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Zarić, M.; Markoski, B. Infrastructure

as Software in Micro Clouds at the

Edge. Sensors 2021, 21, 7001. https://

doi.org/10.3390/s21217001

Academic Editor: Paolo Bellavista

Received: 5 September 2021

Accepted: 12 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia;
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Abstract: Edge computing offers cloud services closer to data sources and end-users, making the
foundation for novel applications. The infrastructure deployment is taking off, bringing new chal-
lenges: how to use geo-distribution properly, or harness the advantages of having resources at a
specific location? New real-time applications require multi-tier infrastructure, preferably doing data
preprocessing locally, but using the cloud for heavy workloads. We present a model, able to organize
geo-distributed nodes into micro clouds dynamically, allowing resource reorganization to best serve
population needs. Such elasticity is achieved by relying on cloud organization principles, adapted
for a different environment. The desired state is specified descriptively, and the system handles
the rest. As such, infrastructure is abstracted to the software level, thus enabling “infrastructure as
software” at the edge. We argue about blending the proposed model into existing tools, allowing
cloud providers to offer future micro clouds as a service.

Keywords: distributed systems; cloud computing; edge computing; infrastructure as software;
infrastructure as code; micro clouds; micro data centers

1. Introduction

Currently, one of the biggest challenges the IT industry is facing is maintaining uptime.
Providing uninterrupted network connectivity and infrastructure availability has become
a cornerstone of successful businesses, and a crucial requirement for cloud providers.
It is a significant problem for the areas with dynamic networking (e.g., edge computing)
especially. Micro and nano Data Centers (DCs) at the edge of the network are taking off [1],
and efficient management and configuration of the dynamic networks is a challenge [2].

Elliot et al. estimates that downtime costs between 100k USD, up to staggeringly 1 m
USD per hour, for critical application failures [3,4]. A key factor that causes downtime is
configuration drift. Phelps et al. reported that drift in configuration is responsible for over
40% of total experienced downtime [5].

Configuration drift represents a state, where the systems become different over time,
while it should remain absolutely identical [6]. This drift happens during upgrades or
changes that are executed partially. Partial failures are dangerous, because different com-
ponents may be affected through a cascading effect, or the system may end up in a non-
consistent state having different behaviour for two identical actions.

In the era of cloud computing, the Internet of Things (IoT), edge computing, and
other cyber-physical systems, continuous delivery, microservices, DevOps are growing
rapidly. The infrastructure needs to be constantly deployed and maintained, so it would be
beneficial to view the infrastructure as software (IaS) [7]. The benefit of this approach lies
in the already available tools, principles, and techniques (e.g., reuse, testing, modeling, and
evaluation) that can equally be used for the infrastructure definitions [7,8].

The cloud infrastructure is already abstracted by the software, due to the ever increas-
ing demands [9]. This allows practices like DevOps [10] to facilitate agile processes [11],
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and launch infrastructure into production environments within seconds. Similar techniques
could be used in contexts where cloud computing is intertwined with edge computing
bringing cloud principles close to the ground, to form new human-centered applications.

Small data centers deployment at the edge of the network are becoming more popular
in recent years [1]. Geo-distributed small-scale servers introduced by edge computing,
with heterogeneous resources organized locally as micro clouds (µCs), community clouds,
or edge clouds [12] offer interesting opportunities for the future. The infrastructure should
be defined separately from the physical machine and operating system, allowing us to
have an infrastructure definition that is versioned, automated, and applied repeatedly and
consistently every time, hence minimizing configuration drift. This allows better utilization
and organization of resources µCs that exist closer to the users, serving requests locally first,
and only contacting the cloud if and when needed, increasing the quality of service (QoS).

Ryden et al., suggest that these small-scale servers can help power-hungry servers
reduce traffic [13], sending to the cloud only crucial information for the services and/or
applications, and not ingesting everything as the traditional cloud computing (CC) model
advises. On the other hand, in such a multi-tier infrastructure that spans over clouds and
edge computing nodes in a geo-distributed environment existing tools lack support [1,14]
for abstracting infrastructure as software.

The deployment of geo-distributed infrastructure is a complicated and challenging
process [15], and the key problem that needs to be resolved is how to simplify micro
data center (µDC) formation and management [16]. The naive approach would require
going to every node and/or cluster and doing it manually. This process is tedious and
time-consuming, especially in a geo-distributed environment.

Resources at the edge are distributed by local population needs [3], but in some
cases, resources do not have the same distribution in a geo-distributed context (e.g., a new
catastrophic event happens in some area, and we need more resources there to support
emergency response activities). Some resources might be more important in one place,
while others need to be shared across multiple places to control the latency, scalability, and
availability [1,3,4].

This needs to be handled descriptively, dynamically and ad hoc [1], since users
cannot know and predict all scenarios in advance. A fine-grained control per resource
and infrastructure is mandatory property, and could be potentially achieved if we abstract
µDCs infrastructure as software.

In this paper, we propose an IaS solution influenced by the existing Infrastructure as
a code (IaC) solutions used in the cloud to automate the configuration and provisioning
process of infrastructure using cloud instances [17], with adaptations for a different environ-
ment. The proposed model can set up the infrastructure of the geo-distributed µCs at the
edge dynamically, and provide the ability to manage them properly. Here, geo-distribution
means in proximity to some large populations, and µCs are formed, serving their requests
locally first. The newly formed model will expand peer-to-peer systems into new directions
and blend them with the cloud, allowing novel human-centered, cloud-like applications to
be created.

Our approach may be viewed as a transient solution that tries to primarily allow
reorganization of local resources into dynamical, better utilized ,µCs, before resorting to
cloud resource allocation for more complex tasks.

Some existing solutions (e.g., Kubernetes) go as far as treating clusters as disposable—
“treating clusters as cattle, not pets” (i.e., numerous servers/clusters built using automated
tools designed for failure, where no servers/clusters are irreplaceable [18]).

