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Abstract: A new stepwise and radially processed method for synthesizing uniformly distributed
circular planar arrays with quantized weights is proposed in this paper. This method is based on a
generalized analytical equation describing that for high directivity focusing arrays, minimizing the
weighted mean square error between the reference pattern and the synthesized pattern is equivalent
to minimizing the mean square error between the radial cumulative distributions of the reference
distribution and the synthesized distribution. This principle has been successfully performed
for designing large concentric ring arrays, and in this paper, we extend its use for synthesizing
uniformly distributed planar circular arrays with quantized weights. Various numerical examples
and comparisons with several reported statistical methods in terms of the lowest Maximum SideLobe
Level (MSLL) demonstrate the effectiveness of the proposed method.

Keywords: array synthesis; quantized weights; planar circular array; low maximum sidelobe level

1. Introduction

Radars with large uniformly distributed array antennas have been widely applied
in atmosphere observation [1], military warning, and navigation [2] with an increasing
speed. To reduce the kind of the Transmitting/Receiving (T/R) modules to simplify the
transmitting feeding network in array antennas as well as to suppress the MSLL as much
as possible, several design ideas are presented. First is the thinned arrays. In the previous
stage, Willey [3] and Skolnik [4] investigated the density-weighted thinned arrays. Soon
afterward, nature-inspired algorithms such as genetic search [5,6] and particle swarm
optimization [7] have been exploited to design thinned arrays. However, due to the very
intensive computational efforts, those stochastic optimization-based methods are not suited
for large array thinning [8]. Later on, the Iterative Fourier Technique (IFT) [8] as well as
its derived IFT-based algorithms [9,10] and more recent dynamic programming [11] have
been successfully applied to large array thinning. Another solution is the nonuniformly
distributed arrays, e.g., [12–16]. Though they may outperform thinned arrays in many
aspects theoretically, the interelement spacing is changed, which violates the nature of the
uniform distribution.

From the form of excitation coefficients, thinned arrays are two-step [0, 1] quantized
weights arrays, and the amplitude coefficients at elements that remained are equal. The
primary motivation of array thinning is the reduction in cost and weight. At the same
time, a low MSLL can be obtained without evidently widening the Half-Power BeamWidth
(HPBW) if the amplitude distributions are properly configured [8]. Though the reported
lowest MSLL of thinned arrays has been improved many times, however, the lowest
attainable MSLL associates with the number of antennas, when the total number of elements
is not large, the MSLL is not low [17]. To further suppress the MSLL without increasing the
number of elements, the concept of quantized weights arrays is introduced. Essentially, the
distribution generated by quantized weights is a combination of density and amplitude
tapering, which further smooths the average amplitude illumination [18]. However, the
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quantized weights arrays require a set of discrete amplitude weights. Whether the weight
set is provided in advance or generated simultaneously during the synthesizing process,
extra optimization dimensions are added, thus directly increasing the complexity of solving
the problem. In addition, varied methods applied well for synthesizing classical two-step
thinned arrays are not applicable here to synthesize quantized weights arrays. Therefore, it
is relatively more difficult to synthesize perfect quantized weights arrays.

Till now, only a few studies have addressed this topic [17,19–23]. Even so, they
are all implemented in a very similar statistical way. Ball [20] designed several sets of
quantized weights and concluded that the set wherein the weights are equally spaced and
distributed between zero, and one can obtain one of the largest reductions in MSLL when
the selection probabilities are the terms of the binomial distribution. Gao [17] calculated
the optimum quantized weights from a nonlinear optimization problem which minimizes
the variance between the reference pattern and the synthesized pattern. Except for those,
the other used quantized weights are generated randomly [21] or preset with several
specific particular values [19,22], which may be far from the global optimum. Li [24]
summarized the relationship between the quantized amplitudes arrays with the statistical
density tapering arrays and concluded that the latter is only a special form of the former,
but the proposed method to design quantized amplitude arrays is essentially the same
as that of in [17]. More recently, Shao [22] added some modifications to [21] and found
that lower MSLL can be obtained when the illumination probability of one element is also
relevant to the illumination probabilities of other elements in the adjacent positions. The
performance of [22] is better than that of [21] in some situations but still worse than that
of [17].

