appear to be obvious,
as shown in Figure 12, likely by virtue of the MultiRes block and Res path. However, as
the encoder stage proceeded, we observed that within the MultiRes block, the kernels of
feature extraction connections are less activated than the kernels of skip connections, as
shown in the lower half of Figure 12. In other words, kernel weights of non-skip connec-
tion layers of MultiRes blocks 3 and 4, appeared to approach zero, that is, such layers were
not used for feature learning. As a result, we deemed it necessary to explore Half Multi-
ResUNet and quarter MultiResUNet, as candidate networks.

Figure 11. Kernel weights histograms of several encoder convolutional layers of U-net visualized
using TensorBoard. (a) Weight histograms of specified convolutional layers with colors in U-net.
(b) Overlapped weight histograms of specified convolutional layers.

In the case of MultiResUNet, however, we noticed that although the encoder stage
proceeded, the convergence of kernel weights closes to zero did not appear to be obvious,
as shown in Figure 12, likely by virtue of the MultiRes block and Res path. However, as the
encoder stage proceeded, we observed that within the MultiRes block, the kernels of feature
extraction connections are less activated than the kernels of skip connections, as shown in
the lower half of Figure 12. In other words, kernel weights of non-skip connection layers of
MultiRes blocks 3 and 4, appeared to approach zero, that is, such layers were not used for
feature learning. As a result, we deemed it necessary to explore Half MultiResUNet and
quarter MultiResUNet, as candidate networks.

Sensors 2021, 21, 7030 17 of 21Sensors 2021, 21, x FOR PEER REVIEW 18 of 22

(a)

(b)

Figure 12. Weight histograms of MultiRes blocks of MultiResUNet. (a) Weight histograms of layers
within MultiRes blocks 1, 2, 3, and 4. (b) Overlapped weight histograms for each component of
MultiRes blocks 1, 2, 3, and 4.

4.6. Observations on Weight Histograms of Half and Quarter MultiResUNet
Figure 13 shows the weight histograms of each component of the MultiRes blocks of

Half MultiResUNet. Kernel weights are generally widely distributed over a given range.
In other words, most components of the MultiRes blocks appeared to be involved in fea-
ture learning. This may have contributed to the leading segment performance of Half Mul-
tiResUNet, among the five NNs. Some components of MultiRes blocks 3 and 4 display
weight distributions centered around zero. Hence, we performed experiments using
Quarter MultiResUNet.

Figure 12. Weight histograms of MultiRes blocks of MultiResUNet. (a) Weight histograms of layers
within MultiRes blocks 1, 2, 3, and 4. (b) Overlapped weight histograms for each component of
MultiRes blocks 1, 2, 3, and 4.

4.6. Observations on Weight Histograms of Half and Quarter MultiResUNet

Figure 13 shows the weight histograms of each component of the MultiRes blocks
of Half MultiResUNet. Kernel weights are generally widely distributed over a given
range. In other words, most components of the MultiRes blocks appeared to be involved
in feature learning. This may have contributed to the leading segment performance of
Half MultiResUNet, among the five NNs. Some components of MultiRes blocks 3 and 4
display weight distributions centered around zero. Hence, we performed experiments
using Quarter MultiResUNet.

Sensors 2021, 21, 7030 18 of 21
Sensors 2021, 21, x FOR PEER REVIEW 19 of 22

Figure 13. Weight histograms of each component of MultiRes blocks in Half MultiResUNet.

Figure 14 shows the weight histograms of each component of MultiRes blocks 1, 2,
and 3 in Quarter MultiResUNet. As shown in Figure 14, none of the components of the
MultiRes blocks are centered close to zero. This implies that all the components were in-
volved in feature learning. As shown in Table 2, Quarter MultiResUNet experienced a
slightly worse performance than Half MultiResUNet. This may have been a result of the
absence of the second encoder MultiRes block, and its corresponding decoder MultiRes
block, as in Half MultiResUNet. We speculate that these blocks may be involved in the
learning of somewhat larger features, as compared to the first and last block pairs. An-
other probable cause may be that Quarter MultiResUNet does not have a sufficient num-
ber of channels for feature learning in MultiRes blocks, as compared to Half Multi-
ResUNet. However, we observed that Quarter MultiResUNet with four times as many
channels did not lead to a better performance. Therefore, the major reason for the inferior
performance of Quarter MultiResUNet over Half MultiResUNet was determined to be the
absence of the second encoder and decoder MultiRes block pair.

Figure 13. Weight histograms of each component of MultiRes blocks in Half MultiResUNet.