Solution that we propose in this paper goes one step further, proposing the cre-
ation of disposable µCs dynamically, abstracting infrastructure to the level of software—
infrastructure as software. These µCs are designed for failure, using automated tools
where no µC is irreplaceable—“treating µCs as cattle, not pets”. This allows users more
dimensions to operate and optimize their infrastructure. As a result, resources are extended
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beyond the single node or cluster allowing more data to be processed or stored closer to
the user.

The main contributions of the paper are as follows:

• Simplify the deployment of geo-distributed infrastructure, allowing dynamical forma-
tion and management of disposable µCs, closer to the users.

• The possibility for application developers to venture into the “infrastructure program-
ming”, allowing infrastructure to be managed in a similar way as the software is.

• Build numerous µCs designed for failure using automated tools where no µCs are
irreplaceable—“treating µCs as cattle, not pets”.

The proposed model could exist as a stand-alone solution, integrated into existing tools
(e.g., orchestrator engines), or be an integral element of every cloud provider infrastructure
and offered as a service [19].

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 presents the design and architecture of the system. Section 4 outlines various
deployment properties used today and the possibility for dynamical formation of micro
cloud infrastructure at the edge. Section 5 presents a case study for the proposed model,
and comparison with similar models. Section 6 collects some concluding remarks and
future directions of our research.

2. Related Work

This section presents the relevant studies of the literature and existing tools relevant to
this paper. The related work is summarized in three parts: (1) infrastructure management,
(2) the nodes organization at the edge, and (3) advanced Infrastructure tools.

2.1. Infrastructure Management

In the era of distributed systems, cloud computing, and microservices the open-
source community and different companies provided various tools for the purpose of
abstracting infrastructure at the level of software. These tools can be separated into two
subgroups, based on how users send instructions to the systems [20] on (1) declarative,
and (2) imperative.

Newly created tools like Terraform, Polumni, or CFEngine are representative of the
declarative movement, using platform-independent language to specify configuration,
policies, security, and much more. The users do not specify explicit commands that the
system needs to execute. Instead, they declare what they want to achieve, and leave it
for the system to determine the optimal way of achieving it. These tools are turning out
to be very important in a multi-cloud environment. The users need to specify artifacts,
independently from the cloud provider, and let the system deal with the cloud provider
specifics. Every major cloud provider offers a proprietary solution, deeply integrated into
their ecosystem.

On the other hand, already existing and well-known tools like Chef, Ansible, and
Puppet usually rely on some specific language, and the user needs to code the instructions
that must be done to achieve the same or similar job. This is more prone to error, since
users may introduce a bug in the system that might be hard to debug and find. At the same
time, these tools have existed for a long time, and there are existing best practices and a lot
of available examples for users to utilize.

Declarative and imperative tools lack native support for the geo-distributed µCs at
the edge. Through some form of extension (e.g., plugin system, service calls, etc.), we can
adapt these solutions to work in µC environments. Declarative tools are developed with
the specific goal—to set up the cloud infrastructure. Their internal structure needs to be
changed to support the geo-distribution of µCs that is somewhat different than traditional
cloud infrastructure. Imperative tools might be easier to adapt because their internal
structure does not need to be changed. We issue commands and let the running agent
execute them in some order. This strategy might introduce unnecessary complications to
the system leaving it in a non-consistent state if commands fail.
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Our solution is tailored for the µC environment, allowing integration with existing
tools or cloud providers to organize geo-distributed nodes into µCs. With this strategy, we
are getting the best of both worlds, existing tools set up the cloud infrastructure, while our
solution sets up µC infrastructure. The new user application model should be based on
the existing cloud application model enhanced with local processing applications, offering
users a fast and elegant way to develop new human-centered applications.

2.2. Nodes Organization at the Edge

Greenberg et al. [21] introduces the idea of µDCs that operate in a proximity to a big
population. Because of their strategic position, they can minimize the costs and the latency
for end-users, compared to traditional CC data centers [21]. The minimum size of the µDCs
is defined only by the local population needs [21,22], as such, they are reducing fixed costs
of traditional DCs. The main feature of µDCs is agility, and the authors describe agility as
µDCs ability to dynamically grow and shrink resources to satisfy the resource demands and
usage from the most optimal location [21]. The model presented by Greenberg et al. [21],
represents a good starting point for building µDCs of various heterogeneous edge nodes in
a geo-distributed environment. To achieve more availability we need a few more layers.
As an inspiration, we can look at how cloud computing is defined and organized.

Content delivery networks (CDN) in centralized delivery models like CC have bad
scalability, as Kurniawan et al. [23] argue in their research. To overcome these centralized
problems and bad scalability, the authors proposed a different solution, a decentralized
solution. To achieve such tasks, authors were using a network of gateways equipped
with some storage as well, for internet services at home [23] forming even smaller DCs—
nano DCs (nDCs). Authors present a possible usage for these nDCs in some large scale
applications with much less energy consumption than traditional DCs.

These studies show different options for organizing nodes into smaller data centers
closer to the users. As such, they present potential for future research serving user requests
locally if possible. Compared to these studies, our model offers users to dynamically create
µCs where size is determined only by local population needs, allowing the inclusion of
volunteer nodes, if required to support the ever-growing number of requests.

2.3. Advanced Infrastructure Tools

Osmotic computing is a new paradigm that aims to decompose applications into
microservices and perform dynamic tailoring of microservices in smart environments
exploiting resources in edge and cloud infrastructures [2]. The applications developed
for osmotic computing should be deployed opportunistically in cloud and edge systems,
equalizing the microservices concentrations on the two sides. Our proposed solution can
also fit well to the osmotic computing concept, allowing dynamic and efficient management
of µC infrastructure to avoid application breakdown and degradation of QoS. This is
achieved with edge datacenter configuration support.