Except for some theoretical studies mentioned above, quantized weights arrays have
been applied to several Very High Frequency (VHF) radars for the observation of neutral
atmosphere and Field Aligned Irregularities (FAIs). Unlike the turbulence echo in the
neutral atmosphere, the FAIs are also very sensitive to the weak radio frequency signals.
In some ionospheric strong scattering events, part of the radar echo may be received by
the sidelobes [25]. In this case, the range-time-intensity plot displays the combination
of the mainlobe and the sidelobe echoes, which leads to the misjudgment of the actual
height and angle of arrival of the FAI echoes. Though the use of the multichannel Spatial
Domain Interferometer (SDI) technique can sometimes well reconstruct the actual position
of FAIs in space [26]. However, for a routine-operated VHF radar (requiring a long-time
operation) to ensure the quality of the data transmission, the number of consecutive pulses
in each data block is quite limited. At this time, the SDI performs badly. Therefore, the
most reasonable way is to suppress the MSLL of the transmitting beam. As a consequence,
some researchers have developed multiple equivalent approaches to meet the lowest SLL
requirements. The stationary SOUSY enlarged the interelement spacing at the edge of the
array and fed the antennas at the inner positions with higher power [27] simultaneously.
The mobile SOUSY adopted a three-level power configuration of [1, 0.5, 0.25] to smooth the
current distribution at the transmitting stage [27]. Later, to suppress the MSLL, numerous
T/R modules with different powers are adopted in the Indian MST radar to achieve a
modified Taylor weighting in both principal directions [28]. Soon, the new Qinzhou MST
radar will also consider the quantized weights to guarantee the transmitting beam with a
low MSLL [1].

Though the use of quantized weights arrays can be traced back to a very early age,
there are still some drawbacks, and there has been no evident progress for a long time. One
limitation of the previously reported methods is that it is difficult to select an appropriate
reference distribution associated with the lowest MSLL because the selected reference
distribution does not show any regularities. Another limitation is that the reported methods
cannot achieve a notable and stable MSLL attenuation because there is not a solid theoretical
foundation, and final results depend largely on probability. In addition, few studies have
found further research on this topic in recent years. The purpose of this paper is to
further suppress the MSLL of aperture-limited circular arrays with limited quantized
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weights as well as to push this work forward. We applied a totally new idea to solve
this problem and proposed a new method. The idea was inspired by a synthesis problem
of concentric ring arrays. To obtain low MSLL, Milligan [29] developed a technique
to design concentric ring arrays. The radius of each ring is specified by dividing the
cumulative distribution by the number of rings. Afterward, Bucci [30] exploited an efficient
deterministic method for fast-design high-directivity focusing aperiodic concentric ring
arrays with multiple constraints along with the increasing demand in satellite applications.
This method establishes a generalized analytical equation between the reference array and
the synthesized array, revealing that minimizing the weighted mean square error between
the reference pattern and the synthesized pattern is equivalent to minimizing the mean
square error between the radial cumulative distributions of the reference distribution and
the synthesized distribution. A similar approach is also seen in [31]. However, using
this kind of method associated with radial cumulative distribution to design aperiodic
concentric ring arrays, the pattern consistency of reference array and synthesized array
only maintains well at near in sidelobes but not the far ones. Usually, an element pattern is
needed to lower the level of the far outside lobes [30].

In this paper, we extend the use of the analytical equation in [30] for synthesizing
uniformly distributed circular arrays with quantized weights and low MSLL. Compared
with the previously reported methods, the proposed method not only improves the MSLL
performance by about 1–2 dB but also obtains the best results of HPBW and array directivity
in all test cases with different apertures, which sheds new light on this topic and presents
the significance of the proposed work. We organize this paper as follows: In Section 2,
we first extend the basic theory [30–32] of connecting the patterns and distributions to
uniformly distributed circular arrays. In Section 3, we present the proposed method in
detail. Various numerical examples and comparisons with several reported statistical
methods in terms of the lowest MSLL are given in Section 4, and Section 5 concludes
this paper.

2. Discussion of the Generalized Relationship Applied for Uniformly Distributed
Circular Arrays

For a continuous circular symmetric aperture distribution, the radiation pattern can
be expressed as

f (u) =
∫ R

0
i(ρ)ρJ0(βρu)dρ (1)

where J0(·) is the zero-order Bessel function of first kind, R is the radius of the circular
aperture, and i(ρ) is the normalized amplitude. β = 2π/λ with λ being the wavelength.
u = sin ϑ with ϑ being the angle measured from the boresight.

For uniformly distributed circular arrays, the circular-shaped aperture can be trun-
cated from the square aperture. To preserve some symmetry in the final layout, we assume
that one element is exactly at the center of the circular region. Seen from the center element,
the array factor of uniformly distributed arrays can be expressed as

fa(u, φ) =
N−1

∑
n=0

Ĩnejβrnu cos(φ−ϕn) (2)

where N denotes the total number of the array and φ is the azimuth angle describing the
field. Ĩn and ϕn represent the illumination and the azimuth of the nth element, respectively.
rn is the distance between the center element and the nth element.

