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Abstract: As a definition, Human—-Machine Interface (HMI) enables a person to interact with a device.
Starting from elementary equipment, the recent development of novel techniques and unobtrusive
devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals
as inputs to control various applications. The current survey aims to review the large literature of
the last two decades regarding biosignal-based HMIs for assistance and rehabilitation to outline
state-of-the-art and identify emerging technologies and potential future research trends. PubMed and
other databases were surveyed by using specific keywords. The found studies were further screened
in three levels (title, abstract, full-text), and eventually, 144 journal papers and 37 conference papers
were included. Four macrocategories were considered to classify the different biosignals used for
HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid
systems). The HMIs were also classified according to their target application by considering six
categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communica-
tion, and smart environment control. An ever-growing number of publications has been observed
over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate
to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in
studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In
contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer
the leading control signals, and the use of muscle mechanical motion signals has experienced a
considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could
lead to higher performances. However, they also increase HMIs’ complexity, so their usefulness
should be carefully evaluated for the specific application.

Keywords: Human-Machine Interface; biosignals; assistive technology; rehabilitation; prosthetic
control; robotic control; virtual reality control; gesture recognition; communication; smart environ-
ment control

1. Introduction

A Human-Machine Interface (HMI) establishes a connection between a person and a
device: sensors decipher human intentions and control machine actions, usually allowing
real-time, bidirectional interactions. In a broad sense, we can consider the PC keyboard and
monitor or even a simple switch as HMIs. Modern HMIs are software-based and replace
manually activated controls, providing sophisticated interaction with machinery. HMIs
are widely used in industrial control systems, automotive, aviation, military, etc. [1]. User
movements, or movement intention, are typically used to interpret the person’s will to
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operate a device. To this end, multiple and varied sensors have been developed to monitor
specific user’s activities, such as hand, eyes, joint, limbs movements, etc. Rotational,
displacement, force, pressure, strain, acceleration, and inertial sensors can detect a user’s
motion when opportunely connected to the body [1-3]. Since muscles generate human
motion, physiological signal related to muscle contraction such as electromyography
(EMG), mechanomyography (MMG), and force myography (FMG) can be successfully
used for HMI [3,4]. Recently, electroencephalography (EEG), able to detect motor brain
function, has increasingly been proposed as HMI control signals (these techniques are
referred to as Brain-Computer Interfaces (BCIs) [5-8]). Human movement can also be
captured by cameras (the so-called image-based HMIs), which do not require any physical
contact with the user [9,10]. Different sensors can be combined to obtain greater sensitivity
and specificity in recognizing the user’s intention. Therefore, we can define such mix as
hybrid HMI control [11-13].

Signals from sensors typically need to be processed for robust recognition of the user’s
intention. This processing can widely vary in complexity and ranges from simple thresh-
olding to complex machine learning techniques. Today, machine learning has developed
into a scientific branch of its own. For this reason, this paper does not explicitly review
this topic.

Most HMIs provide feedback to the user offering visual, acoustic, tactile sensations,
which help interaction [14-16]. Feedback provides information on the controlled system’s
performance to the user. It can consist of a simple light or sound indication or graphical
representations or create complex visual-acoustic experiences like virtual reality or tactile
sensations (e.g., via vibrations or forces delivery) such as in haptic devices.

In the medical field, biosignal-based HMIs have increasingly been used for assistance
and rehabilitation. An “assistive technology” is any system or object used to enhance,
maintain, or improve the capabilities of a disabled individual and, more generally, any
technology that allows accomplishing something that generally cannot be accomplished.
“Rehabilitation” is defined as the physical restoration of a sick or disabled person by ther-
apeutic measures and re-education to participate in everyday life activities within the
limitations of the person’s physical disability [17]. People with severe disabilities enor-
mously benefit from using these new HMIs for assistance and rehabilitation purposes.
Clear examples are subjects with paraplegia or quadriplegia; those affected by neuromus-
cular disorders [5,18-20] such as Muscular Dystrophy (MD), Amyotrophic Lateral Sclerosis
(ALS), or Multiple Sclerosis (MS); people with Spinal Cord Injury (SCI) or Cerebral Palsy
(CP); or even stroke survivors and amputees. Literature reviews in these fields are currently
limited to particular applications (e.g., prosthetic control, BCI, exergaming, etc.) or focused
on specific biosignals. Table 1 provides a summary of some recent surveys regarding assis-
tive and rehabilitative HMIs. As an example, Mohebbi et al. [21] proposed a review about
human-robot interaction in assistive and rehabilitation robotics, while Frisoli et al. [22]
focused on wearable technologies and, in particular, on a robotic exoskeleton for assistance
in performing activities of daily living (ADL). Baniqued et al. [7] presented a review study
on BCI robotics for motor rehabilitation of hand movements after stroke. Different sur-
veys such as [9,10,23-28] focused specifically on the state-of-the-art and control strategies
of upper limb prostheses, while further reviews presented exergaming applications for
rehabilitation neuromotor functions [29-32].

To the best of our knowledge, a broad overview of the current research trends on
assistive and rehabilitation HMISs is missing. The current survey aims to review the exten-
sive literature of the last two decades regarding biosignal-based HMIs for assistance and
rehabilitation to outline state-of-the-art and identify emerging technologies and potential
future research trends.
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Table 1. Review studies about HMIs for assistive and rehabilitation purposes (starting from 2015 to 2021).

Authors [Reference] Title Topic
Taylor et al. [18] The use of gaming ’fechnolo.gy for rehablhtatlon in people Exergaming
with multiple sclerosis
De Gama et al. [29] Motor Rehabilitation Using Kinect: A Systematic Review Exergaming
Laver et al. [30] Virtual reality for stroke rehabilitation Exergaming

Wright et al. [23]

A Review of Control Strategies in Closed-Loop
Neuroprosthetic Systems

Prosthetic control

Ciancio et al. [24]

Control of Prosthetic Hands via the Peripheral Nervous
System

Prosthetic control

Frisoli et al. [22]

New generation emerging technologies for

Wearable devices

neurorehabilitation and motor assistance (exoskeletons)
Rosly et al. [31] Exergaming for individuals Wlth n?urologlcal disability: A Exergaming
systematic review
EEG-Based Brain-Computer Interfaces for Communication
Lazarou et al. [5] and Rehabilitation of People with Motor Impairment: A BCI

Novel Approach of the 21st Century

Ngan et al. [25]

Strategies for neural control of prosthetic limbs: From
electrode interfacing to 3D printing

Prosthetic control

Parajuli et al. [26]

Real-Time EMG Based Pattern Recognition Control for
Hand Prostheses: A Review on Existing Methods,
Challenges, and Future Implementation

Prosthetic control

Igual et al. [27]

Myoelectric Control for Upper Limb Prostheses

Prosthetic control

Kumar et al. [28]

Prosthetic hand control: A multidisciplinary review to
identify strengths, shortcomings, and the future

Prosthetic control

Reis et al. [32]

Exergames for motor rehabilitation in older adults: An
umbrella review

Exergaming

Garcia-Agundez et al. [20]

Recent advances in rehabilitation for Parkinson’s Disease
with exergames: A Systematic Review

Exergaming

Fatima et al. [19]

Intracortical brain—-machine interfaces for controlling
upper-limb-powered muscle and robotic systems in
spinal cord injury

Prosthetic control

Grushko et al. [10]

Control Methods for Transradial Prostheses Based on
Remnant Muscle Activity and Its Relationship with
Proprioceptive Feedback

Prosthetic control

Mohebbi et al. [21]

Human-Robot Interaction in Rehabilitation and
Assistance: A Review

Robotic control

Ptito et al. [6]

Brain—-Machine Interfaces to Assist the Blind

BCI

Li et al. [33]

Gesture Recognition Using Surface Electromyography and
Deep Learning for Prostheses Hand: State-of-the-Art,
Challenges, and Future

Prosthetic control

Ahmadizadeh et al. [9]

Human Machine Interfaces in Upper-Limb Prosthesis
Control: A Survey of Techniques for Preprocessing and
Processing of Biosignals

Prosthetic control

Baniqued et al. [7]

Brain—computer interface robotics for hand rehabilitation
after stroke: A systematic review

BCI
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2. Survey Method

Over four months (April 2021 to July 2021), we surveyed Google Scholar, Scopus,
PubMed, IEEE Xplore, MDPI, Frontiers, and ScienceDirect to identify HMIs with applica-
tions as assistive technology and/or rehabilitation.

Using the following keywords: “Assistive HMI”, “Rehabilitation HMI”, “Prosthetic
control”, “Exoskeleton control”, “Assistive robot”, “Rehabilitation robot”, and “Exergaming
AND rehabilitation”, we restricted our search to the last two decades, including only papers
written in English and fully peer-reviewed.

The initially selected papers were then individually screened in three levels: (1) title,
(2) abstract, and (3) full-text, to verify the research presented, the results obtained, and
their applications (even those potential). Any paper that did not appear to use biosignals
to control HMIs for assistive or rehabilitation was discarded. This process produced
144 journal papers and 37 conference papers.

Four macrocategories were considered to classify the biosignals used as a control for
HMIs: (1) biopotential (EMG, EEG, etc.), (2) muscle mechanical motion (gross muscle motion,
muscle vibrations, muscle-tendons movements), (3) body motion (limb or joint motion, hand
gesture, eye movements), and (4) hybrid (a combination of two or more different biosignals).

The type of sensor(s), the site(s) of its/their application, and the HMI target(s) (pros-
thetic control, robotic control, virtual reality control, gesture recognition, communication, smart
environment control) was reported for each study.

To facilitate reading, it is worth highlighting briefly the definitions of the primary
devices for assistive and rehabilitative purposes that have emerged from the survey:

e  Prosthesis: an assistive device designed to replace a missing part of the body or to make
a part of the body work better. Prosthetic devices commonly replace the diseased or
missing eyes, arms, hands, legs, or joints [9,10,23-28].

e  Exoskeleton: an assistive/rehabilitation device that connects with the human body in
a wearable way and can control the movement of joints (leg, wrist, hand, fingers),
providing the person with the support and energy necessary to perform a movement
(hand closing/opening, walking, etc.) [34-36].

e  Robotic arm: a type of mechatronic arm with functions similar to a human arm, which
can provide assistance to the person in performing tasks (grabbing and moving objects,
etc.) and can also be used as a rehabilitation device [37,38].

e  Smart wheelchair: a power wheelchair to which computers, sensors, and assistive
technology are attached [39-41].

e  Smart environment: environment equipped with intelligent technologies capable of
monitoring and assisting the health of people who have difficulty living independently
at home [42,43].

e  Exerqaming: a specific type of serious game (not designed for pure entertainment) is
the so-called exergame: a human-activated video game that tracks the user’s gestures
or movements and simulates them into a connected screen. It can be used as a
potential rehabilitation tool to increase physical activity and improve health and
physical function in patients with neuromuscular diseases [29-32].

Figure 1 shows a graphical representation of the focus of this survey, highlighting the
kind of biosignal-based control and the primary devices that realize HMIs for assistance
and rehabilitation.
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Figure 1. Focus of the survey: biosignal-based HMIs with assistive and rehabilitation purposes.

3. HMI Control Strategies
3.1. HMI Control Based on Biopotentials

A large group of HMIs is based on the acquisition of biopotentials, such as electroen-
cephalogram (EEG), electromyogram (EMG), electroneurogram (ENG), electrooculogram
(EOQG), and electroretinogram (ERG), which are generated by electrical sources in the
human body [44]. Hence, they reflect the function of some organs (e.g., brain, muscles,
eyes) in the form of electrical activity, providing relevant information about them [44,45].
For this reason, biopotentials are used as control signals in many biomedical HMI applica-
tions [25,42,46-59]. These biosignals have their origin in electrophysiological phenomena
associated with biochemical events occurring at a cellular level. In detail, some tissues
(e.g., nervous, muscular) are composed of excitable cells. At rest, an excitable cell exhibits
a transmembrane potential difference in response to a diffusion gradient. Indeed, electri-
cally, the cell membrane works like a leaky capacitor since it consists of a thin insulating
layer that separates charge distributions in two conductive media, the intracellular and
extracellular environments.

Furthermore, within the dielectric cellular material, the presence of ion-specific pas-
sive channels, i.e., pores, results in different ionic concentrations, which drive leakage
currents to flow across the membrane. The charge and discharge current of the membrane
capacitance is opposed to these ionic currents. At equilibrium, the net current flow is
zero. Therefore, the resting potential is achieved. It is maintained by the action of the
well-known sodium—-potassium pump that actively transports sodium and potassium ions
against the electrochemical gradient under the consumption of energy in the form of ATP.
When properly stimulated, the excitable cell produces an action potential representing an
all-or-none event. It starts only if the transmembrane potential exceeds a threshold value
in a specific time interval and travels without attenuation at constant conduction velocity.
Due to the electrical activity of many excitable cells, the equivalent current propagates
through the surrounding volume conductor, represented by biological tissues, up to the
body surface. Consequently, if electrodes are placed in the correct positions on the skin or
within underlying tissues, a biopotential representing the spiking cell/tissue phenomenon
can be measured [44,45,60,61].
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3.1.1. EEG-Based HMIs

The EEG signal originates from the electrical activity of neurons in the brain cortex. To
obtain a perceptible signal on the scalp, large populations of neurons must depolarize and
repolarize simultaneously in the brain cortex. This synchronization generates the classic
oscillations or waves (delta, theta, alpha, beta, and gamma) found in the EEG. In general,
some oscillations (as the 1 waves of the motor cortex) correspond to an idle rhythm, that is,
a state of inactivity. For example, when a person performs or even thinks of acting (such
as clench a fist), the idle rhythm is disrupted (e.g., event-related desynchronization) and
replaced by a smaller high-frequency signal. Some EEG electrodes can detect this, and
this information can be used to give commands to a device. Event-related potentials (e.g.,
Steady-State Visually Evoked Potentials (SSVEPs), P300) and slow cortical potentials can
also be used to implement HMIs. EEG can be classified into two main types: invasive and
noninvasive. Noninvasive EEG is commonly recorded by placing electrodes on the scalp.