Eco Multi Cloud [24] is the hierarchical manager that aims to improve a multi-site
data center workload. It is composed of two layers. The upper layer assigns/migrates the
workload among remote sites, while the lower layer assigns Virtual Machines to physical
hosts within every local site. This approach is flexible and can be utilized to achieve and
balance different goals (e.g., reductions of costs, consumed energy, carbon emissions, load
balancing, etc.).

The previous studies lack dynamic organization and configuration support for geo-
distributed µCs at the edge. They offer a valuable solution for other aspects important
in µCs (e.g., efficient balancing between different goals, equalizing the microservices
concentrations in the cloud and the edge, constant security monitoring of infrastructure,
programmable networks). Our study focuses on the dynamic organization pools of re-
sources in the form of disposable geo-distributed µCs in proximity to users, rather than
load management or application management. As such it could be used as a base layer for
previous studies.
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3. Micro Clouds at the Edge

This section explains our model of µCs at the edge, influenced by the traditional CC
model but adapted for different environments. It also presents the conceptual model for
the µCs at the edge.

3.1. High Level Micro Cloud Infrastructure

There exist a few definitions of edge computing today. The traditional description
is that the EC is the distributed computing model, implementing processing and storage
closer to the data sources [14,22,25]. This ordinal concept can be extended with already
familiar models like CC to help power-hungry servers reduce traffic. At the same time,
more information ca be processed in proximity to the users, increasing QoS, availability,
and reliability of offered services.

Vogels et al. define cloud computing as the aggregation of computing resources as a
utility and software as a service [26]. And if we take a look at CC architecture, it consists of
three main building blocks: (1) cluster, (2) region, and (3) availability zones [27] allowing
users to have available software as a service.

Our solution is based on the previous models, extending them into new directions,
and creating a geo-distributed µC model, giving users the unique ability to dynamically
form, add or remove pools of resources as needed. Compared to the existing edge com-
puting models, the idea of geo-distributed µCs allows users to expand processing/storage
resources beyond a single node or group of nodes into regions of clusters similar to the
cloud data center. This aggregated pool of resources allows more data to be processed and
stored locally before contacting the cloud. This increases QoS, availability, and reliability of
services offered to the users.

We can use a familiar model with adaptations, if we observe µCs as geo-distributed
systems, reusing established strategies adapted for the different use-case and environments.
As geo-distributed µCs, we can think of computing systems that resemble traditional CC
data centers organization, adapted for different environments. These systems will operate
on arbitrarily vast geographic areas but near the users, handling their requests before the
cloud, and contacting the cloud only when necessary (e.g., no cached data in near µCs,
data that needs to be processed exceeds the µCs resources, etc.).

Multiple µC clusters form the next logical concept—region. A region increases the
availability and reliability of both the system and applications. A region in a CC and the
µC model does not represent the same thing. In the traditional CC model, the region is
a physical element of the existing infrastructure [27]. In the µC model, a region could
be viewed not as a physical but rather as a logical element. In a µC environment, a
concept of region describes a set of clusters (that could be) scattered over an arbitrary
geographic region. Regions are fully capable of accepting/releasing clusters, as clusters
can accept/release nodes.

In MDCs, a cluster is as big as the population nearby requires [21]. In our solution, we
imply this valuable restriction. Combining with the previous definition, we get that the µC
regions are composed of at least one cluster but can be composed of much more, to achieve
a more resilient, scalable, and available system. Multiple regions form the highest logical
concept–topology. Topology must have at least one region, but it could span over multiple
regions—the topology is capable of accepting/releasing regions.

When creating clusters, regions, and topologies, the vast distances may introduce
huge latency in the system, and should be avoided (in normal circumstances). If there
are no free nodes/clusters/regions near to be integrated into one of the concepts, we can
choose the next available that might be further away.

Compared to the traditional CC model, where new nodes have to be brought and
connected physically to the rest of the infrastructure [28], in the µC model, a node needs to
connect to the network. The formation of the higher concepts should be done descriptively
and dynamically by changing the concept definition. This rule applies to nodes belonging
to the cluster, cluster belonging to the region, and region belonging to the topology. It is
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important to note that we assume nodes inside the cluster run some membership protocol.
Table 1 sums up the difference between cloud and µC infrastructure elements. The accent
in comparison is on the physical and the logical infrastructure concepts.

Table 1. Comparison between traditional cloud and micro cloud infrastructure.

Attribute/Cloud Type Traditional Cloud Micro Cloud

Logical Cloud Provider
Topology

Region

Physical
Region

Cluster
Zone

With these simple, yet powerful abstractions, arbitrarily vast geographic areas can be
covered, with the ability to shrink or expand clusters, regions, and topologies as needed,
forming new pools of resources for applications to utilize. In osmotic computing [2] for
example, this can be especially useful (e.g., In cases where applications are shifted in
between the cloud and the edge because we can dynamically create similar infrastructure
like the cloud and assign a pool of resources needed ad-hoc). The osmotic computing
framework does not need to take care of the infrastructure, but only to shift applications to
the best possible resource pool.

The organization of these concepts should be optional. We could fit clusters in an
interval between nDCs [23], and µCs [21], or as wide as the whole city or as small as all
devices in a single household and everything in between. Formally, the size of some µC
cluster (µCc) can be represented like:

µCc ∈ [nDCs, µDCs] (1)

Any geographical region can be easily covered, with these simple abstractions, with
the ability to shrink or expand clusters, regions, and topologies. Their size should be a
matter of need, agreement, and usage of the nearby population.

These µCs have fewer resources, compared to traditional clouds, but their vicinity to
the users means they have a much faster response. As resources are limited, in case of a
storage, rarely accessed data may be transferred to the cloud, so it may happen that it is not
present at µC location at the time of user request, but can be retrieved from the cloud and
cache it for later. Formally, the position of µCs is in between tradisional CC and EC like:

µCs ∈ (Cloud computing, Edge computing) (2)

Exclusiveness in the previous formula, means that the position of µCs is moveable in
between CC and EC depending on the wanted model, more CC-like or more EC-like, but
it should not become either of them. It could be an integral part of both of these models
(even at the same time), creating a multi cloud environment [29].