Dividing the whole array by a sequence of equal-width concentric rings, then the
array factor (2) can be rewritten as a double summation form

fa(u, φ) =
Nr1

∑
k=1

Nk−1

∑
n=0

Ĩnejβrk,nu cos(φ−ϕk,n) (3)



Sensors 2021, 21, 6939 4 of 17

where Nr1 is the total number of rings and Nk is the number of element of the kth ring array.
Let the width of the concentric rings to a very small value and discard the rings that do not
contain any elements; then, in each remained ring, we have

rk,n → rk

Nr1 → Nr2
(4)

where Nr2 is the number of rings that contain elements. (4) presents that all the radii rk,n in
the kth ring can be replaced by their mean value rk and the total number of rings reduce to
Nr2. Then, (3) simplifies to

fa(u, φ) =
Nr2

∑
k=1

Nk−1

∑
n=0

Ĩnejβrku cos(φ−ϕk,n) (5)

We can see that (5) describes the array factor of the uniformly distributed circular array
in a way similar to the concentric ring array. Introducing the discrete array illumination
function in the (ρ, ϕ) plane

ĩa(ρ, ϕ) =
Nr2

∑
k=1

Nk−1

∑
n=0

Ĩ(ρ, ϕ)

ρ
δ(ρ− rk)δ(ϕ− ϕn,k) (6)

and using the Jacobi–Anger expansion

ejx sin φ =
+∞

∑
m=−∞

Jm(x)ejmφ (7)

(5) can be transformed into

fa(u, φ) =
∫ R

0
J0(βρu)ρdρ

∫ 2π

0
ĩa(ρ, ϕ)dϕ = fa(u) (8)

where there only remains the zero harmonic for the Bessel functions of the first kind go
rapidly to zero when the argument βρu is smaller than the nonzero order, and we focus
more on the near-in zenith range (u � 1). Moreover, we can find once the nonzero har-
monics are dropped, the array factor fa(u, φ) is approximated by an azimuth-independent
form fa(u). Introducing the average radial ring distribution neglecting the azimuthally
asymmetric property

ia(ρ) =
∫ 2π

0
ĩa(ρ, ϕ)dϕ (9)

and the radial cumulative function

I(ρ) =
∫ ρ

0
i(η)ηdη

Ia(ρ) =
∫ ρ

0
ia(η)ηdη

(10)

and combining (1), (8)–(10) we have [30,31]

f (u)− fa(u)
u

=
∫ R

0
β[I(ρ)− Ia(ρ)]J1(βρu)dρ (11)

or applying the Parseval’s theorem [30]

∫ +∞

0

∣∣∣∣∣ f (u)− fa(u)
u

∣∣∣∣∣
2

du = β2
∫ R

0
|I(ρ)− Ia(ρ)|2dρ (12)
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provided that the total distributions of reference array and synthesized array are equal

I(R) = Ia(R) (13)

where I(ρ) and Ia(ρ) represent the radial cumulative function of the reference distribution
and the synthesized distribution, respectively.

3. The Proposed Method

Equation (12) has been applied to the synthesis of large concentric ring arrays. In
previous work [30], the embedded elements are excited with equal illumination, while
the element positions are progressively determined. In this paper, the configuration of
the elements is determined in advance. To have a better comparison with the reported
work [17,21,22], the used arrays are uniformly distributed circular arrays where elements
are arranged into an equilateral square grid with λ/2 spacing. The primary motivation
of applying quantized weights is to suppress the MSLL. Then, if a quantized weights set
containing Namp quantized weights is given as

a = [a1, a2, · · · , aNamp ] (14)

the optimization problem becomes to minimize the MSLL of the synthesized pattern by
determining the amplitude at each element that is subject to a constraint that the amplitude
should be in the quantized weights set a. Then, the problem can be formulated as

min
w

MSLL(w)

s.t. wi ∈ a, i = 1, 2, · · · , N
(15)

where N is the total number of the array. MSLL(w) is the MSLL of the synthesized array
applying the aperture distribution w. While the used arrays are uniformly distributed,
we can fast calculate the array factor through the inverse Fast Fourier Transform (FFT) [8].
Additionally, the interelement spacing of λ/2 ensures that no grating lobes move into the
visible space along with the scanning of the main beam. Then, the MSLL can be regarded as
the second maxima in the normalized (u, v) plane with u = sin ϑ cos φ and v = sin ϑ sin φ.
Note in this way that both the visible and invisible space are considered when calculating
the MSLL. The optimization problem (15) is the general form for synthesizing quantized
weights arrays with the lowest MSLL. Moreover, considering the practical realization
and reducing the complexity of the feed network as much as possible, the normalized
quantized weights set a in descending order and adopted in this paper are preset as
[1, 0.5, 0.25, 0]. This amplitude configuration is easy to achieve compared to that in [17] or a
sequence of randomly generated weights [21], benefited from the developed Direct Digital
frequency Synthesizer (DDS) technique, and we can control the RF power by adjusting
the generated power of DDS. All T/R modules only need to work within the saturation
amplification region.