On the other hand, invasive EEG is acquired intracranially, and it is generally referred
to as intracranial EEG (iEEG). It includes both electrocorticogram (ECoG), which is per-
formed by placing electrodes directly onto the brain surface to record electrical activity from
the cerebral cortex, and the EEG signal acquired by means of depth electrodes to record
electrical activity from deep brain regions, as the stereo-electroencephalogram (sEEG).
Scalp EEG amplitude is much lower than other noninvasive biopotentials, and there are
issues for electrode fixation and endurance [44,60,61].

Many HMIs are based on the acquisition of the EEG signal, mostly of noninvasive
type. Specifically, these technologies are referred to as Brain-Machine Interfaces (BMls) or
Brain—-Computer Interfaces (BClIs), since they provide an alternative interaction pathway
with the surrounding environment by capturing brain waves and translating them into
control signals or commands for an external device [62]. Generally, after a preprocessing
phase, some meaningful features are extracted from the acquired EEG signals, and then
a classification step is performed to interpret human intention. Afterward, each class is
associated with a specific command. In this context, the user is often required to focus
on a cognitive task (e.g., motor imagery), or an external stimulation (e.g., visual, auditory,
somatosensory) is provided to induce a brain response. The resultant EEG signals are Event-
Related Potentials (ERPs), the most commonly used brain waves in a BMI/BCI system [63].
For this reason, in recent years, EEG-based HMIs have found strong application in the
assistance and rehabilitation field. Indeed, they represent a powerful tool for people with
severe motor disabilities, who need to assist or restore their muscle function or even replace
a missing limb, thus improving their quality of life. Clear examples are subjects affected by
neuromuscular disorders, such as MD, ALS, MS, SCI, and CP, or even poststroke patients
and amputees [5,18-20]. In this scenario, two main targets can be identified: robotic
control [14,15,34,49,50,64-69] and prosthetic control [46-48,69-78].

Regarding robotic control, Song et al. proposed an efficient EEG-based method to
control an upper-limb assist robot to help paralysed people perform practical activities or
rehabilitation exercises. After applying a visual stimulus, the related EEG signal is classified
to decode the human motor intention [49]. Similarly, Korovesis et al. developed a BCI-
based system that allows the user to control the motion of a robot vehicle by converting
eyes opening and closing into binary sequences, then associating then with different
motor commands [50]. Antoniou et al. presented a BCI adopting an eye movement
recognition method for hand-free wheelchair control [64]. Xu et al. proposed a motor
imagery-based BCI system for teleoperation with tactile feedback to remotely control a
robot arm in grasping and reaching tasks [14]. In this context, different studies that use
EEG signals for exoskeleton control should be mentioned. Liang et al. extracted some
features from EEG signals related to the shoulder’s joint flexion and extension movement.
They demonstrated the existence of a relationship between changes in EMG and EEG
signals, thus showing feasible to estimate from EEG the minimum torque for controlling
an upper-limb exoskeleton robot [34]. He et al. demonstrated the feasibility of decoding
joint kinematics and sEMG patterns from scalp EEG to control a powered exoskeleton
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for gait rehabilitation after stroke [35]. Moreover, Tang et al. proved the effectiveness
of a BMI based on Event-Related Desynchronization/Synchronization (ERD/ERS) for
controlling an upper-limb exoskeleton, which can assist people in daily living activities [79].
Randazzo et al. designed “mano”, a wearable hand exoskeleton for both assistance and
neurorehabilitation purposes. In particular, it exploits a motor imagery-based BMI, which
can decode flexion and extension of each finger [80]. Again, Li et al. proposed a BMI-
controlled upper limb exoskeleton. The system comprises three main components: EEG
signal acquisition and classification into motion commands in task space, redundant motion
planning to transform motion commands in joint space, and adaptative neural control to
perform manipulation tasks. In detail, visual stimuli are presented to the subject to induce
brain signals (i.e., SSVEPs). Then, they are translated into motion commands for controlling
the cursor on a computer screen. Afterward, cursor control in task space is converted into
exoskeleton control in joint space [81].

Furthermore, Lopez-Larraz et al. presented a BCI system to control an ambulatory
exoskeleton for gait rehabilitation of SCI patients, which can benefit from an assist-as-
needed paradigm based on the measurement of the stiffness parameter [67]. Xu et al. [36]
proposed a BCI system to control an ankle—foot exoskeleton for stroke rehabilitation, which
was proven effective for inducing cortical neuroplasticity. Kwak et al. [82] developed an
EEG-controlled lower limb exoskeleton for rehabilitation purposes that is based on SSVEPs.
Finally, Araujo et al. presented HERO, Hand Exoskeleton for Rehabilitation Objective,
to recover flexion and extension of the fingers in patients following stroke. This novel,
low-cost exoskeleton is 3D-printed on textiles and controlled by motor imagery-based
BMI [83].

Regarding prosthetic control, Gao et al. developed a motor imagery-based BCI to
control a prosthetic leg walking in different terrains, intending to reproduce natural human
gait [46]. Gannouni et al. proposed a BCI system that can detect finger movements [47].
Fuentes-Gonzalez et al. designed an EEG-controlled prosthetic arm [48], similarly to
Zhan Hong et al. [70]. Murphy et al. presented a case study of BCI for controlling a
prosthetic knee in transfemoral amputees with only the EEG signals arising from movement
imagination [73].

Although less common, invasive EEG-based HMIs also exist. For instance, Li et al.
tested the feasibility of an HMI based on the acquisition of sEEG signals to control a
prosthetic hand [74]. Morishita et al. proposed an invasive BCI-based prosthetic arm. In
particular, they decoded the motor intention by estimating muscle activity from ECoGs [76].
Yanagisawa et al. presented an invasive BCI system for controlling a prosthetic hand by
using ECoG signals of a poststroke patient [78]. Finally, Fatima et al. reviewed intracortical
BMIs for controlling upper-limb powered muscle and robotic systems in SCI patients [19].

Furthermore, these technologies can also be used as nonverbal communication tools.
For example, Kashihara et al. proposed a BCI that allows interpretation of emotions by
decoding facial expressions. In detail, the user is asked to look at some face images on a
monitor. The visual stimulation triggers the activation of specific brain areas. Applying
a classifier to the acquired EEG signal makes it possible to capture the subject’s reaction,
which is correlated to his actual emotional state [84]. In addition, a BCI can be beneficial also
in case of blindness, as described in [6]. Finally, a wide range of BMI-based neuroprostheses
should be mentioned [23].

Moreover, it is noteworthy that another technique for BCI/BMI applications is func-
tional Near-Infrared Spectroscopy (fNIRS), which acquires a biosignal that measures
changes in blood oxygenation under the activation of specific brain areas. For example,
this kind of BCI/BMIs can be used as a nonverbal communication tool or for controlling a
wearable robotic exoskeleton [26,27].

Table 2 shows a summary of the selected EEG-based HMIs.



Sensors 2021, 21, 6863

8 0f43

Table 2. EEG-based HMIs.

Authors [Reference]

Kind of Biopotential Target Field

Gao et al. [46]

Scalp EEG

Prosthetic Control

Assistance

Gannouni et al. [47] Scalp EEG Prosthetic Control Assistance, Rehabilitation
Fuentes—(%zg]z alez etal. Scalp EEG Prosthetic Control Assistance
Song et al. [49] Scalp EEG Robotic Control Assistance, Rehabilitation
Korovesis et al. [50] Scalp EEG Robotic Control Assistance
Antoniou et al. [64] Scalp EEG Robotic Control Rehabilitation
Xu et al. [14] Scalp EEG Robotic Control Assistance, Rehabilitation
Liang et al. [34] Scalp EEG Robotic Control Assistance, Rehabilitation
Matsushita et al. [65] ECoG Robotic Control Assistance
Spataro et al. [66] Scalp EEG Robotic Control Assistance
Lopez-Larraz et al. [67] Scalp EEG Robotic Control Rehabilitation
Xu et al. [36] Scalp EEG Robotic Control Rehabilitation
Kwak et al. [82] Scalp EEG Robotic Control Rehabilitation
Hortal et al. [68] Scalp EEG Robotic Control Assistance, Rehabilitation
Varada et al. [15] Scalp EEG Robotic Contrcé,oir:;zlit Environment Assistance, Rehabilitation
Wang et al. [69] Scalp EEG Robotic Control, Prosthetic Control Rehabilitation
Zhan Hong et al. [70] Scalp EEG Prosthetic Control Assistance
Ortiz et al. [71] Scalp EEG Robotic Control Assistance, Rehabilitation
Kasim et al. [72] Scalp EEG Prosthetic Control Assistance
Murphy et al. [73] Scalp EEG Prosthetic Control Assistance
Lietal. [74] sEEG Prosthetic Control Assistance
Bhagat et al. [75] Scalp EEG Robotic Control Rehabilitation
Morishita et al. [76] ECoG Prosthetic Control Rehabilitation
Zhang et al. [77] Scalp EEG Prosthetic Control Assistance, Rehabilitation
Yanagisawa et al. [78] ECoG Prosthetic Control Assistance, Rehabilitation
He et al. [35] Scalp EEG Robotic Control Rehabilitation
Tang et al. [79] Scalp EEG Robotic Control Assistance
Randazzo et al. [80] Scalp EEG Robotic Control Assistance, Rehabilitation
Lietal. [81] Scalp EEG Robotic Control Assistance, Rehabilitation
Araujo et al. [83] Scalp EEG Robotic Control Rehabilitation
Kashihara et al. [84] Scalp EEG Communication Assistance
Mahmoudi and Erfanian Scalp EEG Prosthetic Control Assistance

[85]

3.1.2. EMG-Based HMIs

EMG reflects the electrical activity of skeletal muscles during voluntary contraction.
The EMG signal is made of superpositions of small Motor Unit Action Potential waveforms
with random phases. Hence, the EMG signal does not have a specific waveform but rather
an interference pattern. Concise parameters of EMG are often used to monitor muscle
contraction. The EMG time-varying RMS and the EMG linear envelope are largely used
to assess the level of muscle contraction and the strength it develops (the stronger is the
muscle contraction, the greater is the number and the frequency of active fibres, and, in
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turn, the higher is the amplitude of the EMG). Some other EMG parameters computed
in the frequency domain can provide information about muscle fatigue. Since the EMG
signal is specific to a single muscle, through the use of multiple electrodes, many muscles
can be monitored simultaneously to decipher complex actions such as hand gestures or
even movements of a single finger. EMG can be recorded noninvasively by employing
skin-mounted electrodes (the so-called surface EMG (sEMG), which is by far the most used
option) or invasively using implanted electrodes into the muscle (enabling more specific
information on neural control) [44,60,86].

Currently, sSEMG is the most widely used signal in biomedical HMI applications for
prosthetic control [26-28,33]. It is easy to access and provides an intuitive control strategy
to reproduce the function of a biological limb. This biopotential contains information about
neural signals transmitted from the brain to muscles to perform a motor task. Hence, it
allows for capturing the subject’s movement intention. EMG-controlled artificial limbs
are referred to as myoelectric prostheses. Amputees represent the primary users of these
assistive technologies. Indeed, people with a missing limb need to replace the lost function,
in order not to suffer from their disability and to carry out daily activities autonomously
and as naturally as possible. In the case of postamputation patients, the sSEMG signal must
be acquired from muscle groups of the residual limb, generally on the forearm or on the
leg stump. Information associated with movements is captured from the EMG signal and
converted into input commands to the prosthesis. To this aim, in recent years, machine
learning algorithms, which substantially consist of feature extraction and classification
steps, have gained ground in the biosignal analysis field. On this trend, Eisenberg et al.
presented a novel segmentation technique that allows separating muscle contraction and
rest periods of sSEMG signals to perform real-time hand movements classification [53].
Tavakoli et al. proposed a simple, low-cost and efficient approach for hand gesture recog-
nition from a single-channel sEMG. In particular, this method can recognize four hand
gestures, hand closing, hand opening, wrist flexion, and double wrist flexion to control a
prosthetic hand [54]. Bai et al. proposed a deep learning gesture recognition method from
multichannel sEMG [87].

In contrast, Cao et al. presented a sSEMG detection and action recognition system based
on overlapping sliding window analysis and synchronous command transmission for real-
time manipulator control [88]. Besides, Benatti et al. designed a wearable prosthetic hand
controller based on gesture recognition that is able to communicate with a smartphone via
Bluetooth, providing a customized control strategy [89]. In [90], an EMG-driven upper limb
prosthesis for amputees living in developing countries was presented. The EMG signal is
acquired via an Electro Resistive Band (ERB) sensor, which is low-cost, cheap, washable,
and withstands wear and tear. The EMG signal’s amplitude drives the motor to set hand
opening or closing commands. Polisiero et al. [91] designed a low-cost, EMG-controlled
prosthetic hand intended for amputees living in developing countries. Two-channel SEMG
signal is acquired on the forearm muscles and, after a preprocessing phase, the EMG
envelope is computed to detect muscle contraction. Afterward, it is compared with a
proper threshold to issue prosthesis hand opening or closing commands. In this way, the
motor torque is proportional to EMG amplitude.