Figure 14 shows the weight histograms of each component of MultiRes blocks 1, 2,
and 3 in Quarter MultiResUNet. As shown in Figure 14, none of the components of the
MultiRes blocks are centered close to zero. This implies that all the components were
involved in feature learning. As shown in Table 2, Quarter MultiResUNet experienced a
slightly worse performance than Half MultiResUNet. This may have been a result of the
absence of the second encoder MultiRes block, and its corresponding decoder MultiRes
block, as in Half MultiResUNet. We speculate that these blocks may be involved in the
learning of somewhat larger features, as compared to the first and last block pairs. Another
probable cause may be that Quarter MultiResUNet does not have a sufficient number
of channels for feature learning in MultiRes blocks, as compared to Half MultiResUNet.
However, we observed that Quarter MultiResUNet with four times as many channels did
not lead to a better performance. Therefore, the major reason for the inferior performance
of Quarter MultiResUNet over Half MultiResUNet was determined to be the absence of
the second encoder and decoder MultiRes block pair.

Sensors 2021, 21, 7030 19 of 21
Sensors 2021, 21, x FOR PEER REVIEW 20 of 22

Figure 14. Quarter MultiResUNet of kernel weights histogram.

5. Conclusions
Microplastics are tiny objects with no regular shape. To find an appropriate NN for

microplastic segmentation, we explored two existing NNs: U-net and MultiResUNet. Our
observation of kernel weight histograms indicated that the later encoder stages of the two
networks are not useful for capturing small features. Therefore, we derived reduced ver-
sions of U-net and MultiResUNet, such as Half U-net, Half MultiResUNet, and Quarter
MultiResUNet. Experiments showed that Half MultiResUNet displayed the best average
r.w. F1 score and r.w. mIoU and Quarter MultiResUNet the second best average r.w. F1
score and r.w. mIoU for our microplastic dataset. They also require very low floating point
operations and much lower number of parameters over U-net and MultiResUNet. Hence,
they may be suitable for use in embedded applications.

We may summarize the neural networks explored in this paper as follows. Existing
U-net and MultiResUNet have unnecessary layers for microplastic segmentation and ra-
ther large computational cost though they may be useful for the segmentation of middle
or large sized objects. Half U-net derived from U-net has very low microplastic segmen-
tation performance though it has relatively low number of parameters. Half Multi-
ResUNet and Quarter MultiResUNet derived from MultiResUNet have good segmenta-
tion performance and very low computational cost. However, they will not show good
segmentation performance for middle or large sized objects since they have limited size
in receptive fields.

Our observations on kernel weight histograms help in finding reduced neural net-
work architectures. Kernel weight histogram makes it easier to determine the degree of
contribution of the layer and to find the improvement direction of the model so that we
can delete the layer or increase the embedding level. However, if the weight does not
completely converge to 0, it is difficult to determine whether the layer contributes. In ad-
dition, the achieved 40% r.w. F1 score should be improved by further exploration of neural
network architectures for efficient applications. Improved versions of neural networks for
tiny object segmentation are expected to be used not only in microplastics segmentation,
but also in finding victims from drone images taken on the mountain and in segmenting
objects in satellite images.

Figure 14. Quarter MultiResUNet of kernel weights histogram.

5. Conclusions

Microplastics are tiny objects with no regular shape. To find an appropriate NN for
microplastic segmentation, we explored two existing NNs: U-net and MultiResUNet. Our
observation of kernel weight histograms indicated that the later encoder stages of the
two networks are not useful for capturing small features. Therefore, we derived reduced
versions of U-net and MultiResUNet, such as Half U-net, Half MultiResUNet, and Quarter
MultiResUNet. Experiments showed that Half MultiResUNet displayed the best average
r.w. F1 score and r.w. mIoU and Quarter MultiResUNet the second best average r.w. F1
score and r.w. mIoU for our microplastic dataset. They also require very low floating point
operations and much lower number of parameters over U-net and MultiResUNet. Hence,
they may be suitable for use in embedded applications.

We may summarize the neural networks explored in this paper as follows. Existing
U-net and MultiResUNet have unnecessary layers for microplastic segmentation and rather
large computational cost though they may be useful for the segmentation of middle or large
sized objects. Half U-net derived from U-net has very low microplastic segmentation perfor-
mance though it has relatively low number of parameters. Half MultiResUNet and Quarter
MultiResUNet derived from MultiResUNet have good segmentation performance and very
low computational cost. However, they will not show good segmentation performance for
middle or large sized objects since they have limited size in receptive fields.

Our observations on kernel weight histograms help in finding reduced neural network
architectures. Kernel weight histogram makes it easier to determine the degree of contribu-
tion of the layer and to find the improvement direction of the model so that we can delete
the layer or increase the embedding level. However, if the weight does not completely
converge to 0, it is difficult to determine whether the layer contributes. In addition, the
achieved 40% r.w. F1 score should be improved by further exploration of neural network
architectures for efficient applications. Improved versions of neural networks for tiny
object segmentation are expected to be used not only in microplastics segmentation, but
also in finding victims from drone images taken on the mountain and in segmenting objects
in satellite images.