The followed subsections present the basic idea of the approach on how to assign the
quantized weights a into the aperture distribution w in detail.

3.1. Determine the Amplitude Distribution in Each Ring

Since we have known the quantized weights a, the subsequent procedures can be
performed similarly to [9,11,32]. We first divide the whole circular aperture by Nr concentric
circle, with Nr being defined as

Nr =

⌈
R
∆r

⌉
(16)

where d·e represents the ceiling function. The radii vector of all the circles are r =
[r1, r2, · · · , rNr ] with rNr being the radius of the outermost circle, which equals the aperture
radius R. Note that the whole aperture is divided into one circle array and Nr − 1 ring
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arrays. For convenience, all the subarrays are referred to as ring arrays. The followed
procedures start at the innermost subarray, and we radially and progressively assign the
quantized weights into the synthesized array by approximating the cumulative function of
the reference distribution and the synthesized distribution.

There are two criteria before we put the quantized weights into the synthesized array.
The most fundamental criterion is that we should try our best to minimize the mean square
error of the radial cumulative distribution between the reference distribution and the
synthesized distribution within each circle. Another criterion comes from the consideration
of (9). To ensure that the amplitudes in each ring are azimuthal symmetric, the selected
quantized weights in each ring should be as close as possible and the types of weights
should be as few as possible. Therefore, there should be at most two types of weight in
each ring, and the two weights should be adjacent in the quantized weights set a. Based on
this premise, the most suitable weights and the corresponding numbers in the kth ring can
be calculated from an optimization problem specified by

min
xk ,i

∣∣∣crk−1
syn + ai−1xk

1 + aixk
2 − crk

ref

∣∣∣
s.t. xk = [xk

1, xk
2]
> ∈ Z2

xk
1 + xk

2 = Nk
e

0 ≤ xk
1, xk

2 ≤ Nk
e

ai ∈ a, i = 2, 3, · · · , Namp

(17)

where Nk
e is the number of element in the kth ring. xk

1 and xk
2 are the numbers of weight

ai−1 and weight ai in the kth ring. crk−1
syn is the cumulative distribution of the synthesized

distribution within the radius rk−1, and crk
ref is the cumulative distribution of the reference

distribution within the radius rk. Note in the first ring, namely k = 1, crk−1
syn equals zero. (17)

can be effectively solved from a for-loop, and the subproblem in each for-loop is a typical
convex optimization problem.

3.2. Place the Quantized Weights to the Ring

Once the most suitable weights and the corresponding numbers in one ring are
calculated, the subsequent step is to assign the weights into the elements of the ring
reasonably. Considering the premise of (4), the fundamental theoretical derivation weakens
the concept of the ring. We emphasize more the sum of the distribution in a narrow ring
within a certain radius range. On the other hand, to prevent adverse clustering that further
deteriorates the azimuthal symmetric property, the most reasonable way is to space the
weights uniformly in the ring [11]. Then, the problem becomes how to space (at most) two
kinds of weights into a ring and make the ring satisfy the rotational symmetry property as
much as possible. The simplest situation is that there is only one kind of weight to assign,
and what we only need is just to assign it to each element in the ring. When there are two
kinds of weights in a ring, to ensure the rotational symmetry of the whole ring as much
as possible, it can be equivalent to keeping the rotational symmetry of the elements with
the same weight in the ring as much as possible. Since the type of weights in one ring is at
most two, and the array elements in the ring are divided into two parts according to the
weights, i.e., in the kth ring, and the number of elements in these two parts are xk

1 and xk
2

and xk
1 + xk

2 = Nk
e . Define

xk
3 = min(xk

1, xk
2) (18)

Then, we only need to ensure these xk
3 elements satisfy the rotational symmetry as much as

possible. One modification is applied before we finally start the synthesis. Considering
some bad distributions, namely, xk

3 equals one or two, we replace it with zero or three
depending on the requirements of (17) to make it meet (9) as much as possible. Therefore,
the number of any kind of weights in one ring should be greater than or equal to three if
there are two kinds of weights in that ring.
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In addition, it is worth noting that when dividing the whole circular aperture, we only
restrict that the elements in each ring do not overlap in the azimuth. However, we do not
guarantee that the distances between the elements and the central element are equal and
do not guarantee that the elements in one ring have strict azimuth angular periodicity. The
above requirements are not completely satisfied even when the ring width ∆r is narrow
enough. Additionally, when the ring width is quite narrow, the number of elements in
each ring is very small, which frequently leads to an extremely nonuniform distribution
of the weights. For example, the number of one weight in one ring is only one or two.
Moreover, though (4) and (5) suggest that a narrow ring width is recommended. However,
after several tests, we notice that when the elements in one ring are not overlapped in
azimuth, the final MSLL suppression is not improved with the further decreasing of the
width of each ring. To better take into account this contradiction, we take the ring width as
half the element spacing (0.25λ) and assume that elements in one ring are equidistant from
the center element.