To achieve such elasticity, we must abstract the infrastructure to the level of software,
venturing into “infrastructure programming” [7], allowing µC infrastructure to be man-
aged similarly as the software is. This approach allows reusability of the available tools,
principles, and techniques (e.g., testing, modeling, and evaluation) [30] that can equally be
used for our model.

Traditional clouds, µCs, and various data sources form a multi-tier architecture, where
µCs should be in between traditional clouds and various data sources. Figure 1 presents
multi-tier architecture composed of µCs, traditional clouds and various clients—data
sources and service consumers.
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Figure 1. Micro clouds high level architecture model.

3.2. Conceptual Model of Micro Clouds

A multi-tier computing as briefly described in the previous section plays a crucial
role in the delivery of low-latency and data-intensive applications. This model requires
flexible infrastructure, so that it can easily be repurposed, essentially reprogrammed,
to provide new capabilities [1]. Therefore, the systems must be designed to provide efficient
infrastructure management, since these µCs are more diverse than conventional clouds.This
section describes a multi-tier infrastructure in greater detail.

On lower levels of multi-tier architecture, response time is the fastest, since data is
processed closer to the source. At the same time, there is a limited storage capacity and
processing power.

As we go on to the upper tiers, there is more and more storage capacity and processing
power available, but the response time is longer, especially when huge volumes of data
need to be transferred over the network over a long distance [31].

Figure 2 shows the three-tier architecture, with the response time and resource availability.

Figure 2. Three-tier architecture, with the response time and resource availability.

Applications running in these geo-distributed µDCs should serve local requests first—
frontend services, but they should also be able to share data to the cloud, on-demand—
backend services. This idea would minimize user-perceived latency and increase robust-
ness [1,7], allowing data preprocessing before sending it to the cloud to only transfer data
that is important and contains value.

This will allow future human-centered applications to rely more on the data locality
principle (i.e., moving the computation closer to the data, instead of moving data to
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computation [32]), rather than moving huge volumes of data over the network to the cloud
for computation, if it is not necessary. This simple idea minimizes network congestion
and increases the overall throughput of the system, allowing the computation and storage
resources to be deployed at the edge of the network [33] at the best possible location—in
proximity to the user issuing the request.

The operators should be able to specify the cluster, region, and topology declaratively.
Declarative specifications offer an interesting solution because they hide implementation
and deployment details from the user. This will allow us to separate concerns for different
types of users [34]. This separation has been widely adopted in cloud computing where a
strict separation between development and DevOps teams exists [35,36].

Our model is heavily based on cloud organization, and to implement a tool that will
be able to organize and reorganize µCs dynamically, we can take a look at existing IaC
and orchestration tools used in the CC today as an inspiration. Tools like Kubernetes,
Terraform, and CSBAuditor rely on the reconciler pattern [37].

This pattern enables tracking of resources using two simple states: (1) expected state,
and (2) current state. The expected state represents the desired state, while the current
state refers to the actual system state. The reconciler pattern runs a reconciliation loop that
ensures that the current state remains the same as the expected state.

This means that every node must provide its current state regularly, and when some
state is divergent from the desired state, the system must act to ensure that this situation is
corrected automatically.

Figure 3 shows the high level architecture of the system.

Cloud

Services

State
Reconcile loop

DevOps/SREs
Interacts

Free nodes

Micro clouds

Clients

Interacts

health-check
registration

health-check
commands

state
coordination

Figure 3. High level architecture of the system.

The node can send its state over existing channels e.g., health-check pings to minimize
load and data transferred over the network, or a dedicated channel just for this purpose
may exist.

Figure 4 shows the high level communication for health-check protocol.
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:Node :Log

healthcheck

update

log

:System

Figure 4. High level health-check protocol diagram.

If some node desires to be a part of the system, it must obey some simple rules:

• a node must run an operating system with a usable file system;
• a node must be able to run some isolation engine for applications, for example,

containers or unikernels [38];
• a node must have available resources for utilization so that applications can be run or

data stored;
• a node must have internet connection;
• a node must provide a list of attributes in the form of a list of key-value pairs—labels.

The design of rules is made simple intentionally, and could be helpful in certain situa-
tions. For example, if the number of requests suddenly increases (e.g., catastrophic event)
beyond what currently available infrastructure can support, the system allows the volunteer
nodes inclusion. These volunteer nodes can depreciate load for an indefinite period.

The concept of labels is based on the Kubernetes [39] labels mechanism, which is
used as an elegant selecting and binding mechanism for its internal components. In µDCs
labels can have all these roles, as well as a new role—presenting node attributes to the
user (e.g., cpu: 4, mem: 100 GB, disk:ssd, storage: 120 GB, etc.). Labels represent a set of
free-defined values, and they can also contain some node-specific attributes that should be
pointed out (e.g., geolocation, architecture, os, etc.).

The user should submit a new state to the system in the form of a state description
file—the desired state. When a new state description is accepted, the system will try to find
the best possible pool of resources to use, or the exact pool of resources if available.

Here resources may be represented in three ways:

• Application resources like CPUs, GPUs, storage, network quotas, etc. if the user is
submitting a new application into the cluster. For this type of task, virtualization
will simplify resource management, and it will allow running applications over
heterogeneous infrastructures;

• Infrastructure resources, if a user is creating a new clustered infrastructure. For this
type of task, the user must specify what nodes are desired to be part of that cluster.
Users can create dedicated clusters (e.g., processing, storage, etc.), or create clusters
that can accept various types of tasks. Depending on the cluster type, nodes with
different resources (e.g., CPUs, GPUs, storage, network. etc) can be targeted, forming
a pool of available resources. This can be done by using some desired selector values
that every node can have attached in the form of key-value pairs;

• Various configurations, The same system could be used for various configurations
of nodes and clusters remotely. The model is easy to extend by just adding the new
worker that will do a specific task when that kind of file is submitted to the system.