Gailey et al. provided a proof of concept of an online EMG-based prosthetic hand
control method that can predict different hand gestures and individual finger forces via a
Support Vector Machine (SVM) classifier [92]. Bernardino et al. proposed a control method
for a 3D-printed prosthetic hand that uses the sSEMG signals acquired from abdominal
muscles [93]. In [94], pattern recognition from three-channel sSEMG was performed to
control a five-fingered underactuated prosthetic hand. The control method is divided
into two main steps: (i) feature extraction through parametric autoregressive (AR) model,
wavelet transform, and integral of EMG signals, and (ii) classification via a variable learn-
ing rate (VLR)-based, three-layer feedforward neural network applied to EMG features.
It can discriminate between flexion and extension of three fingers: thumb, index, and
middle. Carrozza et al. designed a novel EMG-controlled prosthetic hand that allows hand
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opening and closing tasks [95]. In [96], a novel SEMG sensor using polypyrrole-coated
nonwoven fabric sheet was used to capture a subject’s motion intention for controlling a
myoelectric prosthetic hand. Brunelli et al. proposed a fully wireless, low-cost, wearable
multichannel sEMG acquisition system that can communicate via Bluetooth with a mobile
processing device, which in turn can send motor commands to a prosthetic hand [97].
In [98], individual and combined finger movement features were extracted from sEMG
signals using time—frequency distribution. The performances of three different classifiers
in discriminating these movements were compared to obtain a more dexterous prosthetic
hand control. Khushaba et al. presented a pattern recognition method that can classify
different individuals and combined finger movements from two-channel sEMG to control
a prosthetic hand [99]. In particular, a Bayesian data fusion postprocessing algorithm was
applied to enhance the classification performance.

Furthermore, Kamavuako et al. [100] investigated the feasibility of using the intramus-
cular EMG (imEMG) signal for the control of a myoelectric prosthetic hand by applying
a Fitts’ Law test, while Dewald et al. [101] presented a case study of imEMG-based pros-
thetic control. Al-Timemy et al. proposed a multichannel sSEMG-based pattern recognition
method to classify different individual and combined finger movements for dexterous
hand prosthesis control [102]. In detail, they performed feature extraction through time
domain-autoregressive approach, feature reduction by applying orthogonal fuzzy neigh-
bourhood discriminant analysis (OFNDA), and classification via a Linear Discriminant
Analysis (LDA). Zhang et al. designed an anthropomorphic EMG-controlled prosthetic
hand [103]. Dalley et al. proposed a two-channel sEMG-based method for controlling
a multigrasp prosthetic hand [104]. Russo et al. designed an artificial EMG-controlled
prosthetic hand. In detail, sSEMG signals are acquired via MyoWare muscle sensor, and
three different hand movements are recognized through a SVM classifier [105]. In [106],
neck and face sEMG signals were used to control a voice rehabilitative device for people
with total laryngectomy.

Moreover, the “Myo armband” by Thalmic Lab is worth mentioning, a wearable
device for human-machine interaction (discontinued from the market). It detects muscle
activity via eight dry sEMG sensors and hand /forearm movements through a nine-axes
Inertial Measurement Unit (IMU). The acquired data are transmitted via Bluetooth and
can be used to control different devices (PC, robot, prosthetic hand, etc.), as described by
Visconti et al. in [107]. Furthermore, Lu and Zhou proposed a hand-free HMI driven by
facial EMG signal for controlling electronic devices (e.g., mouse, touch screen, etc.) [108].

In [109], sEMG signals were used to control an electric wheelchair for patients suffering
from SCI at lower cervical levels. The classification performances of a SVM and a k-Nearest
Neighbour (kNN) were compared to distinguish five different commands: left, right,
forward, stop, and rest. Kalani et al. presented an sEMG-based teleoperated masticatory
rehabilitation robot [110]. Briefly, three kinematic parameters are predicted using eight-
channel sEMG (acquired from four jaw muscles of a teleoperator) and used to control the
robot’s masticatory trajectory. Alibhai et al. performed gesture recognition from sEMG
signals acquired via a Myo armband to control an intelligent wheelchair [39]. In [37], a
three-channel sEMG signal was used to wirelessly control the commercially available JACO
robotic arm. This control method was proved to be simple, low-cost, comfortable, easy
to use and, above all, suitable for people with severe motor disabilities who cannot make
use of the joystick. Song et al. addressed the problem of muscular fatigue by proposing a
robust pattern recognition method based on a fuzzy neural network to control a powered
wheelchair [40]. Laksono et al. investigated the best model to classify three different upper
limb movements, i.e., elbow extension, shoulder extension, and combined elbow and
shoulder extension, from a three-channel sEMG signal for the control of a robotic arm by
applying machine learning [38]. In detail, they compared 48 different classification models
that were obtained with or without data division by time, with or without Teager—Kaiser
energy operator (TKEO), and by using conventional features in the feature extraction phase
and testing eight different classifiers in the classification step. In [41], facial sSEMG signals
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were used for hands-free control of an intelligent wheelchair. In particular, the muscle
movements during chewing, namely single jaw click and double jaw click, are converted
into commands to the device, i.e., forward, backward, left, right, and stop. In [111], facial
sEMG signal was acquired during forehead single and double click movements and used to
issue commands to an intelligent wheelchair (i.e., forward, backward, turn left, turn right,
and stop). Hamedi et al. proposed an EMG-based facial expression recognition method
suitable for HMI applications [112].

In the field of exoskeleton control, Wege and Zimmermann presented an EMG-
controlled hand exoskeleton for rehabilitation purpose. Ten-channel sEMG is acquired on
the forearm to detect subject’s motion intention. After blind source separation, rectification,
and low pass filtering, the signal is decomposed into different components to capture
each finger’s flexion and extension. Then, corresponding force values are computed and
compared with appropriate thresholds to generate a trajectory executed by the motor
control [113]. Ho et al. designed an EMG-driven exoskeleton for hand closing and opening
rehabilitation in chronic patients after stroke. EMG sensors are placed on the forearm to
capture voluntary contraction of abductor pollicis brevis and extensor digitorum. Hand
closing is triggered by 20% exceeding the maximum voluntary contraction value of the
former, whereas hand opening is associated with 20% exceeding the maximum voluntary
contraction value of the latter [114]. Besides, Loconsole et al. proposed an EMG-controlled
rehabilitation hand exoskeleton for bilateral grasp training. The signal is acquired on
three forearm muscles of the healthy upper limb and used to control the grasp function
of the impaired one [115]. Hussain et al. presented an EMG interface for the control of a
supernumerary robotic finger. In particular, they used an EMG armband for hand gesture
recognition to control motion and an sSEMG channel to control joints compliance [116].

Furthermore, Abdallah et al. designed a 3D-printed EMG-driven robotic exoskeleton
to assist finger flexion and extension movements in patients following stroke [117]. Secciani
et al. presented a low-cost, fully wearable EMG-driven hand exoskeleton to assist impaired
people in daily life activities [118]. In detail, SEMG signals are acquired on the extensor
digitorum superficialis and flexor digitorum superficialis to capture the subject’s motor
intention, i.e., hand opening, closing, or resting. Song et al. proposed an EMG-controlled
exoskeleton for wrist flexion and extension rehabilitation in patients after stroke [119].
In [120], a myoelectric control method for a lightweight, 3D-printed upper arm exoskeleton,
intended to improve muscle strength in home-based rehabilitation sessions, was presented.
In detail, the method exploits SEMG signal acquisition through a Myo armband and
different training load classifications via a kKNN. Cai et al. presented ReRobot, an EMG-
controlled upper limb exoskeleton for rehabilitation of poststroke patients by exploiting
mirror therapy [121]. Indeed, sEMG signals acquired on the healthy side are classified by a
SVM to decode the subject’s motor intention, then executed by the exoskeleton attached to
the impaired side. Yin et al. extracted gait cycle durations (GCDs) from an eight-channel
sEMG signal using the autocorrelation and the Bayesian fusion algorithm for controlling
the motion speed of an exoskeleton—treadmill gait rehabilitation system [122]. In [123], an
upper limb EMG-controlled power-assist exoskeleton intended for elbow rehabilitation
was developed. Lu et al. proposed a four-channel sSEMG-based real-time control for a
rehabilitation hand exoskeleton [124]. In [125], a custom lower limb robotic exoskeleton
control method was presented by estimating the active joint torque from the SEMG signal.

La Scaleia et al. showed a novel approach for associating the EMG signal from
shoulder muscles with leg kinematics, which can be adopted to control an avatar walking
in virtual reality or a robotic lower-limb exoskeleton [126]. Finally, Lyu et al. developed
an EMG-controlled knee exoskeleton for home rehabilitation of poststroke subjects. In
particular, the EMG signal is acquired via Myo thigh band, which is obtained by combining
two Myo armbands. In addition, for greater involvement of patients, they are asked to
perform training sessions in a visuomotor game context [127].

Table 3 presents a summary of the considered EMG-based HMIs.
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Table 3. EMG-based HMIs.
Authors [Reference] Kind of Biopotential Target Field
Eisenberg et al. [53] sEMG Gesture Recognition, Prosthetic Control Assistance
Tavakoli et al. [54] sEMG Gesture Recognition, Prosthetic Control Assistance
Bai et al. [87] sEMG Gesture Recognition, Prosthetic Control Assistance
Cao et al. [88] sEMG Prosthetic Control Assistance
Benatti et al. [89] sEMG Gesture Recognition, Prosthetic Control Assistance
Ulloa et al. [90] sEMG Prosthetic Control Assistance
Polisiero et al. [91] sEMG Prosthetic Control Assistance
Gailey et al. [92] sEMG Gesture Recognition, Prosthetic Control Assistance
Bernardino et al. [93] sEMG Gesture Recognition, Prosthetic Control Assistance
Zhao et al. [94] sEMG Gesture Recognition, Prosthetic Control Assistance
Carrozza et al. [95] sEMG Prosthetic Control Assistance
Jiang et al. [96] sEMG Gesture Recognition, Prosthetic Control Assistance
Brunelli et al. [97] sEMG Gesture Recognition, Prosthetic Control Assistance
Shair et al. [98] sEMG Prosthetic Control Assistance
Khushaba et al. [99] sEMG Gesture Recognition, Prosthetic Control Assistance
Kamavuako et al. [100] imEMG Prosthetic Control Assistance
Dewald et al. [101] imEMG Gesture Recogni;{ig;,itl’yr(():s(:};f;iocl Control, Virtual Assistance
Al-Timemy et al. [102] sEMG Gesture Recognition, Prosthetic Control Assistance
Zhang et al. [103] sEMG Prosthetic Control Assistance
Dalley et al. [104] sEMG Prosthetic Control Assistance
Russo et al. [105] sEMG Gesture Recognition, Prosthetic Control Assistance
Stepp et al. [106] sEMG Prosthetic Control Rehabilitation
Gesture Recognition, Prosthetic Control, Robotic Assistance
Visconti et al. [107] sEMG Control, Smart Enviironment Control, Virtual Rehabilita ti(;n
Reality Control
Lu and Zhou [108] sEMG Smart Environment Control Assistance
Kumar et al. [109] sEMG Robotic Control Assistance
Kalani et al. [110] sEMG Robotic Control Rehabilitation
Alibhai et al. [39] sEMG Gesture Recognition, Robotic Control Assistance
Fall et al. [37] sEMG Robotic Control Assistance
Song et al. [40] sEMG Gesture Recognition, Robotic Control Assistance
Laksono et al. [38] sEMG Robotic Control Assistance
Xu et al. [41] sEMG Robotic Control Assistance
Zhang et al. [111] sEMG Robotic Control Assistance
Hamedi et al. [112] sEMG Gesture Recognition Rﬁ;;gﬁg:ﬁ; 0
Wege and[iir;}mermann sEMG Robotic Control Rehabilitation
Ho et al. [114] sEMG Robotic Control Rehabilitation
Loconsole et al. [115] sEMG Robotic Control Rehabilitation
Hussain et al. [116] sEMG Gesture Recognition, Robotic Control Assistance
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Table 3. Cont.
Authors [Reference] Kind of Biopotential Target Field
Abdallah et al. [117] sEMG Robotic Control Rehabilitation
Secciani et al. [118] sEMG Robotic Control Assistance
Song et al. [119] sEMG Robotic Control Rehabilitation
Liu etal. [120] sEMG Robotic Control Rehabilitation
Caietal. [121] sEMG Robotic Control Rehabilitation
Yin et al. [122] sEMG Robotic Control Rehabilitation
Tang et al. [123] sEMG Robotic Control Rehabilitation
Luetal. [124] sEMG Robotic Control Rehabilitation
Gui et al. [125] sEMG Robotic Control Rehabilitation
La Scaleia et al. [126] sEMG Robotic Control, Virtual Reality Control Assistance, Rehabilitation
Lyu et al. [127] sEMG Robotic Control Rehabilitation

3.1.3. ENG-Based HMIs

ENG is the recording of electrical activity directly from a peripheral motor nerve.
ENG is an invasive technique that involves electrodes implanted in the neural tissue. ENG
provides precise and high-resolved information on a group of neurons or even on a single
neuron activity. Differently, EEG can only record general activities of the brain, while sSEMG
provides aggregated information about neuromuscular control [44,60].