Based on the foregoing presupposition, the initial selection for the x3 elements can
be obtained from a simple procedure. Figure 1 shows two situations of trying the best
to make the x3 elements satisfy the rotational symmetry, and the details are described in
the caption. The advantage of selecting the elements here in this way is that the elements
are not required to be uniformly distributed in the azimuth, and we still can select them
out appropriately. The introduction of the random offset vector Θ = [θ1, θ2, · · · , θNr ] is to
avoid the adverse clustering of elements at the azimuth of 0, because in all situations, the
azimuth of the red line within the two purple dotted lines starts at the azimuth of 0. On
the other hand, the structure of the red lines is strictly azimuthal symmetric; therefore, the
random value in any ring, such as in the kth ring, θk can be limited valued within the range
of 0 and 2π/xk

3 to decrease the search space.

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

(a)

Figure 1. Illustrations on how to select (a) 4 and (b) 5 elements in one ring to make the part with
x3 elements satisfies the rotational symmetry as much as possible. The two cases are taken from
different rings of one simulation experiment. The blue oblique cross symbols represent the whole
elements in the ring, and the ones also surrounded by orange circles denote that the corresponding
elements are selected as the part with fewer elements. The red lines coincided with the radius of
the ring are uniformly spaced in angle and offset by a random value θ from the azimuth of 0. The θ

ranges between 0 and 2π/x3 and is indicated by two purple dotted lines. The number of red lines
is also x3, and the elements simultaneously marked by the blue oblique cross and orange circle are
those that closest to the red lines in azimuth angle. The ∗ symbol is the center element of the circular
aperture.
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3.3. Refinement

Since a rough quantized weights array can be designed through the previous steps, we
can still improve the MSLL performance by a local optimization method. In the previous
sections, the offset vector Θ is generated randomly, and it is difficult to achieve global
optimum or even local optimum. One possible way is to calculate the optimal Θ directly
based on some constraints, but the possibility is strongly limited by the problem size [30].
Therefore, it is unrealistic to optimize the Θ from a global perspective. Inspired from
the refinement method mentioned in [11], we propose a local optimization method to
optimize the Θ. The process starts at the innermost ring, in each iteration; we only optimize
one element of the Θ; for the jth iteration, the optimal θ

j
k takes the value of the followed

optimization problem

min
θ

MSLL(θ j
1, · · · , θ

j
k−1, θ, θ

j
k+1, · · · , θ

j
Nr
)

s.t. 0 ≤ θ ≤ 2π/xk
3

(19)

where k indicates the corresponding index of the ring started at the innermost ring. The
iteration number j and the ring index k have the following relationship:

k = [(j− 1) mod Nr] + 1 (20)

We updated θ one by one along with increasing the number of iterations. To simplify
the process, we skipped the iteration if there is only one kind of weight in the corresponding
ring, because in this case, whatever value the θ takes, it does not affect the final array layout.
The synthesis terminates once the MSLL has not changed in Nr iterations or the maximum
number of iterations is reached.

Just like (17), the realization of (19) can also be achieved through a for-loop. We can
discretize the constrained region [0, 2π/xk

3] with sufficient dense points. Usually, multiple
adjacent points lead to the same situation, and we only need to calculate the MSLL of the
same situation once. Thus, the computing time is greatly reduced.

3.4. Implementation of the Proposed Method

After much discussion of the details, the proposed method in a single trial can be
summarized as follows:

1. Initialize the circular aperture array with specified radius R and interelement spacing
d from a uniformly distributed square array.

2. Choose a suitable reference distribution for the synthesized array.
3. Calculate the amplitude distribution in each ring sequentially.
4. Place the amplitudes to the ring sequentially.
5. Initialize the synthesized array with ten different Θ and keep the case with the lowest

MSLL.
6. Employ the refinement process to the remained initial array until the termination

conditions are met.

A workflow for illustrating the implementation of the proposed method can refer to
Figure 2.
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Initialize the 

synthesized array

Initialize the reference 

array

Radius, spacing    , SLL n

Calculate the amplitude 

weights

Place the amplitudes to 

all the rings Repeat for 10 times

Remain the case with 

the lowest MSLL

Initialize the 

parameters

Employ the refinement
process

Figure 2. The workflow of the proposed method.