Sensors 2021, 21, 7030 20 of 21

Author Contributions: Conceptualization, G.L.; methodology, G.L.; software, G.L.; validation, G.L.
and K.J.; investigation, G.L. and K.J.; resources, G.L. and K.J.; writing—original draft preparation,
G.L. and K.J.; writing—review and editing, G.L. and K.J.; visualization, G.L; project administration,
K.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Chungnam National University, grant number 2021-0861-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the research fund of Chungnam National Univer-
sity in Daejeon, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rogers, K. Microplastics. Encyclopedia Britannica. 8 September 2020. Available online: https://www.britannica.com/technology/

microplastic (accessed on 20 September 2021).
2. Barboza, L.G.A.; Cózar, A.; Gimenez, B.C.; Barros, T.L.; Kershaw, P.J.; Guilhermino, L. Microplastics Pollution in the Marine

Environment. World Seas Environ. Eval. 2019, 329–351. [CrossRef]
3. Chatterjee, S.; Sharma, S. Microplastics in Our Oceans And Marine Health. Field Actions Sci. Rep. 2019, 19, 54–61. Available online:

https://journals.openedition.org/factsreports/5257 (accessed on 20 September 2021).
4. Cowger, W.; Gray, A.; Christiansen, S.; DeFrond, H.; Deshpande, A.; Hemabessiere, L.; Lee, E.; Mill, L.; Munno, K.; Oßmann, B.;

et al. Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Appl. Spectrosc.
2020, 74, 989–1010. [CrossRef] [PubMed]

5. Lorenzo-Navarro, J.; Castrillón-Santana, M.; Gómez, M.; Herrera, A.; Marín-Reyes, P. Automatic Counting and Classification of
Microplastic Particles. In Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods—
ICPRAM, Funchal, Portugal, 16–18 January 2018; pp. 646–652, ISBN 978-989-758-276-9, ISSN 2184-4313. [CrossRef]

6. Lorenzo-Navarro, J.; Castrillón-Santana, M.; Sánchez-Nielsen, E.; Zarco, B.; Herrera, A.; Martínez, I.; Gómez, M. Deep learning
approach for automatic microplastics counting and classification. Sci. Total Environ. 2021, 765, 142728. [CrossRef] [PubMed]

7. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. May 2015, Volume
9351, pp. 234–241. Available online: https://arxiv.org/abs/1505.04597v1 (accessed on 30 July 2021).

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning For Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

9. TensorBoard. Available online: https://www.tensorflow.org/tensorboard (accessed on 30 July 2021).
10. Li, X.; Zhang, L.; You, A.; Yang, M.; Yang, K.; Tong, Y. Global Aggregation Then Local Distribution In Fully Convolutional

Networks. arXiv 2019, arXiv:1909.07229. Available online: https://arxiv.org/abs/1909.07229v1 (accessed on 20 August 2021).
11. Choi, S.; Kim, J.T.; Choo, J. Cars Can’t Fly Up In The Sky: Improving Urban-Scene Segmentation Via Height-Driven Attention

Networks. arXiv 2020, arXiv:2003.05128. Available online: https://arxiv.org/abs/2003.05128v3 (accessed on 20 August 2021).
12. Mohan, R.; Valada, A. Efficientps: Efficient Panoptic Segmentation. arXiv 2020, arXiv:2004.02307. Available online: https:

//arxiv.org/abs/2004.02307 (accessed on 20 September 2021).
13. Cheng, B.; Collins, M.D.; Zhu, Y.; Liu, T.; Huang, T.S.; Adam, H.; Chen, L. Panoptic-Deeplab: A Simple, Strong, And Fast Baseline

For Bottom-Up Panoptic Segmentation. arXiv 2019, arXiv:1911.10194. Available online: https://arxiv.org/abs/1911.10194v3
(accessed on 20 September 2021).

14. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic Image Segmentation With Deep Convolutional
Nets, Atrous Convolution, And Fully Connected Crfs. arXiv 2016, arXiv:1606.00915. Available online: https://arxiv.org/abs/16
06.00915v2 (accessed on 20 August 2021).

15. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder With Atrous Separable Convolution For Semantic
Image Segmentation. arXiv 2018, arXiv:1802.02611. Available online: https://arxiv.org/abs/1802.02611v3 (accessed on 20 August
2021).

16. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2016, arXiv:1612.01105. Available online:
https://arxiv.org/abs/1612.01105v2 (accessed on 20 August 2021).

17. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

18. Ibtehaz, N.; Rahman, M.S. MultiResU-net: Rethinking U-Net Architecture for Multimodal Biomedical Image Segmentation.
Neural Netw. 2020, 121, 74–87. [CrossRef] [PubMed]

19. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation With Deep Convolutional Nets
And Fully Connected Crfs. arXiv 2014, arXiv:1412.7062. Available online: https://arxiv.org/abs/1412.7062v4 (accessed on 20
August 2021).

https://www.britannica.com/technology/microplastic
https://www.britannica.com/technology/microplastic
http://doi.org/10.1016/b978-0-12-805052-1.00020-6
https://journals.openedition.org/factsreports/5257
http://doi.org/10.1177/0003702820929064
http://www.ncbi.nlm.nih.gov/pubmed/32500727
http://doi.org/10.5220/0006725006460652
http://doi.org/10.1016/j.scitotenv.2020.142728
http://www.ncbi.nlm.nih.gov/pubmed/33127127
https://arxiv.org/abs/1505.04597v1
https://www.tensorflow.org/tensorboard
https://arxiv.org/abs/1909.07229v1
https://arxiv.org/abs/2003.05128v3
https://arxiv.org/abs/2004.02307
https://arxiv.org/abs/2004.02307
https://arxiv.org/abs/1911.10194v3
https://arxiv.org/abs/1606.00915v2
https://arxiv.org/abs/1606.00915v2
https://arxiv.org/abs/1802.02611v3
https://arxiv.org/abs/1612.01105v2
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1016/j.neunet.2019.08.025
http://www.ncbi.nlm.nih.gov/pubmed/31536901
https://arxiv.org/abs/1412.7062v4

Sensors 2021, 21, 7030 21 of 21

20. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587. Available online: https://arxiv.org/abs/1706.05587v3 (accessed on 30 July 2021).

21. Suárez-Paniagua, V.; Segura-Bedmar, I. Evaluation of Pooling Operations in Convolutional Architectures for Drug-Drug Interac-
tion Extraction. BMC Bioinform. 2018, 19, 39–47. [CrossRef] [PubMed]

22. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks For Semantic Segmentation. arXiv 2016, arXiv:1605.06211.
Available online: https://arxiv.org/abs/1605.06211v1 (accessed on 20 August 2021).

23. Liu, J.; Chao, F.; Lin, C. Task Augmentation By Rotating For Meta-Learning. arXiv 2020, arXiv:2003.00804. Available online:
https://arxiv.org/abs/2003.00804v1 (accessed on 20 August 2021).

24. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. arXiv 2017, arXiv:1708.04896. Available
online: https://arxiv.org/abs/1708.04896 (accessed on 20 August 2021). [CrossRef]

25. Ho, Y.; Wookey, S. The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling. IEEE Access 2020, 8,
4806–4813. [CrossRef]

26. Kingma, D.P.; Ba, J. Adam: A Method For Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https:
//arxiv.org/abs/1412.6980v9 (accessed on 20 August 2021).

27. Amendola, G.; Fabrizio, M.; Golden, J.M. Exponential Decay. In Thermodynamics of Materials with Memory; Springer: Boston, MA,
USA, 2012. [CrossRef]

28. Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. Pattern
Analysis and Machine Intelligence. IEEE Trans. 2010, 32, 569–575.

29. Lipton, Z.C.; Elkan, C.; Narayanaswamy, B. Thresholding Classifiers To Maximize F1 Score. arXiv 2014, arXiv:1402.1892. Available
online: https://arxiv.org/abs/1402.1892v2 (accessed on 20 August 2021).

30. Rahman, M.A.; Wang, Y. Optimizing Intersection-Over-Union In Deep Neural Networks For Image Segmentation. Adv. Vis.
Comput. 2016, 234–244. [CrossRef]

31. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A
Survey. arXiv 2020, arXiv:2001.05566. Available online: https://arxiv.org/abs/2001.05566 (accessed on 20 August 2021).

https://arxiv.org/abs/1706.05587v3
http://doi.org/10.1186/s12859-018-2195-1
http://www.ncbi.nlm.nih.gov/pubmed/29897318
https://arxiv.org/abs/1605.06211v1
https://arxiv.org/abs/2003.00804v1
https://arxiv.org/abs/1708.04896
http://doi.org/10.1609/aaai.v34i07.7000
http://doi.org/10.1109/ACCESS.2019.2962617
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
http://doi.org/10.1007/978-1-4614-1692-0_21
https://arxiv.org/abs/1402.1892v2
http://doi.org/10.1007/978-3-319-50835-1_22
https://arxiv.org/abs/2001.05566

	Introduction
	Related Works
	Neural Networks for Microplastic Segmentation
	Experiment
	Dataset
	Loss Function
	Training and Validation
	Segmentation Performance Comparison and Analysis
	Observations on Weight Histograms of U-Net and MultiResUNet
	Observations on Weight Histograms of Half and Quarter MultiResUNet

	Conclusions
	References