In the last decade, even ENG signal has captured attention in biomedical HMIs,
principally for prosthetic hand control. However, in the literature, there are still few studies
about ENG-based HMIs [24]. The central idea is to extract user’s motor intention by
recording the electrical activity of peripheral nerves. Noce et al. proposed an ENG-based
hand prosthesis control. In particular, they acquired neural signals from an amputee’s
median and ulnar nerves and computed the ENG envelope. Afterward, by applying typical
EMG pattern recognition techniques, they performed hand gesture recognition without
needing a feature extraction phase. Furthermore, for comparison purposes, they applied
the proposed method also to sEMG signal, thus confirming the validity of this novel
approach [52]. Nguyen et al. presented a bioelectric neural interface for hand prosthesis
control, which is integrated with implantable microelectrodes to record ENG signal from
peripheral nerves in the residual limb, and deep-learning algorithm decode subject’s motor
intention [55]. Finally, Noce et al. developed an ENG-based classification algorithm for
discriminating two different grasp commands to control a prosthetic hand [59].

Table 4 shows a summary of the selected ENG-based HMIs.

Table 4. ENG-based HMIs.

Authors [Reference] Target Field
Noce et al. [52] Gesture Recognition, Prosthetic Control Assistance
Nguyen et al. [55] Prosthetic Control Assistance
Noce et al. [59] Gesture Recognition, Prosthetic Control Assistance

3.1.4. EOG-Based HMIs

EOG is the measurement of a steady potential generated by the eyeball’s movements
due to separated positive and negative electric charges. Therefore, a current flows from
the cornea to the retina. This biopotential can be recorded by placing surface electrodes on
both sides of the eye, either horizontally or vertically. Indeed, when the gaze is straight
ahead, the EOG signal is zero because of the eyeball’s symmetric horizontal position for the
two electrodes. On the contrary, when the gaze is shifted to one side, a nonzero EOG signal
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is detectable. The same principle is applied to measurement in a vertical configuration.
Therefore, there is a relationship between the horizontal or vertical gaze angle and the EOG
amplitude [44,45,60].

Various biomedical HMIs exploit eye tracking from EOG signals, enabling disabled
people to interact with the outside world through eye motions. EOG-based assistive
technologies can be used as nonverbal communication tools or for controlling a robot, a
prosthesis, a wheelchair, a device in a smart environment, the cursor on a computer screen,
and so on. Golparvar and Yapici designed a graphene textile-based wearable assistive
device that allows eye tracking from EOG for remote control objects [56]. Zhang et al.
developed an EOG-based HMI for smart home environment control (e.g., TV control, air
conditioner control, wheelchair control) in the case of SCI patients. In particular, a visual
stimulus, in the form of flashing buttons on a Graphical User Interface (GUI), is presented
to the subject. Each button corresponds to a specific command. The user selects the input
command by blinking his eyes synchronously to the flashes. The acquired EOG signal
is submitted to feature extraction and classification operations to decode the subject’s
intention [42].

Similarly, Huang et al. presented an EOG-based HMI for wheelchair control [57].
Martinez-Cervero et al. developed an open-source hardware/software platform for eye
movements recognition from EOG signal. In detail, this system is able to classify four
different eye movement directions and can be used in HMI applications for assisted
communication in paralysed people [128]. Moreover, Perez Reynoso et al. proposed an
EOG-based HMI for real-time trajectory tracking of a manipulator robot by using neural
network modelling [129]. Again, Choudhari et al. presented an EOG-based HMI for
wheelchair control by converting voluntary single, double, and triple eye blinks into
control actions, i.e., forward, right turn, left turn, and stop [130].

In contrast, Heo et al. developed a headband-type forehead EOG measurement system
for HMI applications, consisting of wireless wearable sensors for detecting six class-eye
movements [131]. Guo et al. developed a wearable HMI based on single-channel EOG
recorded with a patchable sensor [132]. Finally, Wu et al. designed a single-channel EOG-
based HMI integrated with encoding/decoding paradigms of eye blinking and looking up
to interpret the user’s intention [133].

Table 5 shows a summary of the selected ENG-based HMIs.

Table 5. EOG-based HMIs.

Authors [Reference] Target Field

Robotic Control, Smart Environment

Golparvar and Yapici [56] Control Assistance
Zhang et al. [42] Smart Environment Control Assistance
Huang et al. [57] Robotic Control Assistance

Martinez-Cervero et al. [128] Communication Assistance
Perez Reynoso et al. [129] Robotic Control Assistance
Choudhari et al. [130] Robotic Control Assistance
Heo et al. [131] Communication, Robotic Control Assistance
Guo et al. [132] Smart Environment Control Assistance

W et al. [133] Robotic Contr()cl,oirgilit Environment Rﬁhs:li)siifir;iec;n

3.1.5. Hybrid Biopotential-Based HMIs

Hybrid or multimodal biopotential-based HMI is the result of combining different
types of bioelectric signals to increase their performance and reliability. Moreover, by
exploiting the advantages of each category and associating many functions, these HMIs
improve their effectiveness as assistive and rehabilitation technologies. Indeed, they allow
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people with disabilities to perform multiple tasks or implement better control. Furthermore,
various combinations of biopotentials exist.

In the field of robotic control, Gordleeva et al. presented a real-time hybrid HMI for
controlling a lower-limb exoskeleton. In particular, they combined a foot motor imagery-
based BCI and multichannel EMG signals acquired from leg muscles to extract user’s motor
intention, then converted them into input commands to the exoskeleton [51]. Ferreira et al.
proposed a hybrid HMI based on EMG signal caused by eye blinks and EEG signal from
the cerebral area responsible for processing the visual information to control a robotic
wheelchair [134]. Zhang et al. developed a multimodal HMI combining EOG, EMG, and
EEG signals to control a soft robot hand. In detail, this HMI exploits hand motor imagery
from EEG, looking-left and looking-right eye movements recognition from EOG, and hand
gesture recognition from EMG [135]. Huang et al. proposed a novel hybrid BCI that
acquires EEG and EOG signals and translates them into commands for controlling an
integrated wheelchair robotic arm system. By interacting with dedicated panels on a GUI,
the user can control turning left/right of the wheelchair by performing hand motor imagery
and issue other commands to the wheelchair and the robotic arm through eye blinking and
eyebrow raising [136]. Finally, Ma et al. presented an EOG/EEG hybrid HMI for single
and multiple robot control, which is based on four class-eye movements recognition from
EOG and ERPs classification after the application of visual stimuli [12,137].

Regarding prosthetic control, Arrow et al. demonstrated the feasibility of using ERG
signals for improved myoelectric hand prosthesis control. ERG is recording a transient
potential that develops on the retina’s surface or the cornea in response to a light stimu-
lus [44,61]. In particular, they used a threshold-based control strategy. Indeed, the number
of naturally occurring neuronal action potential spike trains, generated by the retina after a
visual stimulation, is counted and then compared with a predefined threshold to set the
command to be sent to the prosthetic hand in order to improve the response time and the
desired grip [58]. Rezazadeh et al. designed a coadaptive and affective HMI, which is able
to assess the subject’s mental workload from EEG signal, for a better myoelectric forearm
prosthesis control [138].

Furthermore, again Rezazadeh et al. proposed a multimodal HMI based on the acqui-
sition of facial EEG, EOG, and EMG to perform face gesture recognition. In detail, features
related to facial movements, eye movement direction, and mental states are extracted
from fEMG, fEOG, and fEEG, respectively, thus enabling nonverbal communication [139].
Ianez et al. presented a hybrid HMI that combines EEG and EOG signals to move a dot
on a GUI [140]. Finally, Laport et al. compared two different HMI systems based on
single-channel EEG and EOG to control smart home devices [141].

Table 6 shows a summary of the considered hybrid biopotential-based HMIs.

Table 6. Hybrid biopotential-based HMISs.

Authors [Reference] Kind of Biopotential Target Field
Gordleeva et al. [51] EEG + EMG Robotic Control Rehabilitation
Ferreira et al. [134] EEG + EMG Robotic Control Assistance
Zhang et al. [135] EEG + EMG + EOG Gesture Recognition, Robotic Control Assistance, Rehabilitation
Huang et al. [136] EEG + EOG Robotic Control Assistance
Maetal. [12] EEG + EOG Robotic Control Assistance
Ma et al. [137] EEG + EOG Robotic Control Assistance
Arrow et al. [58] EMG + ERG Prosthetic Control Assistance
Rezazadeh et al. [138] EEG + EMG Virtual Reality Control Assistance
Rezazadeh et al. [139] EEG + EMG + EOG Communication, Gesture Recognition Assistance, Rehabilitation
Tafiez et al. [140] EEG + EOG Smart Environment Control Assistance
Laport et al. [141] EEG + EOG Smart Environment Control Assistance
Neto et al. [142] EEG + EMG + EOG Robotic Control Assistance




Sensors 2021, 21, 6863

16 of 43

3.2. HMI Control Based on Muscle Mechanical Motion

Information about muscle mechanical motion is of great interest to many biomedi-
cal HMI applications, particularly for assistance and rehabilitation purposes, providing
alternative strategies for controlling prostheses, robots, virtual reality, or even devices
in smart environment. The term “muscle mechanical motion” refers to all mechanical
events occurring during voluntary contraction, of which the EMG represents the electrical
counterpart. Their monitoring allows the measurement of mechanical-induced muscle
morphological changes. Indeed, it is well known that a contracting muscle changes its
shape or dimensions (e.g., its cross-section), and small vibrations due to the progressive
recruitment of motor units can be perceived (i.e., the mechanomyogram). Furthermore,
muscle contraction also involves an increased blood afflux and displacement of muscle—
tendon groups or even bones [4,143-147]. Therefore, these features reflect three main
mechanical components: gross motion of specific muscle groups with associated muscle
swelling; muscle vibrations; and movement of musculotendinous groups. To the aim of muscle
contraction detection, multiple sensor technologies and different acquisition techniques
have been proposed.

3.2.1. Muscle Gross Motion-Based HMIs

As mentioned before, muscle contraction is generally associated with muscle volume,
cross-sectional area, and stiffness changes. Therefore, muscle contraction detection can be
performed by measuring specific muscle or muscle group changes due to the so-called mus-
cle gross motion. To date, several noninvasive sensor technologies have been developed
that measure different physical quantities, which exhibit a direct or indirect relationship
with contractile force, such as force/pressure sensors and triboelectric sensors. They are
placed on the skin in order to record mechanical signals from the underlying muscles.

First, force sensors are sensitive to the force/pressure exerted by muscle contraction. A
wide range of force sensors is available, such as resistive, piezoresistive, pressure, piezoelec-
tric, and even optical fibre sensors. Many of these enable the recording of force myography
(FMG) signals. Force myography is a noninvasive technique that uses force sensing ele-
ments to detect “changes in stiffness of corresponding musculotendinous complex against
a default state” [4], providing information about muscle contraction in the low-frequency
range (i.e., <10 Hz) [148]. Force-sensitive resistors (FSRs) change their electrical resistance
as a function of the applied force and are widely used in FMG recordings. Several studies
show the potential of FMG as an alternative control strategy for HMI applications, par-
ticularly for upper-limb prosthetic control [9]. In this context, Sakr et al. demonstrated
the feasibility of estimating hand isometric force/torque from FMG signals recorded via
60 FSRs, which were embedded into four bands and placed in different locations around
the arm [149]. Again, Sakr et al. showed the possibility of predicting force in dynamic
conditions by using FSRs worn around the arm [150]. Ahmadizadeh et al. explored the
application of feature selection to three high-density FMG datasets in order to reduce
its dimensionality and, at the same time, achieve the same performance but with lower
cost and complexity [151]. Xiao et al. proposed a novel FMG system, consisting of a
strap embedded with eight FSRs, to detect different forearm positions for controlling a
custom-made forearm pronation/supination exoskeleton [152]. Ferigo et al. presented a
case study of an FMG-controlled bionic hand prosthesis for a transradial amputee [153].

Furthermore, Esposito et al. developed a piezoresistive array armband for hand
gesture recognition equipped with only three FSR-based sensors. It is able to detect eight
different hand gestures and can be used for prosthetic control [154]. A study by Prakash
et al. proposed an FMG-controlled prosthetic hand for upper limb amputees. An FMG
sensor consisting of two FSRs was applied on the residual forearm of an amputee to de-
tect muscle contractile force, then converted into input commands to the prosthesis [144].
Esposito et al. also presented an alternative approach to EMG, with comparable perfor-
mances, for improved hand prosthesis control based on muscle contraction detection via
an FSR-based sensor [143]. The sensor was placed on a forearm muscle, proving to be
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as effective as the EMG envelope to control a hand prosthesis prototype [155,156]. Ha
et al. explored the prediction of hand gestures by applying piezoelectric sensors around
the forearm to map muscle contraction [157,158]. A piezoelectric sensor converts its me-
chanical deformation due to the applied force into an electrical signal. Ahmadizadeh et al.
showed the feasibility of using selected locations of FSRs for FMG-controlled prosthesis
with performances comparable to high-density FMG [151].