4. Numerical Analysis

In this section, we display some typical results generated by the proposed methods
and present some comparisons with the reported statistical methods [17,21,22]. The used
arrays are circular planar arrays with diameters of 25 λ, 33.33 λ, and 50 λ. The element
spacing is 0.5 λ, and the width of the ring is 0.25 λ for all considered arrays. The proposed
method is capable of synthesizing an array with an unlimited number of quantized weights,
and in this paper, we only consider the cases with a number of quantized weights of four.
Similar to the reported literature [21], the mutual coupling between the elements of the
array is not considered in this paper.

4.1. Numerical Examples

The reference distribution applied for the proposed method are circular Taylor aper-
ture distributions [33]. Though the circular Taylor distributions are not applicable in some
special circumstances, such as facing an incomplete aperture or an oversized interelement
spacing [34]. However, in this topic, the arrays we use are uniformly distributed arrays
with reasonable interelement spacing, and the sampled results are acceptable.

We first apply the proposed method to a circular array with a diameter of 25 λ in 20
independent trials. Different circular Taylor aperture distributions with SLL range from
−36 to −39 dB in a step of −1 dB and n̄ (number of equal amplitude sidelobes adjacent
to the main beam) ranging from 5 to 25 in a step of 5 are used as reference distributions,
respectively. Figure 3 displays the convergence curves of the MSLL as a function of the
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iteration number during the refinement process of all the trials except the cases with a n̄ of
25, because the corresponding performances are quite bad compared to other cases, and
to make the figure clearer, we omit this part in the figure. Two conclusions can be drawn
from Figure 3. First, the MSLL is heavily dependent on the selected reference distribution,
and different selections of reference distribution may lead to an MSLL difference of over 2
dB. Second, n̄ seems to play a more important role in final MSLL suppression when n̄ is
larger than 10—the smaller the n̄, the faster the MSLL converges. When n̄ is smaller than
10, the convergence curves are jointly controlled by the SLL and n̄. The case when the SLL
equals −37 dB and n̄ equals 10 reaches the lowest MSLL.

Figure 4 displays the amplitude distribution of the synthesized quantized weights
array with the lowest MSLL. The diameter is 25λ, and the number of quantized weights is
four. The four quantized weights are [1, 0.50, 0.25, 0], respectively. The MSLL in the whole
(u, v) plane is equal to −34.47 dB. Figure 5 displays the surface plot of two-dimensional
radiation pattern and the u-cut plot of the farfield pattern of the array in Figure 4. From
Figure 5, we can notice that the first few sidelobes approximate to −37 dB, and the first
few ring-shaped sidelobes near the mainlobe show a circular Taylor-liked pattern because
the radial cumulative distributions of reference array and synthesized array presented in
Figure 6 coincide well with each other.

The same experiments but for different reference distributions are also carried out
for circular arrays with a diameter of 33.33 λ and 50 λ, both in 20 independent trials. The
used SLL of circular Taylor aperture distribution range from −37 to −40 dB and from −41
to −44 dB, both in a step of −1 dB. The used n̄ range from 5 to 25 in a step of 5 in all
cases. Similar conclusions can also be perceived from the synthesis results. To evaluate the
performance of the proposed method, in the next subsection, we present the comparison
results between the proposed method and several reported statistical methods.
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Figure 3. Convergence curves of the MSLL as a function of the iteration number during the refinement
process for the quantized amplitudes array with a diameter of 25 λ.
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Figure 4. Distribution of the elements of the synthesized array with a diameter of 25 λ and a
number of quantized weights of four. Different symbols denote that the corresponding elements are
illuminated with different amplitudes weights. The vacant positions within the red circle indicate
that the corresponding elements are thinned.
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Figure 5. (a) The 2-D radiation pattern and (b) The u-cut plot of the synthesized array present in Figure 4.
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Figure 6. Cumulative distributions as a function of the radial coordinate.

4.2. Comparisons with the Reported Methods

Table 1 summarizes the synthesis results obtained by the proposed method with
the lowest MSLL and several reported statistical methods abbreviated as STAT1 [21],
STAT2 [17] and ISTAT [22] for circular aperture arrays with diameters of 25 λ, 33.33 λ, and
50 λ. Four quantized weights are adopted in all cases. There are three types of quantized
weights, which are denoted as Fixed, Random, and Optimized. The proposed method uses
the fixed weights type of [1, 0.5, 0.25, 0], and for a more complete comparison, we also
carry the experiments with fixed weights using the STAT and ISTAT. While in the original
literature, random weights corresponding to the lowest MSLL are adopted. We also list the
experiment results with random weights in Table 1. Unlike other methods, the quantized
weights applied in STAT2 are optimized from a nonlinear optimization problem. To have a
valid comparison, circular Taylor aperture distribution [4] with SLL ranging from −35 to
−60 dB in a step of −1 dB and n̄ ranging from 6 to 15 in a step of 1 are applied here for the
three statistical methods as the reference distributions. For each distribution, we repeat the
experiments 10 times. Thus, each listed result of the three statistical methods is the best
outcome in terms of the lowest MSLL in 2600 independent trials. This is also the reason
why the adopted reference circular Taylor aperture distributions are different, because the
lowest MSLL may correspond to different distribution.