All resources, whether application resources, infrastructure resources, or various
configurations should be viewed as being part of sharable resource pools that can be
controlled, managed, or repurposed at any given point in time. The extension of such a
system could be as simple as adding a new service dealing with just that resource. Figure 5
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shows a high overview of the services involved in all operations done by site reliability
engineers (SREs) on the µCs infrastructure and/or free nodes. Blue arrows in the image
symbolize the operations that will change the current state of the system. Red arrows
represent read-only operations not changing the state of the system.

Nodes pool

User (SRE)

State

Services

Scheduler

Log
Queue

Gateway

Figure 5. High overview of the services model.

Three main operations that it should provide are:

• query free nodes for the purpose to create clusters, regions, and topologies. This
operation involves the following entities: User, System, and Log. The user submits a
selector that is a list of key-value pairs to the system. These values represent desired
properties of the nodes the user is searching for. After receiving the selector list,
the system will query its local register to compare selector with labels for every
registered node in the system not used in some cluster—free nodes. The system will
log all interactions with the user. Figure 6 shows the high level communication for
query operation;

:User (SRE) :State :Log

query
log

reply

lookup

Figure 6. High level query operation diagram.

• mutate or creation of new clusters, regions, and topologies from the existing pool of
free nodes (resources). Mutate operation requires following entities: User, Queue,
System, Scheduler, Node Pool, and Log. The user submits a description file containing
an infrastructure set up—a new infrastructure configuration. The queue accepts this
new state and replies with an acceptance message to the user. The queue is drained at
some configurable time t, to prevent overflow of the system, and it sends the mutate
message to the system. The system accepts the mutate message, reserves nodes, and
creates a new infrastructure configuration. When data is successfully stored, the
system will schedule a new execution task, a new infrastructure to be physically set
up. The scheduler executes the task and informs the node pool that needs to be part
of the same cluster to start the membership protocol. When the membership protocol
is done, the message is sent to both scheduler and the system. The system receives
the health-check messages and properties of the cluster. The scheduler receives the
done message, to signal that the scheduled task is done. Figure 7 shows the high level
communication for mutate operation;
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:User :Node pool:System :Log:Queue

submit

reply

mutate

update

:Scheduler

schedule

schedule

save

done

log

log

update

Figure 7. High level mutate operation diagram.

When a user submits the cluster formation message, the system will accept the message
and register the task with PENDING state. If the system cannot proceed further, for
whatever reason (e.g., no available resources or nodes, etc.) the task is finished, and it
goes to FAILED state, and this concludes the transaction. Otherwise, if there are no
errors, and the system can proceed with the cluster formation protocol, the task will
go to IN PROGRESS state.
In this state, the system needs to save newly formed cluster information, prepare
metrics service, add watchers for the cluster nodes health-check, etc. This operation
spans multiple services, creating sub-transactions. The task state will prevent the
users from applying other tasks, configurations, and actions on a not yet formed
cluster. We can always invoke the rollback mechanism if any error happens during
this process. Other options would be to try to fix the occurred issue with some of the
retry strategies.
If there are no errors, the cluster formation transaction finishes, changing the task state
to CREATED. If there are errors during this process, the cluster formation transaction
ends without creating the cluster. The task will go again to FAILED state, and this
concludes the transaction. Figure 8 shows state diagram changes for the newly
submitted task.

CREATED

FAILED

initiate

PENDING

start done

error

error

IN

PROGRESS

Figure 8. Newly submitted task state diagram.
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• list shows details about various parameters (e.g., nodes in clusters, regions, topologies,
resource utilization, running applications, etc.). The entities involved in list operation
are: User, System, and Log. The user submits what cluster/region/topology he wants
details. The system will do a lookup on its state based on the query provided by the
user. If such a record exists, it will show details about it (e.g., number of nodes per
cluster, clusters per region, regions per topology, utilization, running applications,
logs, etc.). All user interactions with the system will be logged. Figure 9 shows the
high level communication for list operation;

:User :System :Log

list
log

reply

lookup

Figure 9. High level list operation diagram.

All communications in this multi-tier infrastructure model should be independent of
the model. We can implement all communication in the system using standard protocols
(e.g., TCP, UDP, HTTP, MQTT, etc.). The model proposes that parts of the system communi-
cate but should not impose communication protocols. The custom or proprietary protocols
may be used.

3.3. User Data in Micro Clouds

µCs benefit from data locality and serving user requests from the best possible
location—the closest µC to the user. They rely on the traditional clouds’ excessive ca-
pacities to store data, which is overwhelming for them. Hence µCs should store the fresh,
most recently used data, and this is determined by the size of the µC given in Equation (1).

With this pattern in µCs, our solution meets two challenges:

• when a user moves to another place (e.g., from city to city, country to country), does
the user data follow the user somehow, or should it be stationary? The decision should
be on developers, users, and µC providers to decide—it depends on the service and
type of data. The model anticipates different policies applied to the µC for every
individual user or group of users—data plan. For example, if a user goes to another
location and requests are served from another µC, the model can use a traditional
cloud to locate the requested data. We can transfer requested data to the µC that is
serving that request. The process is similar to the content delivery networks on the
edge [23]. To minimize the network pressure, transfers should be only the requested
data. An alternative option would be to use the traditional cloud as a backbone to
serve user data if he moves to another location.

• how long should the user data be present in the µC, assuming that µCs need to
serve many users, and they have limited resources. The model we propose relies
on different policies applied to the user’s data. Depending on where the size of the
µC lies in the specter given by Equation (1), µC providers and developers may offer
different policies—time to live (TTL) [40] how long to store the data similar to the
leases mechanism in cache systems [41].
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The data retention and size in the µC are decided and optimized with (1) and (2), for
the single user or group of users.