Furthermore, Fujiwara et al. proposed a low-cost optical FMG sensor for hand ges-
ture recognition based on modulation of light intensity due to the applied force by the
microblading effect, which can be applied for hand prosthesis control [159]. Moreover,
Bifulco et al. tested the feasibility of a conductive rubber sensor, that changes its electrical
resistance when stretched, to detect muscle contraction on the forearm, and also to control a
hand prosthesis prototype [160]. Radmand et al. explored high-density FMG for prosthetic
control. An array with a high number of FSRs, mounted into a prosthetic socket, was used
to measure changes in surface pressure on the forearm [161]. Again, Cho et al. investigated
the feasibility of FMG-controlled upper extremity prostheses [162].

Muscle contraction detection can also be performed via triboelectric sensors, which
convert their mechanical deformation into electrical output, thus acquiring contractile force.
The working principle of such a sensor technology is based on electrification and electro-
static induction phenomena occurring when materials with different electronegativities
come into contact. Dong et al. developed a wearable triboelectric HM]I, in the form of a
smart glove, using a nanophotonic readout for hand robotic control and virtual/augmented
reality applications [163]. Similarly, Zhu et al. presented a smart glove equipped with
elastomer-based triboelectric nanogenerators and piezoelectric mechanical stimulator for
robotic control and virtual/augmented reality applications [16]. Finally, An et al. proposed
a tattoo-like triboelectric self-powered wearable sensor for controlling robots or devices in
a smart environment [164].

Moreover, some researchers proposed a novel, invasive approach for hand prosthesis
control by tracking the position of permanent magnets directly implanted into the upper
residual muscles of amputees. By externally measuring changes in the magnetic field due
to magnets displacement, it is possible to detect the force exerted by muscle contraction and
thus to capture valuable information to issue commands to the prosthesis. This innovative
HMI was called myokinetic controller [165,166].

Table 7 shows a summary of the considered muscle gross motion-based HMIs.

Table 7. Muscle gross motion-based HMIs.

Authors [Reference] Kind of sensor Application Site Target Field
Prakash et al. [144] FSR Forearm Prosthetic Control Assistance
Clemente et al. [165] Magnetic Field Forearm Prosthetic Control Assistance
Xiao et al. [152] FSR Forearm Robotic Control Rehabilitation
Ferigo et al. [153] FSR Forearm Prosthetic Control Assistance

Gesture Recognition,

Esposito et al. [154] FSR Forearm Prosthetic Control Assistance
Esposito et al. [155] FSR Forearm Prosthetic Control Assistance
Esposito et al. [156] FSR Forearm Prosthetic Control Assistance
Haetal. [157] Piezoelectric Forearm Prosthetic Control Assistance
Ha et al. [158] Piezoelectric Forearm Prosthetic Control Assistance
Ahmadizadeh et al. [151] FSR Forearm Prosthetic Control Assistance
Gesture Recognition, Assistance

Fujiwara et al. [159] Optical Fibre Forearm Prosthetic Control, Virtual Rehabilitati(;n

Reality Control
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Table 7. Cont.

Authors [Reference] Kind of sensor Application Site Target Field

Bifulco et al. [160] Resistive Forearm Prosthetic Control Assistance
Radmand et al. [161] FSR Forearm Prosthetic Control Assistance
Cho et al. [162] FSR Forearm Prosthetic Control Assistance
. . Robotic Control, Virtual Assistance,

Dong et al. [163] Triboelectric Hand Reality Control Rehabilitation
. . Robotic Control, Virtual Assistance,

Zhu et al. [16] Triboelectric Hand Reality Control Rehabilitation

Robotic Control, Smart

An et al. [164] Triboelectric Arm Environment Control Assistance
Tarantino et al. [166] Magnetic field Forearm Prosthetic Control Assistance
Kumar et al. [167] Piezoresistive Hand CEOrTzri?élr?r::gfglo i{;}gft Assistance
Castellini et al. [168] Resistive Forearm Prosthetic Control Assistance
Dong et al. [169] Piezoelectric Wrist Prosthetic Control Assistance
Lim et al. [170] Piezoelectric Forearm, Wrist Robotic Control Assistance
Rasouli et al. [171] Piezoelectric Forearm Prosthetic Control Assistance

3.2.2. Muscle Vibrations-Based HMIs

During muscle contraction, muscle mechanical vibrations occur due to three main
processes: (1) internal muscle vibrations, (2) oscillations of the human motor system (e.g.,
tremor and clonus), and (3) artifacts [172]. Mechanomyography (MMG) is a noninvasive
technique that allows capturing high-frequency information (i.e., from 1-2 Hz to 100 Hz [3])
related to muscle vibrations. Islam et al. reported that MMG frequency content is closely
related to the resonant frequency of muscle, which is affected by muscle stiffness [173].
However, the origin of the MMG signal is not yet fully understood. In Beck et al. [3], it is
suggested that the MMG signal reflects three main physiological phenomena: (1) gross
muscle movement during contraction, (2) muscle lateral oscillations at its resonant fre-
quency, and (3) muscle fibres dimensional changes. Indeed, the recruitment of motor units
during contraction results in dimensional changes of muscle fibres (e.g., their shortening
and increase in diameter), which produce oscillations, i.e., pressure waves, that propagate
from muscle up to the skin where they are detectable [174,175]. Different technological
solutions have been proposed for MMG recordings, such as microphones, accelerometers,
piezoelectric, or laser distance sensors [3,173-175]. Asheghabadi et al. presented a single-
site MMG sensor consisting of a piezo plate and a strain gauge, which can capture both
electrical and acoustic features from vibrations of a single muscle to perform multichannel
finger pattern recognition [146]. Castillo et al. designed a wearable armband equipped with
four MMG microphones and placed around the forearm to study the relationship between
distributed normal force and MMG informational content. In detail, they showed that, as
average force increases, tissue viscoelasticity changes, resulting in increased mechanical
conductivity. In this way, the sensor is able to detect vibrations of deeper muscles with
improved discriminative power, which is very useful in HMI applications for prosthetic
control [176]. Moreover, Wicaksono et al. proposed a wireless synchronous carbon nan-
otube piezoresistive patch sensor to record MMG signal from leg muscles, which can be
used for prosthetic or robotic control [177]. Finally, Xie et al. performed MMG recordings
via two accelerometers for hand and wrist gesture recognition to perform multifunctional
prosthetic control [178].

Table 8 shows a summary of the considered muscle vibrations-based HMIs.
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Table 8. Muscle vibrations-based HMISs.

Authors [Reference] Kind of Sensor Application Site Target Field
Asheghabadi et al. [146] Piezoelectric + Strain Gauge Forearm Prosthetic Control Assistance
Castillo et al. [176] Microphone Forearm Prosthetic Control Assistance
. . s . Prosthetic Control, Assistance,
Wicaksono et al. [177] Piezoresistive Lower limb Robotic Control Rehabilitation
Xie et al. [178] Accelerometer Forearm Gesture Recognition, Assistance

Prosthetic Control

3.2.3. Muscle-Tendons Movement-Based HMIs

It is worth mentioning other acquisition techniques that detect movement of mus-
culotendinous groups resulting in morphological changes. In this context, Wu et al. pre-
sented an HMI using Electrical Impedance Tomography (EIT) for hand prosthesis control.
The system performs electrical bioimpedance imaging, thus capturing changes in electri-
cal conductivity under the movement of muscles and bones. In particular, an array of
bioimpedance electrodes in a wristband was placed around the forearm to recognize nine
hand gestures [145]. Furthermore, there are several HMI applications based on ultrasounds
(US). They are safe, provide high temporal/spatial resolution, and can be acquired non-
invasively. However, the major drawback is represented by the cumbersome US probe.
Huang et al. compared simultaneous EMG recording and US imaging acquired on the
forearm in terms of finger gesture recognition accuracies. They concluded that the US
allows more dexterous and accurate control, thus showing its feasibility for prosthetic or
robotic control [179]. Li et al. proposed a multichannel HMI based on an armband with
US transducers for finger gesture recognition. It is designed to be applied in rehabilitation
robotics [180]. Furthermore, Ortenzi et al. presented a comparative study of features
and classification methods in US-based HMI for hand prosthetic control [181]. Sikdar
et al. developed a novel method for predicting dexterous individual finger movements by
imaging muscle activity using a wearable ultrasonic system [182].

Moreover, Sierra Gonzalez and Castellini tested the feasibility of US-based HMI in
a realistic scenario. They showed a linear relationship between the spatial first-order US
features of the forearm and hand kinematic. In this way, it is possible to predict forces at
the fingertips, thus revealing very useful for controlling a prosthesis [183,184]. Finally, two
studies presented HMIs based on Sonomyography (SMG), a novel technique based on US
acquisition that is able to detect muscle architectural changes and can be used to control
a hand prosthesis. In particular, they investigated changes in muscle thickness during
wrist flexion/extension. Maximum values of SMG are associated with wrist extension and,
therefore, fingers opening, whereas minimum values of SMG imply wrist flexion and, thus,
fingers closing [147,185].

Table 9 shows a summary of the considered HMIs based on muscle-tendon movements.

Table 9. Muscle-tendons movement-based HMIs.

Authors [Reference]

Kind of Sensor Application Site Target Field

Gesture Recognition, Prosthetic

Wu et al. [145] Bioamplifier Forearm Control Assistance
Chen et al. [147] US probe Forearm Prosthetic Control Assistance
Gesture Recognition, Prosthetic .
Huang et al. [179] US probe Forearm Control, Robotic Control Assistance
Lietal. [180] US transducer Forearm Gesture Recognition, Robotic Rehabilitation

Control

Ortenzi et al. [181]

US probe Forearm Prosthetic Control Assistance
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Table 9. Cont.
Authors [Reference] Kind of Sensor Application Site Target Field
Sikdar et al. [182] US probe Forearm Prosthetic Control Assistance
Sierra Gonzalez et al. [183] US probe Forearm Robotic Control Rehabilitation
Castellini et al. [184] US probe Forearm Robotic Control Rehabilitation
Shi et al. [185] US probe Forearm Prosthetic Control Assistance

3.2.4. Hybrid Muscle Mechanical Motion-Based HMIs

Finally, HMlIs combining different techniques of muscle mechanical motion detection
also exist. Esposito et al. presented a piezoresistive FSR sensor that is able to measure
changes in muscle cross-sectional area and MMG signal, proving very useful for prosthetic
control [143]. Booth and Goldsmith developed a wrist-worn piezoelectric sensor for finger
gesture recognition. The sensor is able to capture both MMG signal and changes in muscle
shape, providing information that can be used for prosthetic, robotic, virtual reality, or
smart environment control [186].

Table 10 shows a summary of the selected hybrid muscle mechanical motion-based HMIs.

Table 10. Hybrid muscle mechanical motion-based HMIs.

Authors

[Reference] Kind of Sensor Application Site Target Field
Esposito et al. . .
[143] FSR Forearm Prosthetic Control Assistance
Gesture Recognition, Prosthetic Control, Assistance
Booth et al. [186] Piezoelectric Wrist Robotic Control, Smart Environment e
Rehabilitation

Control, Virtual Reality Control

3.3. Body Motion-Based HMIs
3.3.1. Image-Based Body Motion HMIs

A further class of HMISs is aimed at tracking the motion of different body parts, such
as the eyes [43,187,188], the upper and lower limbs [189], and the head [190-192], via
different kinds of vision devices. Eye-tracking technologies are usually based on infrared
(IR) illuminators pointed at the eyes. IR sensors or cameras capture the reflected IR light
to determine the gazing point on a screen and control a cursor to interact with various
applications. The other vision-based HMIs mainly rely on standard cameras and sometimes
also on depth cameras and involve a processing stage to recognize the gestures performed
by the tracked body parts, e.g., translations and rotations of the head and various kinds of
hand gestures. Moreover, a branch of vision-based HMIs comprises devices for exergames,
which require active body movements to control the gaming experience and have potential
applications for disease prevention, health promotion, and rehabilitation [18,20,29-32].

Maule et al. proposed an eye-tracking-based HMI called RoboEye [187]. RoboEye is
composed of a standard power wheelchair integrated with an innovative, cost-effective,
and user-friendly control system based on an eye-tracking system, a 3D camera, and a
computer monitor. The system provides the users with comfortable navigation and two
driving options, namely “direct” and “semiautonomous”, which allow them to move
easily and autonomously within their homes. The natural modality uses eye-tracking to
detect gazing at different areas of the monitor and provide continuous control of frontal
and angular wheelchair velocities. This modality also enables efficient control of the
wheelchair for users who cannot use standard interfaces (e.g., joystick, keyboard). The
semiautonomous modality allows navigation toward a selected point in the environment
by just pointing and activating the wished destination. At the same time, the system
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autonomously plans and follows the trajectory that brings the wheelchair to that point
with the support of the 3D camera.

Bissoli et al. presented an intelligent home system that provides eye-tracking-based
control of four devices, namely a television, a radio, a lamp, and a fan, as well as remote
monitoring via the Internet of Things (IoT) protocols [43]. The control system and remote
monitoring are intended for users with severe disabilities and related caregivers. The
eye-tracking interface replaces the mouse control of a personal computer (PC): the changes
of gazing points are translated into mouse movements, while the persistence in the same
point for few seconds is translated into a mouse click. The system has been first tested on
29 healthy participants and then on a woman with severe disabilities in her own home for
seven days. The efficacy of the smart home system was evaluated via a System Usability
Scale (SUS) questionnaire, which was administered to both the healthy subjects and the
person with severe disabilities, reporting very high scores.

Lin et al. proposed an HMI to control a computer mouse [188]. An IR camera captures
images of the user’s eye, illuminated by an auxiliary infrared LED source. Features of the
pupil are extracted to determine the gazing point on the screen, thus allowing the user to
control a PC mouse. An autocorrection method is implemented to correct the gazing point
estimate, leading to improved eye-tracking-based mouse control in the 90% of involved
subjects, who achieved an overall accuracy of 97%.