In addition, some modifications are introduced. On the one hand, only the cases
analogical to “natural thinning” [4,21] are considered in this paper. On the other hand,
in [21], three methods were proposed for designing quantized weights arrays. However,
after several trials, we find that nearly in all cases in terms of the lowest MSLL, method
2 obtains better results than method 1 and obtains similar results to those of method 3.
Therefore, we only display the results obtained by method 2. Moreover, the ISTAT method
in [22] was applied to method 1 of the three methods introduced in [21]. For better results,
we also change it to method 2 and reformulate the iteration equations as follows:

Fn =

{
ak2 , Rn ≤ Sn

ak2+1, Rn > Sn

Sn =
n−1

∑
q=1

[
Iq − ak1

ak1 − ak1+1
−

Fq − ak1

ak1 − ak1+1

]
+

In − ak2

ak2 − ak2+1

S1 =
I1 − a2

a1 − a2

(21)

where In is the amplitude of the nth element when the planar reference distribution is
expanded to the line array. Sn is the density distribution function, and Fn is the quantized
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weight assigned to the nth element. k1 and k2 are the indices of the element in quantized
weights set a, which are subject to the constraints of ak2 ≥ In ≥ ak2+1 and ak1 ≥ Iq ≥ ak1+1.

Table 1. Synthesis results obtained by the proposed method and several reported statistical methods for circular arrays with different
diameters.

Circular
Array Diameter

(λ)

Weights
Type

Synthesis
Method

Circular Taylor
Aperture Distribution

Quantized Weights Set
with a1 = 1, a4 = 0 Max. SLL

(dB)
Max. Dir.

(dBi)
HPBW

(∆u)SLL (dB) n̄ a2 a3

25

Fixed
Proposed −37 10

0.5000 0.2500
−34.4692 33.1488 0.0492

STAT [17,21] −41 12 −33.4740 32.5881 0.0512
ISTAT [22] −39 9 −33.3035 32.6076 0.0502

Random STAT1 [21] −37 9 0.5542 0.2443 −33.2501 33.1194 0.0496
ISTAT [22] −40 6 0.6013 0.2339 −33.0541 32.8283 0.0520

Optimized STAT2 [17] −38 10 0.5919 0.2449 −33.5792 33.2233 0.0498

33.33

Fixed
Proposed −39 10

0.5000 0.2500
−36.6986 35.5187 0.0376

STAT [17,21] −44 14 −35.1273 34.9869 0.0390
ISTAT [22] −39 6 −35.1535 35.2634 0.0383

Random STAT1 [21] −43 6 0.5836 0.2344 −34.8121 34.9074 0.0399
ISTAT [22] −39 8 0.6825 0.2518 −35.1813 35.3110 0.0505

Optimized STAT2 [17] −42 11 0.5925 0.2473 −35.5330 35.3150 0.0386

50

Fixed
Proposed −41 10

0.5000 0.2500
−39.2583 38.7858 0.0257

STAT [17,21] −44 14 −37.7731 38.6283 0.0261
ISTAT [22] −44 15 −37.6708 38.6304 0.0260

Random STAT1 [21] −45 11 0.5668 0.2879 −37.7500 38.4595 0.0266
ISTAT [22] −43 10 0.5446 0.1679 −37.9383 38.6416 0.0262

Optimized STAT2 [17] −46 12 0.5880 0.2441 −38.1196 38.4046 0.0267

From Table 1, it can be noted that in all cases, STAT2 obtains lower MSLL than STAT1
and ISTAT, and all MSLL obtained by the proposed method are lower than those obtained
by the three statistical methods. Farfield properties including array directivity and HPBW
are also presented. The equation for calculating Dmax is expressed as [35]

Dmax =
4π| fa(ϑ0, φ0)|2

2π∫
0

π/2∫
0
| fa(ϑ, φ)|2 sin ϑdϑdφ

(22)

where the main beam points to (ϑ0, φ0). In this paper, we let ϑ0 = 0 and φ0 = 0. Moreover,
to ensure a good numerical accuracy for the calculation of HPBW, we interpolate the
original u-cut plot data from 1025 to 10,001 points. We can notice that in all cases in Table 1,
the proposed method can achieve the narrowest HPBW and the largest array directivity
compared to all reported statistical methods.