4. Deployment Properties

This section describes different aspects during the deployment of infrastructure.
It presents problems and various deployment models to resolve these problems. It de-
scribes roles involved during the deployment in the µCs environment, and presents a
proof of concept solution based on previously described model and deployment properties,
tested in laboratory conditions.

4.1. Deployment Models

µC infrastructure deployment will not happen until the process is trivial [16]. The
key to success is to simplify µC management. The problem is to decouple application
management from the network and security [2]. Infrastructure and applications deploy-
ment in such a complex environment as µCs and three-tier infrastructure can determine
many parameters.

How existing strategies handle the changes on the existing infrastructure or applica-
tions can be explored on [42]:

• A mutable deployment model is a model where changes are in place. In place, change
means the existing infrastructure or applications get updated or changed during an
update. This strategy is prone to leaving the system in an inconsistent state due to:

– increased risk, because in-place change may not finish, which puts infrastructure
or the application in a possible bad state. This is especially a problem if there are
a lot of services and multiple copies of the same service because the same request
may produce a different outcome. The possibility that the system is not available
is a lot higher;

– high complexity, this is a direct implication of the previous feature. Since the
change might not get fully done, it cannot be guaranteed that the infrastructure
or application is transitioned from one version to another – change is not discrete,
but continues since we might end up in some state in between where we are now
and where we want to be.

• An immutable deployment model is a model where no in-place changes on existing
infrastructure or application are done whatsoever. In this model, the previous version
is replaced completely with a new version that is updated or changed compared to
the previous version. The previous version gets discarded in favor of the new version.
When compared to the previous model, immutable deployment model:

– has less risk, since the existing infrastructure or the application is not changed,
but a new one is started and the previous one is shut down. This is important
especially in distributed systems (DS) where everything can fail at any time;

– has less complexity than the mutable deployment model. This is a direct impli-
cation of the previous feature since the previous version is shut down and fully
replaced with the new one. This is a discrete version change and atomic deploy-
ment with deferring deployments with fast rollback and recovery processes;

– requires more resources [43], since both versions must be present on the node for
this process to be done. The second problem is the data that the application has
generated should not be lost. The problem is solved by externalizing the data.
We should not rely on local storage but store that data elsewhere, especially when
the parts of the system are volatile and changed often. The key advantage of this
approach is avoiding downtime experienced by the end-user when new features
are released.
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Figure 10 summarizes the difference between mutable and immutable deployment models.

Figure 10. Difference between mutable and immutable deployment models.

Immutability is a simple concept to understand, and it simplifies deployments.
In distributed systems [43] where the state is not in the single place while nodes fail
often, this is especially important.

In the three-tier infrastructure, we want to set up geo-distributed µC infrastructure as
fast and as safely as possible to avoid application breakdown and degradation of QoS [2].
SREs define infrastructure on one end, while users expect that same infrastructure to be
available on the other end, which involves a lot of communication and coordination. The
system should embrace the failure that may occur and deal with it in some way. The easiest
strategy is to accept discrete change—immutable deployment from one configuration to
another. Write down some data, and ensure that it never changes. It can never be modified,
updated, or deleted [44].

Immutable deployments help to fight the configuration drift problem, decreasing the
overall system downtime. With the arrival of containers, change management in complex
environments such as distributed systems may be as simple as stopping the previous
version and starting the new one. This technique offers several benefits for deploying
changes, offering various strategies for different situations. These strategies include:

• Blue-Green deployment, this strategy requires two separate environments: (1) Blue
current running version, and (2) Green is the new version that needs to be deployed.
When there is satisfaction that the green version is working properly, the traffic can
be gradually rerouted from the old environment to the new one, for example by
modifying the Domain Name System (DNS). This strategy offers near-zero downtime;

• A canary update is a strategy where a small subset of requests is directed to the new
version—the canary, and the rest of them are directed to an old version. If the change
is satisfactory, the number of requests can be increased, and it should be monitored
how the service is working with increasing load, if there are errors, etc.;

• Rolling update strategy updates large environments, a few nodes at the time. The
setup is similar to blue-green deployment, but here there is a single environment.
With this strategy, the new version gradually replaces the old one. If for whatever
reason the new version is not working properly on the larger number of nodes, rolling
back to the previous version can always be done.

Highly available systems need to cope with hardware and software failures. Upgrad-
ing the software while the same software is running is not a trivial task to implement [45].
A rolling upgrade offers an upgrade of software without a noticeable downtime or other
disruption of service. This is important when we want to update, upgrade or extend the
infrastructure, but to sustain QoS.
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For example, the rolling updates may change parts of the OS and services that run
inside the containers. With the introduction of LinuxKit, Linux OS subsystems may be
composed of very secure containers. As a result, systems created with LinuxKit have a
smaller attack surface [46] than general-purpose systems. Ayres et al. [47] demonstrate how
containers can promote efficient software updates using rolling updates in embed space.
In the µC environment, this is especially important because of various heterogeneous
nodes. When performing a rolling update, we can update all nodes seamlessly. It is a
gradual process that allows users to update their infrastructure with only a minor effect on
performance and no downtime. Figure 11 shows flow chart for rolling update in µCs.

Done

Desired

Check
desired state

state: False

state: True

Desired

Select old
container/infrastructure

part

Deactivate old
container/infrastructure

part

Activate updated
container/infrastructure

part

Create updated

part
container/infrastructure

Figure 11. Rolling update flow chart.

Such update would be hard to implement using mutable model, since the transitions
between states is not discrete, it might end up in some mid-state leaving the system in
inconsistent state. As a result, it might get different response from the same service.