An HMI for smart home control based on a Virtual Interactive Blackboard (VIB) has
been designed by Conci et al. to remove any physical connection between the user and
the domotic system [189]. VIB is based on the low-cost hardware architecture: the visual
interface is projected through a beamer on a flat surface. A fixed webcam achieves the user’s
gesture, which captures the scene at 10 fps. To achieve real-time processing, unnecessary
information is first removed. The illumination is assumed to be slowly varying, so a
background suppression procedure is performed by discarding illumination variations
and focusing on areas corresponding to human skin colour to simplify hand tracking. An
AdaBoost classifier is trained to provide real-time hand gesture recognition. Three hand
gestures, namely opening, closing, and finger-pointing, are used to control the position
of a cursor, trigger clicking actions, and trace curves for writing and drawing. A central
processing unit connects the VIB interface to actuators taking charge of user commands,
which can access several services (e.g., TV, phone) and control the related parameters
(tuning, switching, opening—closing, moving).

A HMI based on head and mouth movement analysis has been proposed by Baklouti
et al. as a control system for an exoskeleton, designed to compensate for the loss of
upper limbs mobility in patients suffering from myopathy [190]. The system is based on a
monocular camera to capture the user’s head and provides two control modalities, namely
head control and mouth control. The head control uses an attention region approach to
minimize the computational burden of face detection, then performs, in real time, a face
detection and global feature extraction via Adaboost, and finally a pose estimation that
provides the translation and rotation matrix of the head, which is used to generate an
exoskeleton command. The mouth control performs a mouth extraction by combining a
colorimetric method (thresholding on Q component of the YIQ colour space) with edge
detection and active contour to locate extremum points for mean square fitting of lips
profile with second-order polynomials. It then classifies the mouth expression from the
modelled lips profiles to generate a command for the exoskeleton.

Chang et al. proposed an HMI for people who cannot use their hands to support
using a computer or speaking [191]. A camera captures images of user’s head movements.
An initial skin colour adjustment is performed to optimize the tracking of the user’s
face within the frames. A binary mask is obtained with a group of pixels that roughly
covers the user’s face in each frame. The barycentre of this group of pixels is computed to
determine head movement direction among the eight directions considered by the system
(two along the vertical axis, two along the horizontal axis, and two along each of the two
45° diagonals). The head tracking system is used to compose two-digit or three-digit codes
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corresponding to letters or sentences in predefined tables, which are then reproduced via a
sound-generating system to allow disabled users to communicate.

A HMI based on head movement recognition has been presented by Gautam et al.
to control a small robotic car [192]. A camera captures the user’s head images, which are
processed to extract binary maps of face pixels. The image field is divided into three areas:
left, centre, and right, and the head movement is classified based on the area of the binary
map, including the most significant number of face pixels. The result of the classification is
translated into a command for the robotic car, namely “turn left”, “go ahead”, and “turn
right”. When user’s head falls out of the image field, i.e., no face pixels are detected in all
areas, a “stop” command is sent to the robotic car.

Furthermore, in the context of the vision-based HMIs, it is worth highlighting the im-
pact of the “exergames” on physical and cognitive functions, as demonstrated by different
studies published over the last decade. Rosly et al. [31] presented a review on exergaming
applications for subjects with neurological disabilities. They underlined that exergaming
can provide outcomes with equivalent dose-potency as traditional physical exercise in
clinic or home environments. Another survey by Reis et al. [32], showed that exergames
could be used as a complement to traditional forms of motor rehabilitation in older subjects,
improving their balance, gait, muscle strength, upper limb function, and dexterity. A
combined intervention in which traditional physiotherapy is integrated with exergames
appears to be more efficient than each type separately. Exergames were also used as
a rehabilitation treatment for people affected by Parkinson’s disease [20] and MS [18].
Furthermore, the commercial device “Microsoft Kinect” (an RGB-D camera) was widely
tested for motor rehabilitation purposes, as reported in the review by De Gama et al. [29]:
many studies presented Kinect-based systems in which the subject had to simulate in a
virtual environment a functional activity and achieve some objects to complete a task. A
Cochrane review by Laver et al. [30] found evidence that virtual reality and interactive
video gaming for stroke rehabilitation may be beneficial in improving global motor, upper
limb function, and activities of daily living (ADL) when used as an addition to usual care
or when compared with the same dose of conventional therapy. In summary, these reviews
indicate that exergames appear to be a viable and effective rehabilitation tool for people
with neuromuscular diseases.

Below are some articles that feature different technologies for exergaming purposes.
A mapping study by Gmez-Portes et al. [193] showed how exergames could address
home rehabilitation for children and teenagers. In particular, the study presents a home
rehabilitation software prototype based on “Microsoft Azure Kinect DK”. A virtual avatar,
showed in a connected screen, mimics the patient’s movements, and it is necessary to
perform certain tasks to achieve the predetermined goals. Palaniappan et al. [194] tested
the “HTC Vive” for virtual reality exergames on patients affected by spinal cord injury. The
authors used the “Vive tracker” to track the movements of the patient’s arm by attaching
it to a Velcro hand strap through a 3D-printed interface plate (the standard controller
requires fine motor control to grip and use buttons). A further study by Nguyen et al. [195]
showed an exergames room based on the “Jintronix Rehabilitation System (JRB)” (a virtual
reality software compatible with the Microsoft Kinect) and the “Meditouch Hand Tutor
(MHT)” (a set of electro goniometers measuring wrist and elbow movements) to interface
the patient in stroke rehabilitation with the virtual reality and guide him in performing
specific movements.

Table 11 outlines the image-based body motion HMIs studies included in the cur-
rent survey.
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Table 11. Image-based body motion HMIs.

Authors [Reference] Tracked Body Part Target Field
Maule et al. [187] Eyes Robotic Control Assistance
Bissoli et al. [43] Eyes Smart Environment Control Assistance
Lin et al. [188] Eyes Smart Environment Control Assistance
Conci et al. [189] Hands Ge?ﬁfg:;ﬁ?gg:;%f; tférllart Assistance
Baklouti et al. [190] Head /Mouth Robotic control Rehabilitation
Chang et al. [191] Head Communication Assistance
Gautam et al. [192] Head Robotic Control Assistance
Gmez-Portes et al. [193] Whole body Virtual Reality Control Rehabilitation
Palaniappan et al. [194] Upper limb Virtual Reality Control Rehabilitation
Nguyen et al. [195] Whole body with “JRS"; wrist Virtual Reality Control Rehabilitation

and elbow with “MHT”

3.3.2. Nonimage-Based Body Motion HMIs

Body motions, such as hand or finger motions, are generally tracked by vision-based
systems. An alternative approach is based on wearable devices, such as inertial sensors (the
most widely employed for human motion recognition), touch sensors, strain gauges, flex
sensors, and ultrasonic sensors. Some studies based on these technologies with assistive
and rehabilitative purposes are reported below.

A study by Chuang et al. [196] focused on a smart glove equipped with flex sensors
(variable resistors with the degree of deflection) for finger gesture recognition purpose. The
study aimed to detect different thumb, index finger, and middle finger movements using
neural network algorithms. A further paper by Dong et al. [197] proposed a smart glove
embedded with piezoresistive strain sensors based on stretchable polydimethylsiloxane—
carbon black to recognize finger gestures and control robot fingers. Zhu et al. [198] pre-
sented a different smart glove based on stretchable conductive metal-coated yarns (a nylon
yarn covered by a metal film) to remotely control a robotic hand and manipulate the colour
switching of light by using gesture recognition. Hang et al. [199] detected various human
body motions using a poly(acrylamide) hydrogel-based strain sensor. Thanks to the high
extensibility of these sensors, the authors measured the bending of fingers, wrist, elbow,
and knee and the cheek bulging. Gesture recognition and a robotic hand’s gesture control
were experimented with by embedding five hydrogel sensors in a glove.

In the context of exoskeleton control, Ueki et al. developed a hand exoskeleton for
self-controlled rehabilitation therapy. It uses a closed-loop master and slave system to
assist flexion/extension, abduction/adduction of hand joints, and thumb opposability. In
detail, the subject performs movements in virtual reality with his healthy hand wearing
a glove (i.e., master level), which is equipped with 3D motion sensor. The movement is
reproduced by the exoskeleton attached to the impaired hand (i.e., slave level), which uses
three-axis force sensors [199]. Similarly, a further study by Rahman and Al-Jumaily [200]
proposed a hand rehabilitation exoskeleton consisting of a master and slave system. The
healthy hand wears the glove acting as master and is equipped with flex sensors, whereas
the impaired one wears the exoskeleton acting as a slave. The glove wirelessly transmits
data to the exoskeleton that executes commands for fingers flexion and extension. Again,
Cortese et al. proposed a hand rehabilitation exoskeleton in the form of a master and
slave system. The therapist wears a glove (i.e., master unit), while the patient wears the
exoskeleton (i.e., slave unit). These two devices exchange data between them. In particular,
the therapist guides the exercises to be performed by the patient. The glove presents six
three-axis MEMS accelerometers, which obtain position vectors classified and compared
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with proper thresholds to understand the specific command (i.e., rest, grasp, pinch) and,
eventually, its percentage [201].

Moreover, some approaches use only wearable inertial sensors. An example is the
research by Han and Yoon [202], who experimented with a three-axis gyroscope fixed on
the hand back intending to discriminate six hand gestures (up, down, left, right, clockwise
rotation, anticlockwise rotation) and track the hand trajectories. Then the HMI was tested
as a PC input device for controlling various applications (presentation, video player,
web browser).

Table 12 presents a summary of the considered non-image-based body motion HMIs.

Table 12. Nonimage-based body motion HMIs.

Application Sites of

Authors [Reference] Kind of Sensors Target Field
Sensors
Chuang et al. [196] Resistive flex sensors Embedded in a glove Gesture Recognition Assistance
Piezoresistive strain Gesture Recognition, Assistance
Dong et al. [197] sensors (based on Embedded in a glove Robotic C i trol ! Rehabilitati In
PDMS-CB) obotic Contro ehabilitatio
Zhu et al. [198] Stretchable conductive Embedded in a glove Robqtlc Control, Smart Assistance
yarns Environment Control
PAAm hydrogel-based . . Gesture Recognition, .
Hang et al. [203] strain sensor Various body positions Robotic Control Assistance
. Force/torque sensors Embedded in a glove, Robotic Control, e e
Ueki etal. [199] and 3D motion sensor hand and forearm Virtual Reality Control Rehabilitation
Rahman et al. [200] Flex sensors Embeddﬁ;lnlg aglove, Robotic Control Rehabilitation
Cortese et al. [201] MEMS accelerometers Embeddﬁ:nlg aglove, Robotic Control Rehabilitation
Gesture Recognition,
Han et al. [202] Three-axis gyroscope Hand back Smart Environment Assistance

Control

3.4. Hybrid HMIs

Hybrid HMIs are characterized by two or more technologies that work together to
achieve a common goal [11]. Various combinations of biopotentials with vision systems,
force sensors, accelerometers, US probes, microphones, IMU sensors, etc. have been pre-
sented in the last two decades. Compared with single modality HMIs, multimodality
HMIs could enrich the controllability of the interface, optimize the communication meth-
ods, and improve the overall performance of the interface [204]. Many studies combined
biopotentials with morphological sensors (force sensors, US probes, etc.) to obtain electro-
physiological and morphological information of the same muscle simultaneously [13].

3.4.1. Biopotentials and Image-Based Systems

The current subsection shows biomedical HMIs with hybrid controls based on biopo-
tentials detection and vision systems. A study by Wei et al. [204] presented a hybrid HMI
designed for hands-free control of an electric-powered wheelchair. Forehead EMG signals
and colour face image information were used to identify movements of the human face.
In detail, five winking and jaw clenching movement patterns were selected and classi-
fied, mapping into six control commands to drive an electric-powered wheelchair in an
indoor environment.

Haung et al. [205] presented a multimodal emotion recognition system by combining
facial images and EEG. The acquired images were classified by a convolutional neural
network (CNN) architecture for facial expression detection. Different SVM classifiers
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classified the EEG signals. Finally, the facial expressions and EEG signals were combined
to recognize the facial emotions.

Downey et al. [206] experimented with a combined control system for a robotic
arm/hand on patients with spinal cord injury. Microelectrodes arrays were implanted on
the motor cortex of the patients for realizing a BMI. Moreover, a computer vision system
composed of an RGB-Depth camera was mounted above the arm base to identify objects
by matching depth image templates from a model library. During the experiment, the
subjects controlled the robotic arm/hand to perform grasping tasks.

A conference paper by Bu et al. [207] proposed a hybrid control method for prosthetic
hand, combining EMG signals with a vision-based object classifier. Information of target
objects (shape, dimension) are obtained from images and then utilized to generate control
commands for motors in combination with the EMG signals.

A study by Malechka et al. [208] presented the “sBCI eye tracking system” composed
of a headset that integrates multichannel EEG equipment, an eye tracker system (two
cameras for tracking of left and right eye) based on video-oculography (VOG), an envi-
ronmental observation camera, and an integrated visual stimulator for a SSVEPs. The
system detects the user’s intention to interact with a specific device in its environment.
McMullen et al. [209] presented a hybrid HMI named “HARMONIE system”. This system
utilizes ECoG and depth electrodes within the motor cortex for realizing an iEEG-BMI,
with the aim to identify the movement intention. A Microsoft Kinect sensor is used to
record both the depth information and RGB of the experimental workspace. The patient’s
gaze is captured by a monitor-mounted eye-tracking system. A patient implanted with
iEEG electrodes can use the eye tracking system to visually select an object displayed in
real-time on the monitor and provide control signals to an upper prosthetic limb.