As to a deeper study of the n̄ parameter, other conclusions regarding the HPBW and
directivity can be obtained from studying the synthesis results of the circular array with
a diameter of 25 λ via the proposed method. The HPBW shows a high relationship with
the reference taper, which presents an evident negative correlation to the SLL and n̄. The
array directivity does not show an evident relationship to SLL but seems to be related to
n̄. For fair comparison issues, in Table 2, we also give the results of the number of the
array elements that are “ON” (i.e., with a weight different from 0) of the variety of the
methods, and we can notice that the proposed method tends to have a larger fill factor.
Further discussions about these issues will be given in a future work.
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Table 2. Number of the array element that are “ON” (i.e., with a weight different from 0) of the
variety of methods presented in Table 1.

Circular
Array Diameter

(λ)

Total
Elements

Weights
Type

Synthesis
Method

Number of
“ON” Elements

Proposed 1894
STAT [17,21] 1750Fixed
ISTAT [22] 1789

STAT1 [21] 1900Random ISTAT [22] 1677

25 1961

Optimized STAT2 [17] 1751

Proposed 3238
STAT [17,21] 2951Fixed
ISTAT [22] 3107

STAT1 [21] 2814Random ISTAT [22] 3171

33.33 3505

Optimized STAT2 [17] 3055

Proposed 6912
STAT [17,21] 6624Fixed
ISTAT [22] 6643

STAT1 [21] 6051Random ISTAT [22] 7432

50 7845

Optimized STAT2 [17] 6373

4.3. Discussion of the Proposed Method

Unlike the traditional two-value array thinning, the synthesis problems for quantized
weights array are more open. In the proposed method, the final MSLL is associated with
multiple variables, including the quantized weights, the reference distribution, the width of
the ring sector, and the initial Θ for refinement. In this paper, the dimension of the problem
can be reduced through some subjective treatments. Considering the realization, we select
a fixed sequence as the quantized weights. As to the ring width, we set it as 0.25 λ, because
a smaller value does not influence the final results once the elements in one ring are not
overlapped in azimuth.

The essence of the proposed method is to approximate the near-in sidelobes of the
reference pattern. Thus, it is unlike the reference taper selection strategy revealed in the
three reported statistical methods, in which the selected reference distribution does not
show any regularities. While the synthesis results show that the SLL of the reference
pattern for the proposed method is 3–4 dB lower than the infimum of the MSLL of the
array, the infimum of MSLL can refer to the results of the statistical methods. On the other
hand, a smaller n̄ (≤10) is suggested to ensure a lower MSLL. In addition, the refinement
method is not a global optimization method, and only a very limited MSLL suppression of
about 2 to 3 dB can be achieved. Therefore, we try to start the refinement process at a low
MSLL state as much as possible, and this is the reason why we initialize the Θ for 10 times
and select the case with the lowest MSLL before starting the refinement process.

Except for the proposed method, the STAT2 with optimized quantized weights achieve
the lowest MSLL, but concerning the other two properties, i.e., maximum directivity and
HPBW, the STAT2 does not show any advantage. Moreover, the calculated optimized
quantized weights of the STAT2 are hard to practically implement, compared to the fixed-
type weights. Thus, in terms of practicability, the proposed method is better.

One evident defect of the proposed method is the required computational time. As
shown in the rightmost column of the legend in Figure 3, the simulation time for most
cases with a diameter of 25 λ is close to half an hour. For cases with larger diameters,
the computational time is presented in Table 3. We can notice that the computational
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time increases exponentially with the increases in aperture. To solve this problem, we can
adopt a multiple-process approach, where different reference distributions are assigned to
different processors. In this way, a very significant time reduction can be achieved.

Table 3. Computational time for the proposed method with the lowest MSLL.

Circular
Array Diameter

(λ)

Max. SLL
(dB)

Number of
Trials

Number of
Iterations

Computational
Time (s)

25 −34.4691 20 332 1155
33.33 −36.6986 20 254 2230

50 −39.2583 20 473 15,862

5. Conclusions

A generalized method to synthesize uniformly distributed circular arrays with quan-
tized weights is described in this paper. The synthesis method requires a model reference
distribution and a preset sequence of quantized weights. We first fill the synthesized
distribution with quantized weights by making the radial cumulative distribution of the
synthesized array as close to that of the reference array as possible. Then, we execute a
refinement method to further suppress the MSLL. The essence of the proposed method
is to approximate the first few sidelobes of the reference array. Three circular array cases
with different diameters ranging from 25 λ to 50 λ and several quantized weights of four
are considered. Detailed numerical examples and comparisons with several reported
methods are also presented. In all cases, the proposed method achieves the lowest MSLL,
the narrowest HPBW, and the largest array directivity compared to all reported statistical
methods, which demonstrates the effectiveness of the proposed method.
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