4.2. Deployment Roles

In our modern world of interconnected applications, there are several distinctive
deployment roles. Each of them plays an important part so that modern software runs
smoothly, and with less downtime. These roles could be summarized into a two categories:

• DevOps Engineers are in charge of a multidisciplinary organizational effort to au-
tomate application deployments through continuous delivery of new software up-
dates [48]. DevOps combine software development with technology operations [49]
to shorten the development life cycle.

• Site Reliability Engineers (SREs) are responsible for availability, latency, performance,
efficiency, change management, monitoring, emergency response, and capacity plan-
ning [50]. It is a software engineering role and needs to have an understanding of the
fundamentals of computing [51], applied to the infrastructure and operations problems.

DevOps engineers and SREs seem to be very similar roles, they are both trying to
bridge the gap between development and operations. As such they have a very large
conceptual overlap in how they operate [52], but also have some differences. Table 2 sums
the differences between the DevOps engineers and SREs.

Table 2. The differences between the DevOps and SREs roles.

Feature DevOps SREs

Task Scaling, uptime,
robustness Development pipeline

Essence Practices and metrics Mindset and culture

Team structure
Wide range of roles:
QA, developers,
SREs etc.

SREs with operations
and development skills

Focus Development and
delivery continuity

System availability
and reliability

Goal Bridge the gap between development and operation
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In a µC environment, both roles play a very important part so that the whole system
stays up and running. DevOps engineers should be in charge of the execution of the appli-
cation on the infrastructure (e.g., deployment, monitoring, scaling, QA), and SREs should
deal with all bits and pieces of programmable infrastructure (e.g., forming, monitoring).
Their job should focus on repurposing infrastructure resources and deal with infrastructure
uptime. This approach removes entangling the geo-distribution concerns in the business
logic of the application, deployment, and infrastructure [8].

The solution we propose is more towards SREs oriented. They are the ones dealing
with pools of resources and programmable infrastructure. Their responsibility would be
organizing and repurposing µC infrastructure, as well as monitoring and managing remote
configuration and uptime.

When SREs prepare µC infrastructure—optimally organize a pool of resources to serve
user requests locally first, and monitor infrastructure metrics [53], then DevOps engineers
may set up their infrastructure for continuous delivery, application metrics, etc. to deploy
services and applications that users may utilize.

4.3. Proof of Concept

The focus of this paper is not on the implementation details but presenting the possi-
bility of the formation of disposable µCs at the edge dynamically using infrastructure as
software principles. Therefore we are venturing into infrastructure programming at the
edge. However to test its implementation based on the proposed model is possible—we
implemented a proof of concept solution and tested it in laboratory conditions. Since
laboratory conditions are significantly different from real-world scenarios, we did not
analyze metrics (e.g., performance and network overheads or scalability aspects).

Based on the previously defined health-check protocol, list, mutate, query operations,
and formal models defined in [19], we have implemented a proof of concept solution able
to dynamically form disposable micro clouds, abstracting infrastructure to the level of
software in laboratory conditions.

The proof of concept solution is implemented based on the referent architecture from
Figures 3 and 5, in a microservice manner using the Go programming language. As service
to service communication, we used the gRPC framework, and services communicate
using HTTP2 binary protocol. For the configuration store, we used an etcd, a strongly
consistent, distributed key-value store. All physical nodes communicate with the rest of
the infrastructure using the publish-subscribe principles. System to node communications
and vice-versa is implemented using the messaging system NATS. All used frameworks
are open-source.

The new state in YAML format is submitted to the system queue, where users specify
what nodes need to form clusters, regions, and topologies. Users are allowed to override
existing default labels for every node. They can also assign new ones on every node,
region, or topology. Once submitted, the new state description goes over a few changes
following the state diagram shown in Figure 8. When a new state is successfully stored
in the system, the scheduler service will receive an event, to push changes to nodes about
the cluster, region, or topology formation. Upon cluster formation message, nodes start
group membership protocol to detect failures and disseminate the information through the
network. For this purpose, we used a scalable weakly consistent infection-style (SWIM)
protocol [54]. The messages in the cluster flow over standard UDP/IP.

All communication to the system is over the command-line interface (CLI) program.
CLI communicates over HTTP protocol with the system gateway submitting JSON mes-
sages. This allows a dashboard web interface in the future.

Laboratory experiments are done on the twelve ARM physical nodes. Due to the
lack of physical node numbers, we ran virtual nodes in containers on the physical nodes
to increase network complexity. For every physical node, we started n virtual nodes,
depending on the available resources on the physical node, running as Docker containers.
This allowed us to increase network complexity by n-fold. One constraint is added to
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the automated experiment scripts—virtual nodes running on the same physical node
cannot form clusters. Every virtual node gate a different set of test labels to meet the given
constraint. When the test user is querying for the free nodes, he cannot see virtual nodes
running on the same physical node.

We plan to analyze different metrics as part of our future work in real-world scenarios
(e.g., power grid balancing, area traffic routing, and control, etc.).

5. Proposed Model Case Study

This section explores the case study of a proposed model. Section 5.1 presents
example usage of the proposed model in case of COVID-19 area traffic control. The
Section 5.2 compares the proposed model with the existing similar models, advantages and
shortcomings.

5.1. COVID-19 Area Traffic Control

Let us consider a scenario where some city has an up and running micro cloud
environment in its area. Here city topology can be formed, where the whole city represents
one topology. Regions can be organized as needed, but for the sake of example we can
follow the natural subdivision of the city onto municipalities, where every municipality
represents one region inside the city topology. Depending on the population density, we
can organize clusters inside the region as needed. Some regions may have more clusters,
while others may have fewer.