Frisoli et al. proposed architecture for controlling a rehabilitation arm exoskeleton in
reaching and grasping functions. In summary, the system is composed of a motor imagery-
based BCI to decode the subject’s motion intention, an eye-tracking to detect subject’s gaze
direction while selecting the target object in the task space, and a Kinect sensor to track the
object in the 3D space and communicate its position to the robotic device [210].

Table 13 outlines the hybrid controls for HMIs based on biopotentials and image-based
systems included in the current survey.

Table 13. Hybrid controls for HMIs based on Biopotentials and Image-based systems.

Application Site Location of Video

Kinect + video camera

subject’s face

Authors [Reference] Kind of Sensors of Electrodes System/s Target Field
Wei and Hu [204] EMG electrodes + Forehead towards the subject’s Robotic Assistance
Video camera face Control
Video camera + . 10-20 EEG towards the subject’s — .
Haung et al. [205] international Communication  Assistance
EEG electrodes face
system
Intracortical Robotic
Downey et al. [206] microelectrode arrays Motor cortex on the arm of the robot Assistance
Control
+ RGB-D camera
Bu et al. [207] EMG electrodes + Forearm towards'the target Prosthetic Assistance
Video camera objects Control
two video cameras
EEG electrodes + 10-10 EEG to‘gﬁs ?051}1 :;i;tes fs « Smart
Malechka et al. [208] . international . ! Environment Assistance
3 video cameras tracking); one video
system Control
camera towards the
target objects
Kinect sensor towards
McMullen et al. ECoG and d.e pth the target objects; video Prosthetic .
electrodes + Microsoft Motor cortex Assistance
[209] camera towards the Control
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Table 13. Cont.

Authors [Reference] Kind of Sensors Application Site Location of Video Target Field
of Electrodes System/s

EEG electrodes + scene

camera (i.e., 2 infrared Scene camera mounted

.. cameras + 2 infrared O\{er on glasses; Kinect sensor Robotic et b
Frisoli et al. [210] LEDs + 1 wide-angle sensorimotor towards the target Control Rehabilitation
. cortex .
camera) + Microsoft objects

Kinect

3.4.2. Biopotentials and Mechanical Motion Detection

This subsection shows some biomedical HMIs with hybrid controls based on biopo-
tentials and mechanical motion detection.

The human anatomy inspires a prosthetic hand presented by Dunai et al. [211]. It
works by using sSEMG sensors to allow the user to activate the prosthesis and FSR sensors
to simulate the touch pressure of the fingers. The grasping is completed when the FSR in
the thumb signal is above a given threshold.

Krasoulis et al. [211] proposed a multimodal control for prosthetic hand, which com-
bines sEMG sensors with IMU systems. In detail, each EMG electrode incorporated a
nine-degree-of-freedom (DOF) IMU, i.e., a triaxial accelerometer; gyroscope; and mag-
netometer measuring acceleration, angular velocity, and magnetic field, respectively. A
total of 12 hybrid sensors were used for monitoring the activation of the arm and forearm
muscles and provided control signals to the prosthetic hand. A further example of a hybrid
SEMG-IMU interface is the study presented by Shahzad et al. [212] to evaluate the variation
of the sEMG signals with the arm position. The system consists of multiple sSEMG sensors
and nine-DOF IMUs to measure the electrical activity of the muscles and the position of the
forearm relative to the shoulder while performing six classes of hand motions. A conference
paper by Kyranou et al. [213] also experimented with a hybrid control for robotic prosthetic
hand, based on 12 sEMG sensors, each integrating a nine-DOF IMU. A multiclass LDA
classifier was used to discriminate six hand grip patterns and use the predictions to control
a robotic prosthetic hand in real-time.

Moreover, Jaquier et al. [214] experimented with a hybrid device composed of sSEMG
and pressure sensors to predict the activation of the wrist, hand, and single-finger for
future prosthetic implementations. A proximal forearm device is a tactile bracelet with
10 pressure sensors (made by resistive elastomers); a distal forearm device is composed of
10 sEMG electrodes (Ottobock Myobock).

A different combined control for upper-limb prosthesis, presented by Guo et al. [215],
was based on sEMG and near-infrared spectroscopy (NIRS) sensors (light sources at three
wavelength: 730, 805, and 850 nm). The study investigated the classification accuracy in
discriminating 13 wrist and hand motions. It tested the performance in controlling a virtual
prosthetic hand by using four hybrid sSEMG/NIRS to the forearm muscles of amputees.

A further type of hybrid control is the combined sensor sEMG/US presented by Xia
et al. [13]. The paper proposed a portable hybrid sensor system: the sEMG electrodes and
an US transducer (for A-Mode signals) are fixed into a module to detect electrophysiological
and morphological information of the same muscle. An armband equipped with four
hybrid modules is mounted on the subject’s forearm to recognize 20 different gestures
(6 wrist motions, 13 finger motions, and a rest state motion).

Furthermore, Dwivedi et al. proposed a soft assistive exoskeleton that combines a
glove and a muscle-machine interface in the form of a sensorised sleeve. The interface
is equipped with EMG and FMG sensors to decode the subject’s motion intention. The
acquired data are classified into different grasp types and used to trigger the motors [216].

Table 14 summarizes the selected hybrid controls for HMIs based on biopotentials
and mechanical motion detection.
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Table 14. Hybrid controls for HMIs based on Biopotentials and Mechanical Motion Detection.

Kind of Hybrid

Application Sites of Hybrid

Authors [Reference] Target Field
Sensors Sensors
SEMG electrodes on Extensor
Dunai et al. [217] SEMG electrodes + FSR digitorum (forearm). . Prosthetic Control Assistance
Sensors FSR sensors on prosthetic
fingertips.
Eight hybrid sensors are
equally spaced around the
forearm (3 cm below the
Krasoulis et al. [211] Hybrid sEMG/IMU elbow); . twp are placed on the Prosthetic Control Assistance
sensors extrinsic hand muscles
superficialis; two are placed on
the biceps and triceps brachii
muscles.
Two sEMG sensors are placed
on the forearm flexors, and
other two are placed at the
forearm extensors Gesture
Shahzad et al. [212] SEMG electrodes + IMU ’ Recognition, Assistance
The forearm IMU was placed .
. . Prosthetic control
proximal to the wrist, and the
upper arm IMU was paced
over the biceps brachii muscle.
Twelve hybrid sensors are Gesture
Kyranou et al. [213] Hybrid sEMG/IMU placed on the proximal Recognition, Assistance
forearm via an elastic bandage. Prosthetic control
Ten sEMG sensors are placed
SEMG electrodes + on the proximal forearm. Gesture
Jaquier et al. [214] pressure sensors Ten pressure sensors (via a Recognition, Assistance
(resistive elastomers) bracelet) are placed on the Prosthetic control
proximal forearm.
Four hybrid sensors are
. attached above flexor carpi Gesture
Guo et al. [215] Hybrlisﬂ\(/)[i/NIRS ulnaris, flexor carpi radialis, Recognition, Virtual Assistance
extensor carpi radialis longus, Reality Control
and extensor digitorum.
. Four hybrid sensors are Gesture
Xia et al. [13] HybrldEEbl{[G/US mounted on the forearm by Recognition, Assistance
Sensors means of an armband. Prosthetic Control
Three EMG sensors are
Dwivedi et al. [216] SEMG + FSR err.lbedded inasleeve. Robotic Control Assistance
sensors Five FSR sensors are

embedded in a sleeve.

3.4.3. Other Various Hybrid Controls

The following subsection shows some examples of biomedical HMIs not classifiable
in the previous subsections whose controls are based on hybrid combinations of sensors
(biopotentials, IMU, US, vision system, voice recognition, microphones, Radio-Frequency
Identification (RFID), etc.) and whose application fields are principally involved in assis-
tance or rehabilitation.

Ubeda et al. [11] presented a shared control combining a BMI with RFID technology to
control a robot arm. RFID tags were placed in the experimental setup to give information
about the position of the objects in the scene. An antenna, placed on the robot arm’s end
effector, is used to read /write the tags. Information about objects’ positions is stored in
the tags. The shared control system uses this information and supports the user to make
high-level BMI decisions via mental tasks (move left, move right, pick, or place). The
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authors showed that the total amount of BMI commands can be significantly reduced
thanks to the RFID tags.

A further study by Perez et al. [218] proposed a hybrid control for a robotic wheelchair
to be used by people with severe motor disability. The system is based on a Visual-Based
Interface (VBI) and an IMU sensor and combines the information of the user’s head
orientation (obtained by both the VBI and the IMU sensor) for providing control signals
to the wheelchair. In [219], another hybrid HMI for controlling a robotic wheelchair was
presented, which combines six different control strategies, i.e., eye blinks from sEMG, eyes
and face movements acquired using video cameras, head movements detected via an IMU
sensor, sip-and-puff captured by a pressure sensor, and brain waves from EEG.

Voice recognition systems have also been experimented with for controlling wheelchairs.
An example is the study by Anwer et al. [220] that presented an eye- and voice-controlled
wheelchair. The device carries out both voice commands (on, right, left, stop), which are
processed through an Arduino platform, and commands given by the movement of the
eyes (to the right or left), captured with a front camera and processed with a Raspberry
PI platform.

Another low-cost multimodal sensor was presented by Gardner et al. [221]. It consists
of an acoustic MMG sensor, a nine-DOF IMU sensor, and a video camera. On an amputee
participant, a compression sleeve containing both the MMG and the IMU sensors were
positioned on the biceps. The participant wore the video camera on a pair of glasses.
The study predicts different grasp strategies and the successive control of a commercial
prosthetic hand (BeBionic Hand).

Moreover, in order to allow people with severe disabilities (ALS, CP, stroke, etc.)
to communicate, a study presented a wireless home assistive system [222], consisting of
various types of sensors: EOG (for detecting eyes movements) and switches (based on:
push button, InfraRed, mercury, long—short tone, and pacifier) were used for generating a
Morse Code. Afterward, a fuzzy algorithm-based-Morse Code recognition allowed it to
provide input commands to a connected PC.

Table 15 presents a summary of the considered hybrid controls for HMIs based on
various combinations of sensors.

Table 15. Hybrid controls for HMIs based on various combinations of sensors.

Authors Kind of Hybrid Sensors Application Sites of Hybrid Target Field
[Reference] Sensors
10-20 EEG international system; .
Ubeda et al. [11] EEG electrodes + RFID RFID tags near by the target Robotic Control Asms.tfamc.e !
tags . Rehabilitation
objects.
Video camera (webcam) towards
Perez et al. [218] Video camera + IMU the patient’s face; Robotic Control Assistance
sensor IMU sensor mounted on a cap or
headband.
EMG electrodes on temporal
muscles;
EMG electrodes + video Video camera on a pair of glasses

Bastos-Filho et al. [219]

cameras + IMU sensor +
pressure sensor + EEG
electrodes

worn by the user;

IMU sensor mounted on a cap;
Pressure sensor into a straw;
10-20 EEG international system;
Video camera towards the user’s
face.

Robotic Control

Assistance
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Table 15. Cont.

Authors Kind of Hybrid Sensors Application Sites of Hybrid Target Field
[Reference] Sensors

Microphone embedded in the

Anwer et al. [220] Microphone + video camera Wheelchalr; , Robotic Control Assistance
Video camera towards the user’s
face.

Acoustic MMG compression seeve) on the biceps;
Gardner et al. [221] sensor + IMU sensor + video p PS " prosthetic Control Assistance

Video camera on a pair of glasses

camera
worn by the user.

Wu et al. [222]

EOG electrodes + switches
(push button, InfraRed,
mercury, long—short tone,

EOG electrodes on eyebrow arch;
Various switches are positioned to Communication Assistance

and pacifier) be activated by the user.

4. Discussion

This survey analysed the literature on biosignal-based HMIs that use biopotentials,
mechanical muscle movements, body motion, or their combinations as control signals, with
applications in the field of assistance and/or rehabilitation. Journal and conference papers
presented in the past 20 years were considered.

4.1. Statistical Analysis

Statistical data extracted from the selected papers (144 journals papers and 37 con-
ference papers) are reported below. Figure 2 shows the number of publications over the
last years: the trend is growing. This proves the ever-growing interest to develop HMI
technologies for assistive and/or rehabilitative purposes. Figure 2B shows how the studies
are related to the considered applications. The highest percentage (about 67%) pertains
to the assistive field, while rehabilitation and assistance rehabilitation represent about the
20% and 13% of all studies, respectively.

40—

&

30

20+

Number of studies

0
2000

B)

Biosignal-based HMIs
for Assistance and Rehabilitation

144 Journal Papers + 37 Conference Papers
I 66.85% Assistance

B 19.89% Rehabilitation
3 13.26% Assistance and Rehabilitation

2005 2010 2015 2020

Year of publication

Figure 2. (A) Histogram illustrating the trend in the last two decades in the number of studies selected for the current

survey. (B) Pie chart presenting the percentage distribution of the selected studies, according to the field of application.