If COVID-19 suddenly hits that city, an increasing number of ambulance vehicles needs
to be routed to the hospitals fast. Developers can create the application running inside a
micro cloud—frontend service that will track the actual position of these vehicles within
the street grid, process that information, and in combination with another - traffic control
service, usually managed by the appropriate city agency, give these vehicles dynamic
priority. Combined, those two services can calculate or predict traffic jams, and the traffic
control service can “clear the path”—closing the traffic lights on cross streets prior to
emergency vehicle arrival at the crossroads, and prolong open intervals along the vehicle
calculated route to increase traffic flow. With such interaction, these vehicles could be
routed faster and safer to the nearest hospitals. Ambulance vehicles may monitor patient
health state on the way to the hospital, transfering that data to the third frontend service
and eventually to electronic health record—backend service, giving medical personnel
much needed information before the patient arrives. Additionally, if the patient state
suddenly changes, it can provide rerouting to different hospitals if needed. Since such
a system would rely on live traffic information gathered through interaction of sensor
nodes in specific region and traffic control endpoints running on some nodes—it would
also provide fast recovery of traffic to normal flow after the emergency vehicle passes
some points in the street grid—therefore avoiding prolonged traffic jams which could
hamper other emergency vehicles movement. It is important to notice that the calculation
and management of the route is lowered to the level of the region, which provides a
faster response to real conditions and less disruption of traffic outside the zone in which
the vehicle is. The fourth frontend service may collect depersonalized data in real-time,
preprocess and transfer to the cloud for deeper analysis—backend service. This strategy
may help researchers to better understand and fight the disease.

Applications doing these tasks will require more resources in such scenarios in order
to work properly. For this, we may choose to organize clusters inside regions in a different
way. A few clusters may even be dedicated just for this purpose, while others will serve the
rest of the running applications. Even regions could be joined into bigger regions providing
even more available resources. All this could be done dynamically with the proposed
model, and descriptively.

After the end of the outbreak, when everything is back to normal, the resources can
be reorganized as before. If the outbreak returns, they can again be reorganized in the
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same way or using some better strategy. It is important to notice how we can elastically
reorganize resources as needed ad hoc, without knowing future scenarios.

Figure 12 depicts previously described example, trough conceptual architecture model.

Cluster C
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Figure 12. Conceptual architecture model for COVID-19 area traffic control example.

5.2. Discussion

Proposed model allows organization and reorganization of resources as needed
dynamically and elastically in a similar way the cloud does. This feature allows users
to develop applications without some specialized infrastructure for different types of
applications. The system accepts local requests, even if the cloud is not reachable, making
it more robust in terms of network failures [1], giving the users an illusion that the cloud is
closer to them. This minimizes the potentially huge round-trip time of the cloud [55].

Compared to the similar existing models [56–60], our model offers few benefits and
few short shortcomings.

The main strength of the proposed model allows developing a vider range of applica-
tions without the need for specialized hardware or software. This allows users to build
their applications, similarly as they would build them for the cloud. Some specialized
models require specialized infrastructure in order to resolve a single problem.

On the other hand, these specialized models run optimized versions of applications
developed to use maximum of the underneath hardware and software. As such, they might
outperform the proposed model in terms of speed. On the contrary, our model offers much
more development freedom for the users, in terms of agility and applicability.

This allow organization of storage and processing resources according to priority. The
entire state can organize its resources and completely manage its digital infrastructure,
creating applications market that will help its citizens.
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6. Conclusions

This paper presents a possible solution to dynamically manage infrastructure in µDCs
at the edge in a multi-tier environment where we have clients at the bottom, µCs in the
middle, and a cloud environment at the top. This multi-tier infrastructure supports data
processing locally but also uses huge availability of cloud resources when necessary.

We have used infrastructure as a software principle to abstract infrastructure at the
edge to the software level, using familiar, already existing, tools, best practices, versioning,
etc. for software development, to support future real-time applications.

The model of µDCs we present is influenced by the cloud computing infrastructure
model, but adapted for a different environment. This gives us the ability to organize nodes
dynamically into clusters, regions, and topologies to form µCs at the edge, providing
resources at the best place they are needed. Our model allows coverage of the arbitrarily
vast geographic region, with the ability to descriptively organize, reorganize, and repurpose
the infrastructure resources as needed where the size of the infrastructure resource pool is
determined by the population’s needs.

When more resources are needed (e.g., to support bursts of requests, catastrophic
events, etc.), our model can extend clusters with additional nodes. When these resources
are not needed anymore, our model can release them back to a pool of free resources,
similar to the cloud model. One possible drawback of our model is that initial investments
may be high, but cloud providers or government authorities may deploy infrastructure
and lease it to users in the familiar pay-as-you-go model, already used in the cloud.

First, we have introduced infrastructure as a software principle, and how infrastructure
could be treated in the same way as software, and the benefits of such an approach. Next,
We have described a design of a possible solution based on the existing models widely
adopted in the cloud for infrastructure deployment, with different development roles that
could be used while developing applications that could run in such multi-tier infrastructure.
We have also argued about the importance of formal models, and their benefits in such a
complex multi-tier environment, where applications span over clouds and µDCs.

As part of our future work, we are planning to test the proof of concept implemen-
tation in some real-world geo-distributed environments (e.g., measurements of different
parameters relevant to detect hazardous occurrences, real-time detection, and alerting of
changes in air quality essential for lung patients, management in power grids, etc.) to ana-
lyze the performance, network overheads, and scalability aspects of the proposed model.

We are planning to extend our system with namespaces allowing multi-tenancy in
the system. Namespaces would provide the creation of the virtual clusters, running on the
same physical hardware. Additionally, we are planning to add remote management, where
users can disseminate configurations, security credentials, and actions over nodes in one or
multiple clusters. We are planning to develop a prototype based on the proposed model.
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Abbreviations
The following abbreviations are used in this manuscript:

DS Distributed systems
CC Cloud computing
ECC Edge-centric computing
IaC Infrastructure as code
IaS Infrastructure as software
IoT Internet of things
DC Data center
DNS Domain Name System
DSL Domain-specific language
SRE Site Reliability Engineer
VM Virtual machine
OS Operating system
µDC Micro data center
µC Micro cloud
µCc Micro cloud cluster
IaaS Infrastructure as a service
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