Figure 3A shows the percentages of use of the biosignals for HMI control. Biopo-
tentials constitute the highest percentage (about 57%), while muscle mechanical motion
represents 21%. Lower percentages are associated with body motion controls (about 10%)
and hybrid ones (about 12%). The pie charts in Figure 3B-E represent the distributions
of the subcategories of biosignals. The most used biopotentials are still the EMG and the
EEG (>75%). Among the muscle mechanical motion signals, the muscle gross motions are
the most used ones and, together with the related tendon motions, are involved in about
85% of the studies. The studies on hybrid HMIs are well-balanced; however, it is worth
highlighting that biopotentials are involved in 75% of these studies.
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BIOSIGNAL

R 57.46% Biopotentials

E 20.99% Muscle mechanical motion
E3 9.94% Body motion

3 11.60% Hybrid

Biopotentials based HMIs
82 Jounal Papers + 22 Conference Papers

W 30.77% EEG (scalp EEG, sEEG, ECoG)
E 46.15% EMG (SEMG, imEMG)

mm 288% ENG

Em 865% EOG

3 2.88% EEG + EMG

& 288% EEG + EMG + EOG

3 4.81% EEG + EOG

3 096% EMG + ERG

Muscle Mechanical Motion based HMIs

28 Journal Papers + 10 Conference Papers

EE 60.53% Muscle gross motions

B 10.53% Muscle vibrations

3 2368% Muscle-tendons movements

B3 526% Hybrid muscle mechanical motions

Hybrid HMIs

18 Journal Papers + 2 Conference Papers

EEm 35.00% Biopotential + Image-based

BN 40.00% Biopotential + Muscle mechanical motion
3 25.00% Other mixed controls

Body Motion based HMIs

15 Journal Papers + 3 Conference Papers
W 55.56% Image-based

BN 44.44% Non image-based

Figure 3. (A) Pie chart showing the percentage distribution of the biosignals implemented by the HMIs considered in this
survey. (B—E) Pie charts representing the percentage distributions of the biosignals subcategories: (B) Biopotentials-based
HMIs; (C) Muscle mechanical motion-based HMIs; (D) Body motion-based HMIs; (E) Hybrid HMIs.

Figure 4A shows the distribution of studies focusing on the different targets, while
Figure 4B shows their timeline. About 70% of these studies addressed robotic and prosthetic
control applications. The number of studies published before 2010 only represents about
6% of the total. Starting from 2010, a moderate increase can be observed in studies focusing
on robotic control, prosthetic control, and gesture recognition, while studies on the other
targets experienced only a minor increase.

4.2. Advantages and Disadvantages of Biosignal Categories

A summary of the principal technologies/sensors/systems associated with each
different macrocategory of biosignal is displayed in Figure 5. For the sake of simplicity,
hybrid systems have been omitted.

It is interesting to briefly report the pros and cons of each macrocategory of biosignal-
based HMISs.

Biopotential-based HMISs allow capturing the subject’s intention from different body re-
gions (i.e., brain, muscles, peripheral nerves, or eyes). They are widely used for controlling
all kinds of assistive and rehabilitation devices. BCI systems are promising technologies,
particularly for people with severe motor disabilities, such as quadriplegia or paraplegia.
Most biopotentials are acquired noninvasively (e.g., scalp EEG, sEMG, EOG). In this case,
stable electrode placement and skin preparation are required. Wet electrodes need the
application of a conductive gel to ensure better contact; on the contrary, dry electrodes
are very useful for long-term recordings [47]. Amplification and real-time processing
are needed because biosignals have small amplitude and are affected by noise, such as
electromagnetic interference, motion artifacts, and crosstalk with other biosignals, and
modifications over time (e.g., EMG is susceptible to muscle fatigue). Increasing use of
machine learning techniques has been documented to decode the subject’s intention. Some
acquisition techniques are invasive (e.g., ECoG electrodes are surgically implanted and may
involve a risk of infection) and therefore more complex and expensive [65]. However, they
allow acquiring signals from otherwise inaccessible regions with much higher specificity
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(e.g., ENG allows more intuitive prosthetic control). The use of this type of HMI is not
intuitive. Therefore subjects must first be trained [52].

A)
TARGETS of the HMIs
=3 3.35% Communication
Em 15.90% Gesture Recognition
I 31.80% Prosthetic control
Em 35.98% Robotic control
B3 7.53% Smart environment control
= 5.44% Virtual reality control
B)
18
16
14
12
é
210
s
I
€
2

4

2

Communication

—e—Robotic Control

Year of publication

—e—Gesture Recognition

~&—Smart Environment Control

~e— Prosthetic Control
~#-Virtual Reality Control

Figure 4. (A) Pie diagram illustrating the percentage distribution of the considered targets by the selected HMIs. (B) Graph
illustrating the trend in the last two decades of each target (depicted in a different colour) of the considered HMIs with
assistive and/or rehabilitative applications. Linear regressions (starting from 2010) are also superimposed as dashed lines.

BIOSIGNAL }—

Figure 5. Types of biosignal and main technologies/sensors/systems used by assistive and/or rehabilitative HMIs.
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Muscle mechanical motion-based HMIs exploit the morphological changes of muscles
during contraction. The FMG technique (force, pressure, piezoelectric, triboelectric sensors,
etc.) detects muscle gross variation, allows performance comparable to EMG without
using electrodes (no electrical risk), requires much simpler processing, has a lower cost and
is less affected by electromagnetic and environmental interferences. On the other hand,
FMG is susceptible to muscle fatigue and crosstalk of adjacent muscles and requires a
suitable capacity for muscle contraction (technique not usable in subjects with severe motor
disabilities) [4]. The MMG technique (microphone, accelerometer, piezoelectric sensor,
etc.), which allows detection of muscle vibrations during contraction, has the advantage of
being more sensitive than FMG in interpreting movement intentions, even in subjects with
poor muscle contraction ability but is more prone to noise and motion artifacts [3]. As for
the detection of muscle-tendon movements, the US technique guarantees good resolution
for both superficial and deep muscles, but the US probe is bulky and expensive; it is not
wearable and portable, so it is suitable only for clinical or research environments [183].

Finally, concerning the body motion-based HMIs, the image-based ones have the
advantage of being contactless and easy to use in a home environment. They are able
to detect the movement of body parts (e.g., head, hands, eyes) but are susceptible to
illumination conditions, camera field of view, and overlapping objects. They require
complex image processing algorithms to extract useful information for controlling devices,
and real-time implementation is difficult. This type of interface is essentially used for smart
environment and virtual reality control [30]. On the other hand, nonimage-based HMIs
exploits wearable, low-cost sensors which can be embedded into electronic devices, e.g.,
smartphone, or in gloves that can turn out to be uncomfortable for the user [197]. They are
mainly used for robotic control.

4.3. Latest Trends

The pie charts in Figure 6 outline the percentages of use of the considered biosignals
in each specific target’s state-of-the-art by considering the studies published only in the
last five years (i.e., 2015-2020).

HMIs targets in the period 2015-2020

B)

COMMUNICATION

Il 20.00% Biopotentials

Bl 20.00% Muscle mechanical motion
[ 20.00% Body motion

=1 40.00% Hybrid

GESTURE RECOGNITION

Bl 26.32% Biopotentials

Bl 26.32% Muscle mechanical motion
[ 21.05% Body motion

3 26.32% Hybrid

ROBOTIC CONTROL

Il 64.81% Biopotentials

Il 16.67% Muscle mechanical motion
[ 11.11% Body motion

[ 7.41% Hybrid

PROSTHETIC CONTROL

Il 9.68% Biopotentials

Il 67.74% Muscle mechanical motion
3 22.58% Hybrid

SMART ENVIRONMENT CONTROL
Hl 36.36% Biopotentials

Bl 27.27% Muscle mechanical motion
[ 27.27% Body motion

3 9.09% Hybrid

VIRTUAL REALITY CONTROL

Il 18.18% Biopotentials

Il 36.36% Muscle mechanical motion
[ 36.36% Body motion

3 9.09% Hybrid

Figure 6. Pie charts illustrating the percentage distributions of the HMIs targets in the period 2015-2020: (A) Communication;
(B) Gesture recognition; (C) Prosthetic control; (D) Robotic control; (E) Smart environment control; (F) Virtual reality control.
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As opposed to the beginning of the 20 years considered in this survey, biopotentials
are no longer the leading control signals of biosignal-based HMIs. Indeed, the use of
muscle mechanical motion signals has reached or overcome biopotentials in all targets
(more than 20% of studies), except for the robotic control, where biopotentials are still
used in about the 65% of studies. In prosthetic control, muscle mechanical motion signals
have been used in about 68% of studies, so their use has primarily overcome biopotentials
(about 10% of the studies). In particular, the measurement of muscle gross motion (about
61% of all muscle mechanical motion signals) has experienced impressive growth as an
alternative to EMG. Undoubtedly, FMG overcomes many well-known EMG limitations
(e.g., artifacts due to unstable electrical contact, drying of pregelled electrodes over long
periods, susceptibility to electromagnetic interferences), thus standing as a good, robust
control signal for long-term HMI applications. On the other hand, while reliable standards
are available for EMG measurement (e.g., SENIAM project), the properties of FMG sensors
as well as their number and positioning for accurate measurements of muscle mechanical
motion have not been standardized yet. Future research on FMG should address this
issue to provide clear guidelines that ensure good quality measurements and increase the
transferability of results obtained in different studies. Obviously, HMIs based on muscle
mechanical motion are unfeasible for subjects with limited to no muscle activity, while
those based on brain-related biopotentials, such as the BCIs, enable these impaired subjects
to interact with machines that provide them with assistance or support their rehabilitation.

Body motion is prevalent in HMIs dedicated to controlling virtual realities and smart
environments, as it has been used in about 30% of studies focusing on these targets. It has
also been used in more than 20% of studies on communication and gesture recognition,
and in few studies focusing on robotic control, its use is still limited. However, it has
never been used for prosthetic control HMIs, probably because of the unsuitability of body
motion capture technologies in the typical prosthetic control scenarios. Indeed, a great
part of these technologies are image-based, so they do not fit very well to the inherent
wearability needs of prosthetic applications and, in addition, they require a considerably
higher computational power/cost; the nonimage-based technologies are based on inertial
measurement units, which usually require specific limbs motion, thus interfering with the
final limb actions to be performed or requiring higher coordination efforts even to perform
simple tasks.

The use of hybrid approaches has also experienced considerable growth. Undoubtedly,
the combined use of different biosignals could help compensate for the weaknesses of each
single biosignal, thus leading to improved performances. On the other hand, however, this
is achieved at higher costs in terms of both hardware and software complexities. Therefore,
the pros and cons of hybrid approaches should be carefully evaluated and may vary
among different targets. Indeed, their use in the control of robots, smart environments, and
virtual realities is still limited. In contrast, in prosthetic control, gesture recognition, and
communication, their use has reached or overcome the use of other biosignals. In particular,
hybrid technologies have been used in 40% of all studies focused on communication HMISs,
thus overcoming all other biosignals. This result suggests that the considerable complexity
of communication tasks benefited from combining different biosignals much more than
other target applications.

5. Conclusions

This survey outlines the developments and research trends in biosignal-based Human-
Machine Interfaces designed for assistive and rehabilitation purposes. Recently, several
patents have filed for assistance and rehabilitation devices, demonstrating the ever-growing
interest in developing new technologies by companies, universities, and research institutes.
Some examples are: an ambulation exoskeleton for limb rehabilitation in patients suffering
from poststroke motor disabilities; a lower limb wearable robotic system able to support
the flexion/extension movements of the hip and knee joints for rehabilitation applications;
a hand exoskeleton for use in robot-assisted rehabilitation; a vision rehabilitation system
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based on the remote control of the physician; a grip assistance device based on functional
electrical stimulation (FES), which perceives the movement intentions by the EMG signal
from a paretic limb and provides electrical stimuli in order to activate the muscles involved
in grasp actions; etc. [223].

In conclusion, biopotential-based HMIs are involved in all considered targets. Their
major drawback is the need for stable electrical contact over time. Among these HMIs,
BClI is a promising exploration area and could be crucial for people with severe disabil-
ities. However, this technology is not mature enough to be reliably used in daily life
environments.

In the last several years, many alternatives to biopotentials have been available in
the field of assistive and rehabilitative HMIs. Recently, research on prosthetic control has
been strongly directed towards using muscle mechanical motion as an EMG alternative;
it has also been widely tested for all the other targets considered. HMIs that exploit this
kind of biosignals achieve comparable performances to EMG, overcoming its well-known
limitations. Nonetheless, they do require the user to have adequate muscle contraction
capacity. Body motion-based HMIs are mainly used for smart environment and virtual
reality control. The use of image-based and nonimage-based techniques turned out to be
well balanced. Hybrid HMIs represent an emergent trend and have already provided a
remarkable contribution to the communication target. They could help compensate for
single biosignals” weaknesses but must be adapted to specific applications.

The future will probably be characterized by the development of interactive/intelligent
systems that allow any person, even someone affected by severe motor disabilities, to pro-
vide commands to a wide range of machines. Shared control, predictable machine learning
techniques, closed-loop control based on sensory feedback, and human-oriented design re-
quirements will be the critical challenges for future research. In addition, the HMIs design,
especially in the field of assistive technologies, would probably be directed towards the
development of “universal interfaces” [224], capable of recognizing and executing any user
command (e.g., home automation devices, smart wheelchairs, personal communicators,
etc.) in order to let these systems to be easily used by all kinds of users, regardless of age,
languages, and degree of disability.
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